Body Temperature Drop as a Humane Endpoint in Snake Venom-Lethality Neutralization Tests
Abstract
:1. Introduction
2. Results
2.1. Effect of Antivenom Dosage and Venom Type on Survival Duration
2.2. Temperature Change from Baseline and Venom Type as Predictors of Mortality
2.3. Body Temperature in Surviving vs. Non-Surviving Animals
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Venom and Antivenom
4.3. Venom-Neutralizing Potency Test
4.4. Temperature Measurement
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, N.L.S.; Johnson, E.K.; Zeng, S.M.; Hamilton, E.B.; Abdoli, A.; Alahdab, F.; Alipour, V.; Ancuceanu, R.; Andrei, C.L.; Anvari, D.; et al. Global Mortality of Snakebite Envenoming between 1990 and 2019. Nat. Commun. 2022, 13, 6160. [Google Scholar]
- Kasturiratne, A.; Wickremasinghe, A.R.; De Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; De Silva, H.J. The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. PLoS Med. 2008, 5, 1591–1604. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.J.; Faiz, M.A.; Abela-Ridder, B.; Ainsworth, S.; Bulfone, T.C.; Nickerson, A.D.; Habib, A.G.; Junghanss, T.; Fan, H.W.; Turner, M.; et al. Strategy for a Globally Coordinated Response to a Priority Neglected Tropical Disease: Snakebite Envenoming. PLoS Negl. Trop. Dis. 2019, 13, e0007059. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite Envenoming. Nat. Rev. Dis. Primers 2017, 3, 17063. [Google Scholar] [CrossRef]
- Warrell, D.A. Snake Bite. Lancet 2010, 375, 77–88. [Google Scholar] [CrossRef]
- Casewell, N.R.; Wagstaff, S.C.; Wüster, W.; Cook, D.A.N.; Bolton, F.M.S.; King, S.I.; Pla, D.; Sanz, L.; Calvete, J.J.; Harrison, R.A. Medically Important Differences in Snake Venom Composition Are Dictated by Distinct Postgenomic Mechanisms. Proc. Natl. Acad. Sci. USA 2014, 111, 9205–9210. [Google Scholar] [CrossRef] [PubMed]
- Calvete, J.J. Venomics: Integrative Venom Proteomics and Beyond*. Biochem. J. 2017, 474, 611–634. [Google Scholar] [CrossRef]
- Doley, R.; Kini, R.M. Protein Complexes in Snake Venom. Cell. Mol. Life Sci. 2009, 66, 2851–2871. [Google Scholar] [CrossRef]
- WHO Expert Committee on Biological Standardization. WHO Expert Committee on Biological Standardization Sixty-Seventh Report; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Gutiérrez, J.M.; León, G.; Lomonte, B. Pharmacokinetic-Pharmacodynamic Relationships of Immunoglobulin Therapy for Envenomation. Clin. Pharmacokinet 2003, 42, 721–741. [Google Scholar] [CrossRef]
- Verity, E.E.; Stewart, K.; Vandenberg, K.; Ong, C.; Rockman, S. Potency Testing of Venoms and Antivenoms in Embryonated Eggs: An Ethical Alternative to Animal Testing. Toxins 2021, 13, 233. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Solano, G.; Pla, D.; Herrera, M.; Segura, Á.; Vargas, M.; Villalta, M.; Sánchez, A.; Sanz, L.; Lomonte, B.; et al. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins 2017, 13, 163. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Herrera, C. The Analgesics Morphine and Tramadol Do Not Alter the Acute Toxicity Induced by Bothrops Asper Snake Venom in Mice. Toxicon 2014, 81, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Trammell, R.A.; Toth, L.A. Markers for Predicting Death as an Outcome for Mice Used in Infectious Disease Research. Comp. Med. 2011, 61, 492–498. [Google Scholar]
- Newsom, D.M.; Bolgos, G.L.; Colby, L.; Nemzek, J.A. Comparison of Body Surface Temperature Measurement and Conventional Methods for Measuring Temperature in the Mouse. Contemp. Top Lab. Anim. Sci. 2004, 43, 13–18. [Google Scholar] [PubMed]
- Wong, J.P.; Saravolac, E.G.; Clement, J.G.; Nagata, L.P. Development of a Murine Hypothermia Model for Study of Respiratory Tract Influenza Virus Infection. Lab. Anim. Sci. 1997, 47, 143–147. [Google Scholar]
- Gavin, H.E.; Satchell, K.J.F. Surface Hypothermia Predicts Murine Mortality in the Intragastric Vibrio Vulnificus Infection Model. BMC Microbiol. 2017, 17, 136. [Google Scholar] [CrossRef]
- Cates, C.C.; McCabe, J.G.; Lawson, G.W.; Couto, M.A. Core Body Temperature as Adjunct to Endpoint in Murine Median Lethal Dose of Rattlesnake Venom. Comp. Med. 2014, 64, 440–447. [Google Scholar]
- Olfert Ernest, D.; Godson Dale, L. Humane Endpoints for Infectious Disease Animal Models. ILAR J. 2000, 41, 99–104. [Google Scholar] [CrossRef]
- Rubin, Y.; Duvdevani, P.; Ishay, J.S. Cardiovascular Haemodynamics of Oriental Hornet Venom Sac Extract. Pharmacol. Toxicol. 1993, 72, 268–272. [Google Scholar] [CrossRef]
- Benton, A.W.; Heckman, R.A.; Morse, R.A. Environmental Effects on Venom Toxicity in Rodent. J. Appl. Physiol. 1966, 21, 1228–1230. [Google Scholar] [CrossRef]
- Assi, A.-A.; Nasser, H. An In Vitro and In Vivo Study of Some Biological and Biochemical Effects of Sistrurus Malarius Barbouri Venom. Toxicology 1999, 137, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Gama, J. Ecotoxicology R package version 1.0.1. 2015. [Google Scholar]
- Solano, G.; Segura, Á.; Herrera, M.; Gómez, A.; Villalta, M.; Gutiérrez, J.M.; León, G. Study of the Design and Analytical Properties of the Lethality Neutralization Assay Used to Estimate Antivenom Potency against Bothrops Asper Snake Venom. Biologicals 2010, 38, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Barber, C.M.; Madaras, F.; Turnbull, R.K.; Morley, T.; Dunstan, N.; Allen, L.; Kuchel, T.; Mirtschin, P.; Hodgson, W.C. Comparative Studies of the Venom of a New Taipan Species, Oxyuranus Temporalis, with Other Members of Its Genus. Toxins 2014, 6, 1979–1995. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Riedel, N.; Grittner, U.; Endres, M.; Banneke, S.; Emmrich, J.V. Body Temperature Measurement in Mice during Acute Illness: Implantable Temperature Transponder versus Surface Infrared Thermometry. Sci. Rep. 2018, 8, 3526. [Google Scholar] [CrossRef]
- Kort’, W.J.; Hekking-Weijma’, J.M.; Tenkate, M.T.; Sorm, V.; Vanstrik, R. A Microchip Implant System as a Method to Determine Body Temperature of Terminally Ill Rats and Mice. Lab. Anim. Ltd. Lab. Anim. 1998, 32, 260–269. [Google Scholar] [CrossRef]
- Saegusa, Y.; Tabata, H. Usefulness of Infrared Thermometry in Determining Body Temperature in Mice. J. Vet. Med. Sci. 2003, 65, 1365–1367. [Google Scholar] [CrossRef]
- Sousa, M.G.; Carareto, R.; Pereira-Junior, V.A.; Aquino, M.C. Comparison between Auricular and Standard Rectal Thermometers for the Measurement of Body Temperature in Dogs. Can. Vet. J. 2011, 52, 403–406. [Google Scholar]
- Warn, P.A.; Brampton, M.W.; Sharp, A.; Morrissey, G.; Steel, N.; Denning, D.W.; Priest, T. Infrared Body Temperature Measurement of Mice as an Early Predictor of Death in Experimental Fungal Infections. Lab. Anim. 2003, 37, 126–131. [Google Scholar] [CrossRef]
- Bast, D.J.; Yue, M.; Chen, X.; Bell, D.; Dresser, L.; Saskin, R.; Mandell, L.A.; Low, D.E.; de Azavedo, J.C. Novel murine model of pneumococcal pneumonia: Use of temperature as a measure of disease severity to compare the efficacies of moxifloxacin and levofloxacin. Antimicrob. Agents Chemother. 2004, 48, 3343–3348. [Google Scholar] [CrossRef]
- Hankenson, F.C.; Ruskoski, N.; van Saun, M.; Ying, G.S.; Oh, J.; Fraser, N.W. Weight loss and reduced body temperature determine humane endpoints in a mouse model of ocular herpesvirus infection. J. Am. Assoc. Lab. Anim. Sci. 2013, 52, 277–285. [Google Scholar] [PubMed]
- Dellavalle, B.; Kirchhoff, J.; Maretty, L.; Castberg, F.; Kurtzhals, J. Implementation of minimally invasive and objective humane endpoints in the study of murine Plasmodium infections. Parasitology 2014, 141, 1621–1627. [Google Scholar] [CrossRef] [PubMed]
- Sessler, D.I. Temperature monitoring and perioperative thermoregulation. Anesthesiology 2008, 109, 318–338. [Google Scholar] [CrossRef]
- Lippi, G.; Nocini, R.; Mattiuzzi, C.; Henry, B. Is body temperature mass screening a reliable and safe option for preventing COVID-19 spread? Diagnosis 2022, 9, 195–198. [Google Scholar] [CrossRef]
- Chen, A.; Zhu, J.; Lin, Q.; Liu, W. A Comparative Study of Forehead Temperature and Core Body Temperature under Varying Ambient Temperature Conditions. Int. J. Environ. Res. Public Health 2022, 19, 15883. [Google Scholar] [CrossRef]
- Vlach, K.D.; Boles, J.W.; Stiles, B.G. Telemetric evaluation of body temperature and physical activity as predictors of mortality in a murine model of staphylococcal enterotoxic shock. Comp. Med. 2000, 50, 160–166. [Google Scholar] [PubMed]
- Romanovsky, A.A. Skin temperature: Its role in thermoregulation. Acta Physiol. 2014, 210, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.J. The mouse: An “average” homeotherm. J. Therm. Biol. 2012, 37, 286–290. [Google Scholar] [CrossRef]
- Gordon, C.J. The mouse thermoregulatory system: Its impact on translating biomedical data to humans. Physiol. Behav. 2017, 179, 55–66. [Google Scholar] [CrossRef]
- Stéphan, F.; Ghiglione, S.; Decailliot, F.; Yakhou, L.; Duvaldestin, P.; Legrand, P. Effect of excessive environmental heat on core temperature in critically ill patients. An observational study during the 2003 European heat wave. Br. J. Anaesth. 2005, 94, 39–45. [Google Scholar] [CrossRef]
- Phillips, P.K.; Heath, J.E. Dependency of surface temperature regulation on body size in terrestrial mammals. J. Therm. Biol. 1995, 20, 281–289. [Google Scholar] [CrossRef]
Venom Type | Venom mg/mL Antivenom Dosage | Mean * | Standard Deviation | n |
---|---|---|---|---|
Bothrops asper | 2 mg of venom/mL antivenom | 5.67 | 1.29 | 15 |
3 mg venom/mL antivenom | 5.80 | 0.56 | 15 | |
4.5 mg venom/mL antivenom | 4.80 | 0.94 | 15 | |
6.75 mg venom/mL antivenom | 4.40 | 0.51 | 15 | |
Control (venom only) | 1.07 | 0.27 | 14 | |
Lachesis stenophrys | 2 mg of venom/mL antivenom | 5.93 | 0.26 | 15 |
3 mg venom/mL antivenom | 6.00 | 0.00 | 15 | |
4.5 mg venom/mL antivenom | 4.47 | 1.30 | 15 | |
6.75 mg venom/mL antivenom | 4.07 | 0.83 | 14 | |
Group 5: Control (venom only) | 2.00 | 0.38 | 15 |
Predictor Variables | b | Standard Error | Odds Ratio | 95% CI |
---|---|---|---|---|
Step 1 | ||||
Baseline temperature | −0.08 | 0.15 | 0.92 | 0.69, 1.23 |
Step 2 | ||||
Baseline temperature | −0.11 | 0.15 | 0.90 | 0.67, 1.21 |
Venom type | 0.34 | 0.36 | 1.41 | 0.70, 2.84 |
Step 3 | ||||
Baseline temperature | −0.58 * | 0.26 | 0.56 | 0.33, 0.93 |
Venom type | 0.85 | 0.59 | 2.33 | 0.73, 7.45 |
Temperature change | 0.94 *** | 0.16 | 2.58 | 1.89, 3.46 |
Step 4 | ||||
Baseline temperature | −0.82 * | 0.40 | 0.44 | 0.20, 0.97 |
Venom type | 0.98 | 0.88 | 2.67 | 0.47, 15.01 |
Temperature change | 0.70 *** | 0.20 | 2.02 | 1.37, 2.98 |
Venom mg/mL antivenom | 2.78 *** | 0.68 | 16.17 | 4.30, 60.85 |
Time of Temperature Measurement | Mean Temperature Change (SD) | 95% CI | |
---|---|---|---|
Outcome | |||
Survived | 1 h | 3.87 (0.38) | 3.11, 4.63 |
2 h | 3.26 (0.32) | 2.62, 3.90 | |
3 h | 2.95 (0.30) | 2.35, 3.54 | |
Did not survive | |||
1 h | 6.88 (0.47) | 5.95, 7.80 | |
2 h | 7.91 (0.39) | 7.13, 8.69 | |
3 h | 8.88 (0.36) | 8.15, 9.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Jesus, R.; Tratner, A.E.; Madrid, A.; Rivera-Mondragón, A.; Navas, G.E.; Lleonart, R.; Britton, G.B.; Fernández, P.L. Body Temperature Drop as a Humane Endpoint in Snake Venom-Lethality Neutralization Tests. Toxins 2023, 15, 525. https://doi.org/10.3390/toxins15090525
De Jesus R, Tratner AE, Madrid A, Rivera-Mondragón A, Navas GE, Lleonart R, Britton GB, Fernández PL. Body Temperature Drop as a Humane Endpoint in Snake Venom-Lethality Neutralization Tests. Toxins. 2023; 15(9):525. https://doi.org/10.3390/toxins15090525
Chicago/Turabian StyleDe Jesus, Rosa, Adam E. Tratner, Alanna Madrid, Andrés Rivera-Mondragón, Goy E. Navas, Ricardo Lleonart, Gabrielle B. Britton, and Patricia L. Fernández. 2023. "Body Temperature Drop as a Humane Endpoint in Snake Venom-Lethality Neutralization Tests" Toxins 15, no. 9: 525. https://doi.org/10.3390/toxins15090525
APA StyleDe Jesus, R., Tratner, A. E., Madrid, A., Rivera-Mondragón, A., Navas, G. E., Lleonart, R., Britton, G. B., & Fernández, P. L. (2023). Body Temperature Drop as a Humane Endpoint in Snake Venom-Lethality Neutralization Tests. Toxins, 15(9), 525. https://doi.org/10.3390/toxins15090525