Searching for the Predictors of Response to BoNT-A in Migraine Using Machine Learning Approaches
Abstract
:1. Introduction
2. Results
2.1. Population Analysed
2.2. Machine Learning Analysis
3. Discussion
Limitations
4. Conclusions
5. Materials and Methods
5.1. Classification
- Group 1: early termination, BoNT-A was administered for only 1 cycle due to inefficacy.
- Group 2: nonresponders (<25% response after the 4th cycle).
- Group 3: poor responders (25–50% response after the 4th cycle).
- Group 4: good responders (50–75% response after the 4th cycle).
- Group 5: excellent responders (>75% response after the 4th cycle).
5.2. Analysis Plan
5.3. Machine Learning (ML)
5.3.1. Feature Selection
5.3.2. Machine Learning Analysis
Artificial Neural Network (ANN)
Support Vector Machine (SVM)
Adaptive Neuro-Fuzzy Inference System (ANFIS)
Random Forest (RF)
Fuzzy c-Means Clustering (FCM)
5.3.3. Cross Validated Accuracy
5.4. Performance Comparison
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stovner, L.J.; Hagen, K.; Linde, M.; Steiner, T.J. The Global Prevalence of Headache: An Update, with Analysis of the Influences of Methodological Factors on Prevalence Estimates. J. Headache Pain 2022, 23, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J. Headache Classification Committee of the International Headache Society (IHS). In The International Classification of Headache Disorders, 3rd ed.; Sage Publications: London, UK, 2018; Volume 38, pp. 1–211. [Google Scholar] [CrossRef]
- Serrano, D.; Lipton, R.B.; Scher, A.I.; Reed, M.L.; Stewart, W.F.; Adams, A.M.; Buse, D.C. Fluctuations in Episodic and Chronic Migraine Status over the Course of 1 Year: Implications for Diagnosis, Treatment and Clinical Trial Design. J. Headache Pain 2017, 18, 1–12. [Google Scholar] [CrossRef]
- Lipton, R.B. Tracing Transformation: Chronic Migraine Classification, Progression, and Epidemiology. Neurology 2009, 72, S3–S7. [Google Scholar] [CrossRef]
- Torres-Ferrús, M.; Quintana, M.; Fernandez-Morales, J.; Alvarez-Sabin, J.; Pozo-Rosich, P. When Does Chronic Migraine Strike? A Clinical Comparison of Migraine According to the Headache Days Suffered per Month. Cephalalgia 2017, 37, 104–113. [Google Scholar] [CrossRef]
- Martinelli, D.; Arceri, S.; Tronconi, L.; Tassorelli, C. Chronic Migraine and Botulinum Toxin Type A: Where Do Paths Cross? Toxicon 2020, 178, 69–76. [Google Scholar] [CrossRef]
- Martinelli, D.; Arceri, S.; De Icco, R.; Allena, M.; Guaschino, E.; Ghiotto, N.; Bitetto, V.; Castellazzi, G.; Cosentino, G.; Sances, G.; et al. BoNT-A Efficacy in High Frequency Migraine: An Open Label, Single Arm, Exploratory Study Applying the PREEMPT Paradigm. Cephalalgia 2022, 42, 170–175. [Google Scholar] [CrossRef]
- Ray, J.C.; Hutton, E.J.; Matharu, M. Onabotulinumtoxina in Migraine: A Review of the Literature and Factors Associated with Efficacy. J. Clin. Med. 2021, 10, 2898. [Google Scholar] [CrossRef] [PubMed]
- Ornello, R.; Baraldi, C.; Ahmed, F.; Negro, A.; Miscio, A.M.; Santoro, A.; Alpuente, A.; Russo, A.; Silvestro, M.; Cevoli, S.; et al. Excellent Response to OnabotulinumtoxinA: Different Definitions, Different Predictors. Int. J. Environ. Res. Public Health 2022, 19, 975. [Google Scholar] [CrossRef]
- Christopher, M. Bishop Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; Volume 4. [Google Scholar]
- Sidey-Gibbons, J.A.M.; Sidey-Gibbons, C.J. Machine Learning in Medicine: A Practical Introduction. BMC Med. Res. Methodol. 2019, 19, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Castellazzi, G.; Cuzzoni, M.G.; Cotta Ramusino, M.; Martinelli, D.; Denaro, F.; Ricciardi, A.; Vitali, P.; Anzalone, N.; Bernini, S.; Palesi, F.; et al. A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features. Front. Neuroinform. 2020, 14, 25. [Google Scholar] [CrossRef]
- Ferroni, P.; Zanzotto, F.M.; Scarpato, N.; Spila, A.; Fofi, L.; Egeo, G.; Rullo, A.; Palmirotta, R.; Barbanti, P.; Guadagni, F. Machine Learning Approach to Predict Medication Overuse in Migraine Patients. Comput. Struct. Biotechnol. J. 2020, 18, 1487–1496. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Chimeno, Y.; Garcia-Zapirain, B.; Gomez-Beldarrain, M.; Fernandez-Ruanova, B.; Garcia-Monco, J.C. Automatic Migraine Classification via Feature Selection Committee and Machine Learning Techniques over Imaging and Questionnaire Data. BMC Med. Inform. Decis. Mak. 2017, 17, 38. [Google Scholar] [CrossRef]
- Messina, R.; Filippi, M. What We Gain From Machine Learning Studies in Headache Patients. Front. Neurol. 2020, 11, 221. [Google Scholar] [CrossRef] [PubMed]
- Rocca, M.A.; Harrer, J.U.; Filippi, M. Are Machine Learning Approaches the Future to Study Patients with Migraine? Neurology 2020, 94, 291–292. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, A.; Pagán, J.; Sanz-García, A.; García-Azorín, D.; Rodríguez-Vico, J.S.; Jaimes, A.; García, A.G.; de Terán, J.D.; González-García, N.; Quintas, S.; et al. Machine-Learning-Based Approach for Predicting Response to Anti-Calcitonin Gene-Related Peptide (CGRP) Receptor or Ligand Antibody Treatment in Patients with Migraine: A Multicenter Spanish Study. Eur. J. Neurol. 2022, 29, 3102–3111. [Google Scholar] [CrossRef] [PubMed]
- Parrales Bravo, F.; Del Barrio García, A.A.; Gallego, M.M.; Gago Veiga, A.B.; Ruiz, M.; Guerrero Peral, A.; Ayala, J.L. Prediction of Patient’s Response to OnabotulinumtoxinA Treatment for Migraine. Heliyon 2019, 5, e01043. [Google Scholar] [CrossRef]
- Demartini, C.; Francavilla, M.; Zanaboni, A.M.; Facchetti, S.; De Icco, R.; Martinelli, D.; Allena, M.; Greco, R.; Tassorelli, C. Biomarkers of Migraine: An Integrated Evaluation of Preclinical and Clinical Findings. Int. J. Mol. Sci. 2023, 24, 5334. [Google Scholar] [CrossRef]
- Jakubowski, M.; Mcallister, P.J.; Bajwa, Z.H.; Ward, T.N.; Smith, P.; Burstein, R. Exploding vs. Imploding Headache in Migraine Prophylaxis with Botulinum Toxin A. Pain 2006, 125, 286–295. [Google Scholar] [CrossRef]
- Kim, C.C.; Bogart, M.M.; Wee, S.A.; Burstein, R.; Arndt, K.A.; Dover, J.S. Predicting Migraine Responsiveness to Botulinum Toxin Type A Injections. Arch. Dermatol. 2010, 146, 159–163. [Google Scholar] [CrossRef]
- Grogan, P.M.; Alvarez, M.V.; Jones, L. Headache Direction and Aura Predict Migraine Responsiveness to Rimabotulinumtoxin B. Headache 2013, 53, 126–136. [Google Scholar] [CrossRef]
- Burstein, R.; Dodick, D.; Silberstein, S. Migraine Prophylaxis with Botulinum Toxin A Is Associated with Perception of Headache. Toxicon 2009, 54, 624–627. [Google Scholar] [CrossRef]
- Lin, K.H.; Chen, S.P.; Fuh, J.L.; Wang, Y.F.; Wang, S.J. Efficacy, Safety, and Predictors of Response to Botulinum Toxin Type A in Refractory Chronic Migraine: A Retrospective Study. J. Chin. Med. Assoc. 2014, 77, 10–15. [Google Scholar] [CrossRef]
- Pagola, I.; Esteve-Belloch, P.; Palma, J.A.; Luquin, M.R.; Riverol, M.; Martínez-Vila, E.; Sieira, P.I. Predictive Factors of the Response to Treatment with Onabotulinumtoxina in Refractory Migraine. Rev. Neurol. 2014, 58, 241–246. [Google Scholar] [CrossRef] [PubMed]
- De Tommaso, M.; Brighina, F.; Delussi, M. Effects of Botulinum Toxin A on Allodynia in Chronic Migraine: An Observational Open-Label Two-Year Study. Eur. Neurol. 2019, 81, 37–46. [Google Scholar] [CrossRef]
- Mathew, N.T.; Kailasam, J.; Meadors, L. Predictors of Response to Botulinum Toxin Type A (BoNTA) in Chronic Daily Headache. Headache J. Head Face Pain 2008, 48, 194–200. [Google Scholar] [CrossRef]
- Young, W.B.; Ivan Lopez, J.; Rothrock, J.F.; Orejudos, A.; Manack Adams, A.; Lipton, R.B.; Blumenfeld, A.M. Effects of OnabotulinumtoxinA Treatment in Patients with and without Allodynia: Results of the COMPEL Study. J. Headache Pain 2019, 20, 1–10. [Google Scholar] [CrossRef]
- Sandrini, G.; Perrotta, A.; Tassorelli, C.; Torelli, P.; Brighina, F.; Sances, G.; Nappi, G. Botulinum Toxin Type-A in the Prophylactic Treatment of Medication-Overuse Headache: A Multicenter, Double-Blind, Randomized, Placebo-Controlled, Parallel Group Study. J. Headache Pain 2011, 12, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Lovati, C.; Giani, L.; Mariotti Dalessandro, C.; Tabaee Damavandi, P.; Mariani, C.; Pantoni, L. May Migraine Attack Response to Triptans Be a Predictor of the Efficacy of Onabotulinum Toxin-A Prophylaxis? Neurol. Sci. 2018, 39, 153–154. [Google Scholar] [CrossRef]
- Eren, O.E.; Gaul, C.; Peikert, A.; Gendolla, A.; Ruscheweyh, R.; Straube, A. Triptan Efficacy Does Not Predict OnabotulinumtoxinA Efficacy but Improves with OnabotulinumtoxinA Response in Chronic Migraine Patients. Sci. Rep. 2020, 10, 11382. [Google Scholar] [CrossRef]
- Di Cola, F.S.; Caratozzolo, S.; Liberini, P.; Rao, R.; Padovani, A. Response Predictors in Chronic Migraine: Medication Overuse and Depressive Symptoms Negatively Impact Onabotulinumtoxin-A Treatment. Front. Neurol. 2019, 10, 678. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, C.; Pozo-Rosich, P.; Torres-Ferrús, M.; Hernández-Beltrán, N.; Jurado-Cobo, C.; González-Oria, C.; Santos, S.; Monzón, M.J.; Latorre, G.; Álvaro, L.C.; et al. OnabotulinumtoxinA in Chronic Migraine: Predictors of Response. A Prospective Multicentre Descriptive Study. Eur. J. Neurol. 2017, 25, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Eross, E.J.; Gladstone, J.P.; Lewis, S.; Rogers, R.; Dodick, D.W. Duration of Migraine Is a Predictor for Response to Botulinum Toxin Type A. Headache 2005, 45, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Cernuda-Morollón, E.; Ramón, C.; Martínez-Camblor, P.; Serrano-Pertierra, E.; Larrosa, D.; Pascual, J. OnabotulinumtoxinA Decreases Interictal CGRP Plasma Levels in Patients with Chronic Migraine. Pain 2015, 156, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, C.; Vieites-Prado, A.; Pérez-Mato, M.; Sobrino, T.; Rodríguez-Osorio, X.; López, A.; Campos, F.; Martínez, F.; Castillo, J.; Leira, R. CGRP and PTX3 as Predictors of Efficacy of Onabotulinumtoxin Type A in Chronic Migraine: An Observational Study. Headache J. Head Face Pain 2018, 58, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, C.S.; Becerra, L.; Smith, J.H.; DeLange, J.M.; Smith, R.M.; Black, D.F.; Welker, K.M.; Burstein, R.; Cutrer, F.M.; Borsook, D. Brain Changes in Responders vs. Non-Responders in Chronic Migraine: Markers of Disease Reversal. Front. Hum. Neurosci. 2016, 10, 497. [Google Scholar] [CrossRef]
- Vivero, C.D.; Leira, Y.; Piñeiro, M.S.; Rodríguez-Osorio, X.; Ramos-Cabrer, P.; Martín, C.V.; Sobrino, T.; Campos, F.; Castillo, J.; Leira, R. Iron Deposits in Periaqueductal Gray Matter Are Associated with Poor Response to Onabotulinumtoxina in Chronic Migraine. Toxins 2020, 12, 479. [Google Scholar] [CrossRef]
- Rattanawong, W.; Rapoport, A.; Srikiatkhachorn, A. Neurobiology of Migraine Progression. Neurobiol. Pain 2022, 12, 100094. [Google Scholar] [CrossRef]
- Mungoven, T.J.; Henderson, L.A.; Meylakh, N. Chronic Migraine Pathophysiology and Treatment: A Review of Current Perspectives. Front. Pain Res. 2021, 2, 705276. [Google Scholar] [CrossRef]
- Kline, A.; Wang, H.; Li, Y.; Dennis, S.; Hutch, M.; Xu, Z.; Wang, F.; Cheng, F.; Luo, Y. Multimodal Machine Learning in Precision Health: A Scoping Review. NPJ Digit. Med. 2022, 5, 1–14. [Google Scholar] [CrossRef]
- Noorbakhsh-Sabet, N.; Zand, R.; Zhang, Y.; Abedi, V. Artificial Intelligence Transforms the Future of Health Care. Am. J. Med. 2019, 132, 795–801. [Google Scholar] [CrossRef]
- D’Amico, D.; Mosconi, P.; Genco, S.; Usai, S.; Prudenzano, A.M.P.; Grazzi, L.; Leone, M.; Puca, F.M.; Bussone, G. The Migraine Disability Assessment (MIDAS) Questionnaire: Translation and Reliability of the Italian Version. Cephalalgia 2001, 21, 947–952. [Google Scholar] [CrossRef]
- Yang, M.; Rendas-Baum, R.; Varon, S.F.; Kosinski, M. Validation of the Headache Impact Test (HIT-6TM) across Episodic and Chronic Migraine. Cephalalgia 2011, 31, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Florencio, L.L.; Chaves, T.C.; Branisso, L.B.; Gonçalves, M.C.; Dach, F.; Speciali, J.G.; Bigal, M.E.; Bevilaqua-Grossi, D. 12 Item Allodynia Symptom Checklist/Brasil: Cross-Cultural Adaptation, Internal Consistency and Reproducibility. Arq. Neuropsiquiatr. 2012, 70, 852–856. [Google Scholar] [CrossRef]
- Sarchielli, P.; Romoli, M.; Corbelli, I.; Bernetti, L.; Verzina, A.; Brahimi, E.; Eusebi, P.; Caproni, S.; Calabresi, P. Stopping Onabotulinum Treatment after the First Two Cycles Might Not Be Justified: Results of a Real-Life Monocentric Prospective Study in Chronic Migraine. Front. Neurol. 2017, 8, 655. [Google Scholar] [CrossRef]
- Kononenko, I.; Šimec, E.; Robnik-Šikonja, M. Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Appl. Intell. 1997, 7, 39–55. [Google Scholar] [CrossRef]
- Simon, H. Neural Networks: A Comprehensive Foundation: A Comprehensive Foundation; Prentice Hall Inc. Division of Simon and Schuster One Lake Street: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Steinwart, I.; Christmann, A. Support Vector Machines; Springer Science+Business Media, LLC.: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets Syst. 1978, 1, 3–28. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Dunn, J.C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. J. Cybern. 1973, 3, 32–57. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve1. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | |
---|---|---|---|---|---|
Early Termination | <25% Response Rate | 25–50% Response Rate | 50–75% Response Rate | >75% Response Rate | |
Gender | 48F. 6M | 30F. 8M | 13F. 5M | 17F. 3M | 13F. 2M |
Disease duration, years | 31.8 ± 15.4 | 34.7 ± 14.0 | 34.9 ± 11.8 | 31.45 ± 17.7 | 32.7 ± 17.9 |
Preventive drugs previously tried, n. | 3.9 ± 1.3 | 3.3 ± 2.1 | 2.9 ± 1.5 | 2.5 ± 1.8 | 2.5 ± 1.45 |
Comorbidity: Mood disorder, n (%) | 28 (51.8%) | 20 (52.6%) | 6 (33.3%) | 10 (50.0%) | 6 (40.0%) |
Anxiety, n (%) | 33 (61.1%) | 23 (60.5%) | 12 (66.7%) | 9 (45.0%) | 8 (53.3%) |
Low back pain, n (%) | 4 (7.4%) | 9 (23.7%) | 3 (16.7%) | 3 (15.0%) | 4 (26.7%) |
Hypertension, n (%) | 10 (18.5%) | 7 (18.4%) | 4 (22.2%) | 5 (25.0%) | 4 (26.7%) |
Sleep apnea, n (%) | 0 | 0 | 0 | 0 | 1 (6.7%) |
Epilepsy, n (%) | 1 (1.8%) | 2 (5.3%) | 0 | 1 (5.0%) | 0 |
MOH before, n (%) | 11 (20.4%) | 15 (39.5%) | 6 (33.3%) | 5 (25.0%) | 3 (20.0%) |
MOH now, n (%) | 37 (68.5%) | 12 (31.6%) | 6 (33.3%) | 8 (40.0%) | 8 (53.3%) |
Opioid use before, n (%) | 11 (20.4%) | 0 | 2 (11.1%) | 1 (5.0%) | 0 |
Opioid use now, n (%) | 11 (20.4%) | 7 (18.4%) | 4 (22.2%) | 3 (15.0%) | 1 (6.7%) |
CT + M, n (%) | 18 (33.3%) | 23 (60.5%) | 8 (44.4%) | 9 (45.0%) | 6 (40.0%) |
CT + O, n (%) | 33 (61.1%) | 23 (60.5%) | 11 (61.1%) | 10 (50.0%) | 11 (73.3%) |
Group 1 (n. 54) | Group 2 (n. 38) | Group 3 (n. 18) | Group 4 (n. 20) | Group 5 (n. 15) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | 1st Trimester | Baseline | 4th Trimester | Baseline | 4th Trimester | Baseline | 4th Trimester | Baseline | 4th Trimester | |
Migraine days, n | 24.4 ± 5.1 | 22 ± 6.4 | 18.9 ± 7.5 | 20.6 ± 11.1 | 16.2 ± 6.6 | 10.6 ± 4.3 | 17.65 ± 6.95 | 7.4 ± 2.6 | 22.7 ± 7.1 | 4.2 ± 2.1 |
Headache days, n | 24.1 ± 5.4 | 21.9 ± 6.3 | 19.8 ± 7.5 | 20.8 ± 13.8 | 17.4 ± 6.8 | 10.7 ± 4.3 | 17.95 ± 6.7 | 10.3 ± 7.7 | 22.5 ± 7.1 | 7.2 ± 8.6 |
Abortive medication, n | 26.8 ± 31.3 | 16.8 ± 13.5 | 20.6 ± 21.5 | 19.9 ± 21.4 | 15.8 ± 8.3 | 11.3 ± 6.95 | 18.85 ± 16.25 | 7.9 ± 4.6 | 26.05 ± 16.5 | 3.0 ± 1.8 |
MIDAS, n | 80.1 ± 51.8 | 74.9 ± 51.0 | 63.7 ± 52.6 | 43.0 ± 32.1 | 42.2 ± 27.0 | 31.6 ± 30.6 | 46.3 ± 43.1 | 21.1 ± 25.5 | 60.4 ± 47.6 | 5.7 ± 8.4 |
HIT6, n | 66.8 ± 5.6 | 64.9 ± 5.1 | 66.1 ± 6.0 | 63.6 ± 4.9 | 64.75 ± 3.3 | 60.25 ± 7.2 | 66.5 ± 5.8 | 60.75 ± 6.6 | 66.8 ± 7.9 | 57 ± 10.3 |
ASC-12, n | 6.2 ± 4.4 | 6.2 ± 4.2 | 6.1 ± 3.7 | 5.5 ± 3.95 | 7.0 ± 3.9 | 6.8 ± 4.15 | 4.6 ± 4.1 | 3.4 ± 2.6 | 3.9 ± 2.8 | 2.3 ± 5.1 |
Machine Learning Methods | ACC (%) | Sens (%) | Spec (%) | AUC (%) | N Features |
---|---|---|---|---|---|
PRIMARY ENDPOINT—migraine days reduction | |||||
Random forest | 100 | 100 | 100 | 16,67 | 12 |
SVM (linear kernel) | 76.67 | 63.33 | 90 | 23.33 | 3 |
SVM (RBF kernel) | 76.67 | 70 | 83.33 | 23.33 | 2 |
ANFIS (aNN) | 50 | 100 | 0 | 20 | 1 |
MLP (aNN) | 85 | 90 | 80 | 15 | 2 |
Fuzzy clustering (unsup. ML) | 45 | 90 | 0 | 86.67 | 2 |
SECONDARY ENDPOINT—abortive medication intake reduction | |||||
Random forest | 100 | 100 | 100 | 33 | 8 |
SVM (linear kernel) | 83.33 | 76,67 | 90 | 16.67 | 4 |
SVM (RBF kernel) | 83.33 | 83033 | 83.33 | 16.67 | 5 |
ANFIS (aNN) | 50 | 100 | 0 | 21.67 | 1 |
MLP (aNN) | 81.67 | 83.33 | 80 | 18.33 | 3 |
Fuzzy clustering (unsup. ML) | 48.33 | 96.67 | 0 | 56.67 | 4 |
SECONDARY ENDPOINT—reduction in days in which an abortive medication is required | |||||
Random forest | 100 | 100 | 100 | 12.12 | 12 |
SVM (linear kernel) | 88.33 | 76.67 | 100 | 11.67 | 5 |
SVM (RBF kernel) | 75 | 90 | 60 | 25 | 3 |
ANFIS (aNN) * | - | - | - | - | - |
MLP (aNN) | 88.33 | 80 | 86.67 | 16.67 | 4 |
Fuzzy clustering (unsup. ML) | 50 | 100 | 0 | 50 | 1 |
EXPLORATORY ENDPOINT—MIDAS reduction | |||||
Random forest | 100 | 100 | 100 | 27.27 | 2 |
SVM (linear kernel) | 85 | 80 | 90 | 15 | 3 |
SVM (RBF kernel) | 67.5 | 55 | 80 | 32.5 | 1 |
ANFIS (aNN) * | - | - | - | - | - |
MLP (aNN) | 85 | 85 | 85 | 15 | 2 |
Fuzzy clustering (unsup. ML) | 47.5 | 95 | 0 | 57.5 | 1 |
Statistics | %; [95% C + I] |
---|---|
Accuracy | 85.71% [0.66–0.96] |
Sensibility | 94.12% [0.77–1.00] |
Specificity | 72.12% [0.52–0.88] |
Precision | 84.21 % [0.65–0.95] |
f-measure | 88.89% [0.70–0.98] |
Area under the curve (AUC) | 90.91% [0.73–0.99] |
Features | Pearson Correlation | p-Value |
---|---|---|
Migraine age onset | +0.488 | 0.009 |
MIDAS | −0.245 | 0.209 |
HADS-A score | +0.418 | 0.027 |
Ongoing opioid use as an abortive medication | −0.509 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinelli, D.; Pocora, M.M.; De Icco, R.; Allena, M.; Vaghi, G.; Sances, G.; Castellazzi, G.; Tassorelli, C. Searching for the Predictors of Response to BoNT-A in Migraine Using Machine Learning Approaches. Toxins 2023, 15, 364. https://doi.org/10.3390/toxins15060364
Martinelli D, Pocora MM, De Icco R, Allena M, Vaghi G, Sances G, Castellazzi G, Tassorelli C. Searching for the Predictors of Response to BoNT-A in Migraine Using Machine Learning Approaches. Toxins. 2023; 15(6):364. https://doi.org/10.3390/toxins15060364
Chicago/Turabian StyleMartinelli, Daniele, Maria Magdalena Pocora, Roberto De Icco, Marta Allena, Gloria Vaghi, Grazia Sances, Gloria Castellazzi, and Cristina Tassorelli. 2023. "Searching for the Predictors of Response to BoNT-A in Migraine Using Machine Learning Approaches" Toxins 15, no. 6: 364. https://doi.org/10.3390/toxins15060364
APA StyleMartinelli, D., Pocora, M. M., De Icco, R., Allena, M., Vaghi, G., Sances, G., Castellazzi, G., & Tassorelli, C. (2023). Searching for the Predictors of Response to BoNT-A in Migraine Using Machine Learning Approaches. Toxins, 15(6), 364. https://doi.org/10.3390/toxins15060364