Year-Round Presence of Microcystins and Toxin-Producing Microcystis in the Water Column and Ice Cover of a Eutrophic Lake Located in the Continuous Permafrost Zone (Yakutia, Russia)
Abstract
:1. Introduction
2. Results
2.1. Physico-Chemical Parameters
2.2. Composition and Seasonal Dynamics of Cyanobacterial Community
2.3. Molecular Identification of Uncultured Cyanobacteria
2.4. Cyanotoxin-Producing Genes
2.5. Cyanotoxins
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Region and Lake Ytyk-Kyuyol
5.2. Sampling
5.3. Water Chemistry Analysis
5.4. Algological Analysis
5.5. Detection of Cyanotoxins via High-Performance Liquid Chromatography–Mass Spectrometry of a High Resolution
5.6. Molecular Approach to Species Identification
5.7. Molecular Approach to Test for Microcystin Biosynthesis Genes
5.8. PCR Products of mcyA and mcyE Sequencing and Phylogenetic Analysis
5.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Reinl, K.L.; Harris, T.D.; North, R.L.; Almela, P.; Berger, S.A.; Bizic, M.; Burnet, S.H.; Grossart, H.-P.; Ibelings, B.W.; Jakobsson, E.; et al. Blooms also like it cold. Limnol Ocean. Lett. 2023, 8, 546–564. [Google Scholar] [CrossRef]
- Barinova, S. Environmental Preferences of Cyanobacteria in the Gradient of Macroclimatic Factors and Pollution. Theor. Appl. Ecol. 2020, 1, 51–57. [Google Scholar] [CrossRef]
- Harke, M.J.; Steffen, M.M.; Gobler, C.J.; Otten, T.G.; Wilhelm, S.W.; Wood, S.A.; Paerl, H.W. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium Microcystis spp. Harmful Algae 2016, 54, 4–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaloudis, T.; Hiskia, A.; Triantis, T.M. Cyanotoxins in Bloom: Ever-Increasing Occurrence and Global Distribution of Freshwater Cyanotoxins from Planktic and Benthic Cyanobacteria. Toxins 2022, 14, 264. [Google Scholar] [CrossRef] [PubMed]
- Chorus, I.; Fastner, J.; Welker, M. Cyanobacteria and Cyanotoxins in a Changing Environment: Concepts, Controversies, Challenges. Water 2021, 13, 2463. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Blooms Like It Hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [Green Version]
- Tito, J.C.R.; Luna, L.M.G.; Noppe, W.N.; Hubert, I.A. First report on microcystin-LR occurrence in water reservoirs of eastern Cuba, and environmental trigger factors. Toxins 2022, 14, 209. [Google Scholar] [CrossRef]
- Winder, M.; Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 2012, 698, 5–16. [Google Scholar] [CrossRef]
- Croasdale, H. Freshwater algae of Ellesmere Island, N.W.T. Nat. Mus. Nat. Sci. Publ. Bot. 1973, 3, 1–131. [Google Scholar]
- Shirshov, P.P. Ecological and geographical outline of freshwater algae of Novaya Zemlya and Franz Josef Land. Tr. Arct.-Ta 1935, 14, 73–162. (In Russian) [Google Scholar]
- Ermolaev, V.I.; Levadnaya, G.D.; Safonova, T.A. Algoflora of reservoirs in the vicinity of the Taimyr station. In Biogeocenoses of the Taimyr Tundra and Their Productivity; Nauka: Leningrad, USSR, 1971; pp. 116–129. (In Russian) [Google Scholar]
- Kleinteich, J.; Wood, S.A.; Küpper, F.C.; Camacho, A.; Quesada, A.; Frickey, T.; Dietrich, D.R. Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nat. Clim. Chang. 2012, 2, 356–360. [Google Scholar] [CrossRef]
- Kleinteich, J.; Hildebrand, F.; Wood, S.; Ciŕs, S.; Agha, R.; Quesada, A.; Pearce, D.A.; Convey, P.; Kpper, F.; Dietrich, D.R. Diversity of toxin and non-toxin containing cyanobacterial mats of meltwater ponds on the Antarctic Peninsula: A pyrosequencing approach. Antarct. Sci. 2014, 26, 521–532. [Google Scholar] [CrossRef] [Green Version]
- Denisov, D.B.; Chernova, E.N.; Russkikh, I.V. Toxic Cyanobacteria in the Arctic Lakes: New environmental challenges. A case study. In Advanced Technologies for Sustainable Development of Urban Green Infrastructure; Vasenev, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 161–170. [Google Scholar] [CrossRef]
- Smirnova, V.S.; Tekanova, E.V.; Kalinkina, N.M.; Chernova, E.N. Status of phytoplankton and cyanotoxins in the “bloom” spot in Svyatozero Lake (Lake Onega basin, Russia). Water Ecol. 2021, 26, 50–60. [Google Scholar] [CrossRef]
- Trout-Haney, J.V.; Wood, Z.T.; Cottingham, K.L. Presence of the Cyanotoxin Microcystin in Arctic Lakes of Southwestern Greenland. Toxins 2016, 8, 256. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Qin, B.; Paerl, H.W.; Brookes, J.D.; Hall, N.S.; Shi, K.; Zhou, Y.; Guo, J.; Li, Z.; Xu, H.; et al. The persistence of cyanobacterial (Microcystis spp.) blooms throughout winter in Lake Taihu, China. Limnol. Oceanogr. 2016, 61, 711–722. [Google Scholar] [CrossRef] [Green Version]
- Kitchens, C.M.; Johengen, T.H.; Davis, T.W. Establishing spatial and temporal patterns in Microcystis sediment seed stock viability and their relationship to subsequent bloom development in Western Lake Erie. PLoS ONE 2018, 13, e0206821. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Rogers, D.A. Seasonal variation in vertical distribution and buoyancy of Microcystis aeruginosa Kutz Emend Elenkin in Rostherne-Mere, England. Hydrobiologia 1976, 48, 17–23. [Google Scholar] [CrossRef]
- Vasas, G.; Bácsi, I.; Surányi, G.; Hamvas, M.M.; Máthé, C.; Nagy, S.A.; Borbély, G. Isolation of viable cell mass from frozen Microcystis viridis bloom containing microcystin-RR. Hydrobiologia 2010, 639, 147–151. [Google Scholar] [CrossRef]
- Gabyshev, V.A.; Sidelev, S.I.; Chernova, E.N.; Gabysheva, O.I.; Voronov, I.V.; Zhakovskaya, Z.A. Limnological Characterization and First Data on the Occurrence of Toxigenic Cyanobacteria and Cyanotoxins in the Plankton of Some Lakes in the Permafrost Zone (Yakutia, Russia). Contemp. Probl. Ecol. 2023, 16, 89–102. [Google Scholar] [CrossRef]
- Marcuello, C. Present and future opportunities in the use of atomic force microscopy to address the physico-chemical properties of aquatic ecosystems at the nanoscale level. Int. Aquat. Res. 2022, 14, 231–240. [Google Scholar] [CrossRef]
- Laughinghouse, H.D.; Prá, D.; Silva-Stenico, M.E.; Rieger, A.; Frescura, V.D.-S.; Fiore, M.F.; Tedesco, S.B. Biomonitoring genotoxicity and cytotoxicity of Microcystis aeruginosa (Chroococcales, cyanobacteria) using the Allium cepta test. Sci. Total Environ. 2012, 432, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Ceballos-Laita, L.; Marcuello, C.; Lostao, A.; Calvo-Begueria, L.; Velazquez-Campoy, A.; Bes, M.T.; Fillat, M.F.; Peleato, M.-L. Microcystin-LR Binds Iron, and Iron Promotes Self-Assembly. Environ. Sci. Technol. 2017, 51, 4181–4850. [Google Scholar] [CrossRef] [PubMed]
- Pearson, L.A.; Neilan, B.A. The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Curr. Opin. Biotechnol. 2008, 19, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Dahlmann, J.; Budakowski, W.R.; Luckas, B. Liquid chromatography-electrospray ionization mass spectrometry based methods for the simultaneous determination of algal and cyanobacterial toxins in phytoplankton from marine waters and lakes followed by tentative structural elucidation of microcystins. J. Chromatogr. A 2003, 994, 45–57. [Google Scholar] [CrossRef]
- Yarza, P.; Yilmaz, P.; Pruesse, E.; Glöckner, L.W.; Schleifer, K.H.; Witman, W.B.; Euzéby, J.; Amann, R. Rosselló-Móra Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 2014, 12, 635–645. [Google Scholar] [CrossRef]
- Vasilieva, I.I. Composition and Seasonal Dynamics of Phytoplankton in Lakes around the City of Yakutsk. Extended Abstract of Cand. Sci. (Biol.) Dissertation, Novosibirsk, Russia, 1968. Available online: https://search.rsl.ru/ru/record/01005998550 (accessed on 1 April 2023). (In Russian).
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. Available online: https://www.algaebase.org (accessed on 23 June 2023).
- Babanazarova, O.; Sidelev, S.; Schischeleva, S. The structure of winter phytoplankton in Lake Nero, Russia, a hypertrophic lake dominated by Planktothrix-like cyanobacteria. Aquat. Biosyst. 2013, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Preston, T.; Stewart, W.D.P.; Reynolds, C.S. Bloom-forming cyanobacterium Microcystis aeruginosa overwinters on sediment surface. Nature 1980, 288, 365–367. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Jaworski, G.H.M.; Cmiech, H.A.; Leedale, G.F. On the annual cycle of the blue-green-alga Microcystis aeruginosa Kütz. emend Elenkin. Philos. Trans. R. Soc. Lond. Ser. B—Biol. Sci. 1981, 293, 419–477. [Google Scholar] [CrossRef]
- Verspagen, J.M.H.; Snelder, E.O.F.M.; Visser, P.M.; Johnk, K.D.; Ibelings, B.W.; Mur, L.R.; Huisman, J. Benthic-pelagic coupling in the population dynamics of the harmful cyanobacterium Microcystis. Freshw. Biol. 2005, 50, 854–867. [Google Scholar] [CrossRef] [Green Version]
- Verspagen, J.M.H.; Snelder, E.O.F.M.; Visser, P.M.; Huisman, J.; Mur, L.R.; Ibelings, B.W. Recruitment of bentic Microcystis (Cyanophyceae) to the water column: Internal buoyancy changes or resuspension? J. Phycol. 2004, 40, 260–270. [Google Scholar] [CrossRef]
- Kurmayer, R.; Kutzenberger, T. Application of realtime PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Appl. Environ. Microbiol. 2003, 69, 6723–6730. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-K. Long-term preservation of bloom-forming cyanobacteria by cryopreservation. Algae 2006, 21, 125–131. [Google Scholar] [CrossRef]
- Watanabe, M.M.; Sawaguchi, T. Cryopreservation of a water-bloom forming cyanobacterium. Microcystis aeruginosa f. aeruginosa. Phycol. Res. 1995, 43, 111–116. [Google Scholar] [CrossRef]
- Cires, S.; Casero, M.; Quesada, A. Toxicity at the edge of life: A review on cyanobacterial toxins from extreme environments. Mar Drugs 2017, 15, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fastner, J.; Neumann, U.; Wirsing, B.; Weckesser, J.; Wiedner, C.; Nixdorf, B.; Chorus, I. Microcystins (hepatotoxic heptapeptides) in German fresh water bodies. Env. Toxicol. 1999, 14, 13–22. [Google Scholar] [CrossRef]
- Fastner, J.; Wirsing, B.; Wiedner, C.; Heinze, R.; Neumann, U.; Chorus, I. Microcystins and hepatocyte toxicity. In Cyanotoxins: Occurrence, Causes, Consequences; Chorus, I., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 22–37. [Google Scholar]
- Chorus, I.; Welker, M. Toxic Cyanobacteria in Water; CRC: Boca Raton, FL, USA, 2021. [Google Scholar]
- Wood, S.A.; Puddick, J.; Hawes, I.; Steiner, K.; Dietrich, D.R.; Hamilton, D.P. Variability in microcystin quotas during a Microcystis bloom in a eutrophic lake. PLoS ONE 2021, 16, e0254967. [Google Scholar] [CrossRef]
- Chernova, E.; Sidelev, S.; Russkikh, I.; Korneva, L.; Solovyova, V.; Mineeva, N.; Stepanova, I.; Zhakovskaya, Z. Spatial distribution of cyanotoxins and ratios of microcystin to biomass indicators in the reservoirs of the Volga, Kama and Don Rivers, the European part of Russia. Limnologica 2020, 84, 125819. [Google Scholar] [CrossRef]
- Sidelev, S.; Zubishina, A.; Chernova, E. Distribution of microcystin-producing genes in Microcystis colonies from some Russian freshwaters: Is there any correlation with morphospecies and colony size? Toxicon 2020, 184, 136–142. [Google Scholar] [CrossRef]
- Arzhakova, S.K.; Zhirkov, I.I.; Kusatov, K.I.; Androsov, I.M. Rivers and Lakes of Yakutia: A Brief Guide; Bichik: Yakutsk, Russia, 2007; 176p. (In Russian) [Google Scholar]
- Semenov, A.D. Guidance on the Chemical Analysis of Surface Waters of the Land; Gidrometeoizdat: Leningrad, USSR, 1977; 541p. (In Russian) [Google Scholar]
- Fresenius, W.; Quentin, K.E.; Schneider, W. (Eds.) Water Analysis. In A Practical Guide to Physico-Chemical, Chemical, and Microbiological Water Examination and Quality Assurance; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Hillebrand, H.; Durselen, C.D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999, 35, 403–424. [Google Scholar] [CrossRef]
- Komárek, J.; Anagnostidis, K. Cyanoprokaryota. T. 1. Chroococcales; Gustav Fischer Verlag: Jena, Germany, 1998; 548p. [Google Scholar]
- Komárek, J.; Anagnostidis, K. Cyanoprokaryota. T. 2. Oscillatoriales; Elsevier: München, Germany, 2005; 759p. [Google Scholar]
- Komárek, J. Heterocytous Genera. Cyanoprokaryota. T. 3, P. 3.; Springer: Spektrum, Berlin, 2013; 1130p. [Google Scholar]
- Chernova, E.; Russkikh, I.; Voyakina, E.; Zhakovskaya, Z. Occurrence of microcystins and anatoxin-a in eutrophic lakes of Saint Petersburg, Northwestern Russia. Ocean. Hydrobiol. Stud. 2016, 45, 466–484. [Google Scholar] [CrossRef]
- Wilmotte, A.; Van Der Auwera, C.; De Wachter, R. Structure of the 16S ribosomal RNA of the thermophilic cyanobacteria Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518 and phylogenetic analysis. FEBS Lett. 1993, 317, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Neilan, B.A.; Jacobs, D.; Del Dot, T.; Blackall, L.L.; Hawkins, P.R.; Cox, P.T.; Goodman, A.E. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int. J. Syst. Bacteriol. 1997, 47, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Nübel, U.; Garcia-Pichel, F.; Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 1997, 63, 3327–3332. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Lefler, F.W.; Berthold, D.E.; Laughinghouse, I.V.H.D. Cyanoseq: A database of cyanobacterial 16S rRNA gene sequences with curated taxonomy. J. Phycol. 2023, 59, 470–480. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Hisbergues, M.; Christiansen, G.; Rouhiainen, L.; Sivonen, K.; Borner, T. PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch. Microbiol. 2003, 180, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Jungblut, A.D.; Neilan, B.A. Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Arch. Microbiol. 2006, 185, 107–114. [Google Scholar] [CrossRef]
- Lee, J.; Choi, J.; Fatka, M.; Swanner, E.; Ikuma, K.; Liang, X.; Leung, T.; Howe, A. Improved detection of mcyA genes and their phylogenetic origins in harmful algal blooms. Water Res. 2020, 176, 115730. [Google Scholar] [CrossRef]
- Vaitomaa, J.; Rantala, A.; Halinen, K.; Rouhiainen, L.; Tallberg, P.; Mokelke, L.; Sivonen, K. Quantitative real-time PCR for determination of microcystin synthetase gene E copy numbers for Microcystis and Anabaena in lakes. Appl. Env. Microbiol. 2003, 69, 7289–7297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
Variable | 5 January | 22 April | 27 May | 28 July | 11 August | 26 September |
---|---|---|---|---|---|---|
pH | 7.45 | 7.38 | 9.13 | 8.74 | 9.23 | 7.41 |
Salinity, mg L−1 | 509.7 | 704.4 | 276.4 | 475.0 | 349.5 | 461.8 |
Hardness, mmol L−1 | 4.0 | 6.2 | 2.7 | 4.0 | 3.8 | 4.3 |
N–NH4, mg L−1 | 0.95 | 0.49 | 0.28 | 0.32 | 0.62 | 0.14 |
N–NO3, mg L−1 | 7.61 | 6.50 | 0.84 | 0.88 | 2.3 | 0.75 |
N–NO2, mg L−1 | 0.75 | 0.41 | 0.02 | 0.03 | 0.11 | 0.02 |
P tot, mg L−1 | 0.24 | 0.63 | 0.23 | 0.46 | 0.18 | 0.58 |
PО4, mg L−1 | 0.06 | 0.27 | 0.06 | 0.03 | 0.04 | 0.04 |
Color, Pt/Co grad. | 62.0 | 83.0 | 38.0 | 87.0 | 119.0 | 45.0 |
COD, mg O L−1 | 82.4 | 79.8 | 46.8 | 47.2 | 84.5 | 42.0 |
Strain | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | OR147468 Microcystis aeruginosa 216 Russia | |||||||||
2 | MWU40334 M. wesenbergii NIES112 Japan | 99.57 | ||||||||
3 | KJ818191 M. flos-aquae CHAB545 China | 99.86 | 99.57 | |||||||
4 | MVU40332 M. viridis NIES-102 Japan | 98.56 | 98.28 | 98.56 | ||||||
5 | MW383696 M. viridis BKP CS58 | 99.71 | 99.43 | 99.71 | 98.71 | |||||
6 | AB012337 M. novacekii TAC65 Japan | 99.57 | 99.43 | 99.57 | 98.42 | 99.57 | ||||
7 | AJ133171 M. aeruginosa PCC7941 | 99.57 | 99.42 | 99.57 | 98.27 | 99.42 | 99.57 | |||
8 | NR 074314 M. aeruginosa NIES-843 Japan | 99.64 | 99.35 | 99.64 | 98.49 | 99.64 | 99.50 | 99.64 | ||
9 | AF139327 M. flos-aquae UWOCC | 99.64 | 99.35 | 99.64 | 98.35 | 99.50 | 99.64 | 99.64 | 99.71 | |
10 | MWU40333 M. wesenbergii NIES-107 Japan | 98.71 | 98.42 | 98.71 | 97.55 | 98.70 | 98.71 | 98.70 | 98.78 | 98.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabyshev, V.A.; Sidelev, S.I.; Chernova, E.N.; Vilnet, A.A.; Davydov, D.A.; Barinova, S.; Gabysheva, O.I.; Zhakovskaya, Z.A.; Voronov, I.V. Year-Round Presence of Microcystins and Toxin-Producing Microcystis in the Water Column and Ice Cover of a Eutrophic Lake Located in the Continuous Permafrost Zone (Yakutia, Russia). Toxins 2023, 15, 467. https://doi.org/10.3390/toxins15070467
Gabyshev VA, Sidelev SI, Chernova EN, Vilnet AA, Davydov DA, Barinova S, Gabysheva OI, Zhakovskaya ZA, Voronov IV. Year-Round Presence of Microcystins and Toxin-Producing Microcystis in the Water Column and Ice Cover of a Eutrophic Lake Located in the Continuous Permafrost Zone (Yakutia, Russia). Toxins. 2023; 15(7):467. https://doi.org/10.3390/toxins15070467
Chicago/Turabian StyleGabyshev, Viktor A., Sergey I. Sidelev, Ekaterina N. Chernova, Anna A. Vilnet, Denis A. Davydov, Sophia Barinova, Olga I. Gabysheva, Zoya A. Zhakovskaya, and Ivan V. Voronov. 2023. "Year-Round Presence of Microcystins and Toxin-Producing Microcystis in the Water Column and Ice Cover of a Eutrophic Lake Located in the Continuous Permafrost Zone (Yakutia, Russia)" Toxins 15, no. 7: 467. https://doi.org/10.3390/toxins15070467
APA StyleGabyshev, V. A., Sidelev, S. I., Chernova, E. N., Vilnet, A. A., Davydov, D. A., Barinova, S., Gabysheva, O. I., Zhakovskaya, Z. A., & Voronov, I. V. (2023). Year-Round Presence of Microcystins and Toxin-Producing Microcystis in the Water Column and Ice Cover of a Eutrophic Lake Located in the Continuous Permafrost Zone (Yakutia, Russia). Toxins, 15(7), 467. https://doi.org/10.3390/toxins15070467