Unraveling the Role of the Zinc-Dependent Metalloproteinase/HTH-Xre Toxin/Antitoxin (TA) System of Brucella abortus in the Oxidative Stress Response: Insights into the Stress Response and Virulence
Abstract
:1. Introduction
2. Results
2.1. Characterization of Type II TA System in B. abortus Strains
2.2. ZnMP Is Required in the Resistance of B. abortus against Oxidative Conditions
2.3. ZnMP (COG2856) in the Expression of Genes Coding for Antioxidant Components in B. abortus 2308
2.4. ZnMP in the Expression of phyR and rpoE1 of B. abortus
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Prediction of Type II TAs Loci in Chromosome I of B. abortus
5.2. Bacterial Strains and Culture Conditions
5.3. Viability of B. abortus under Oxidative Conditions
5.4. Gene Expression of B. abortus Strains under Oxidative Conditions
5.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fraikin, N.; Goormaghtigh, F.; Van Melderen, L. Type II toxin-antitoxin systems: Evolution and revolutions. J. Bacteriol. 2020, 202, e00763-19. [Google Scholar] [CrossRef]
- Jurėnas, D.; Fraikin, N.; Goormaghtigh, F.; Van Melderen, L. Biology and evolution of bacterial toxin–antitoxin systems. Nat. Rev. Microbiol. 2022, 20, 335–350. [Google Scholar]
- Sonika, S.; Singh, S.; Mishra, S.; Verma, S. Toxin-antitoxin systems in bacterial pathogenesis. Heliyon 2023, 9, e14220. [Google Scholar]
- Kamruzzaman, M.; Wu, A.; Iredell, J. Biological functions of type II toxin-antitoxin systems in bacteria. Microorganisms 2021, 9, 1276. [Google Scholar] [CrossRef]
- Fisher, R.; Gollan, B.; Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 2017, 15, 453–464. [Google Scholar] [CrossRef]
- Harms, A.; Brodersen, D.; Mitarai, N.; Gerdes, K. Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Mol. Cell. 2018, 70, 768–784. [Google Scholar]
- Brown, J.S.; Gilliland, S.M.; Spratt, B.G.; Holden, D.W. A locus contained within a variable region of pneumococcal pathogenicity island 1 contributes to virulence in mice. Infect. Immun. 2004, 72, 1587–1593. [Google Scholar] [CrossRef]
- Ramage, H.R.; Connolly, L.E.; Cox, J.S. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: Implications for pathogenesis, stress responses, and evolution. PLoS Genet. 2009, 5, e1000767. [Google Scholar] [CrossRef]
- Norton, J.P.; Mulvey, M.A. Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog. 2012, 8, e1002954. [Google Scholar] [CrossRef]
- Ren, D.; Walker, A.N.; Daines, D.A. Toxin-antitoxin loci vapBC-1 and vapXD contribute to survival and virulence in nontypeable Haemophilus influenzae. BMC Microbiol. 2012, 12, 263. [Google Scholar] [CrossRef]
- Ren, D.; Kordis, A.A.; Sonenshine, D.E.; Daines, D.A. The ToxA-vapA toxin-antitoxin locus contributes to the survival of nontypeable Haemophilus influenzae during infection. PLoS ONE 2014, 9, e91523. [Google Scholar]
- Wood, T.L.; Wood, T.K. The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation. Microbiol. Open 2016, 5, 499–511. [Google Scholar] [CrossRef]
- Wen, W.; Liu, B.; Xue, L.; Zhu, Z.; Niu, L.; Sun, B. Autoregulation and virulence control by the toxin-antitoxin system SavRS in Staphylococcus aureus. Infect. Immun. 2018, 86, e00032-18. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Arora, G.; Singh, G.; Kidwai, S.; Narayan, O.P.; Singh, R. MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nature Commun. 2015, 6, 6059. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Mandell, J.B.; Donegan, N.P.; Cheung, A.L.; Ma, W.; Rothenberger, S.; Shanks, R.M.Q.; Richardson, A.R.; Urish, K.L. The toxin-antitoxin MazEF drives Staphylococcus aureus biofilm formation, antibiotic tolerance, and chronic infection. mBio 2019, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Celli, J. The intracellular lifecycle of Brucella spp. Microbiol. Spectr. 2019, 7, 1–17. [Google Scholar] [CrossRef]
- Heaton, B.; Herrou, J.; Blackwell, A.; Wysocki, V.; Crosson, S. Molecular structure, and function of the novel BrnT/BrnA toxin-antitoxin system of Brucella abortus. Biol. Chem. 2012, 287, 12098–12110. [Google Scholar] [CrossRef]
- Moradkasani, S.; Kouhsari, E.; Jazi, F.; Kalani, B.; Pakzad, I. Evaluation of putative toxin-antitoxins systems in clinical Brucella melitensis in Iran. Infect. Disord. Drug Targets. 2021, 21, 38–42. [Google Scholar] [CrossRef]
- Amraei, F.; Narimisa, N.; Kalani, B.; Mohammadzadeh, R.; Lohrasbi, V.; Jazi, F. The expression of type II TA system genes following exposure to the sub-inhibitory concentration of gentamicin and acid stress in Brucella spp. Microb. Pathog. 2020, 144, 104194. [Google Scholar] [CrossRef]
- Starr, T.; Ng, T.W.; Wehrly, T.D.; Knodler, L.A.; Celli, J. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic. 2008, 9, 678–694. [Google Scholar] [CrossRef]
- Celli, J. The changing nature of the Brucella-containing vacuole. Cell. Microbiol. 2015, 17, 951–958. [Google Scholar] [CrossRef]
- Gee, J.M.; Valderas, M.W.; Kovach, M.E.; Grippe, V.K.; Robertson, G.T.; Ng, W.L.; Richardson, J.M.; Winkler, M.E.; Roop, R.M., II. The Brucella abortus Cu,Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infect. Immun. 2005, 73, 2873–2880. [Google Scholar] [CrossRef]
- Boschiroli, M.L.; Ouahrani-Bettache, S.; Foulongne, V.; Michaux-Charachon, S.; Bourg, G.; Allardet-Servent, A.; Cazevieille, C.; Liautard, J.P.; Ramuz, M.; O’Callaghan, D. The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl. Acad. Sci. USA 2002, 99, 1544–1549. [Google Scholar] [CrossRef]
- von Bargen, K.; Gorvel, J.P.; Salcedo, S.P. Internal affairs: Investigating the Brucella intracellular lifestyle. FEMS Microbiol. Rev. 2012, 36, 533–562. [Google Scholar] [CrossRef]
- Ke, Y.; Wang, Y.; Li, W.; Chen, Z. Type IV secretion system of Brucella spp. and its effectors. Front. Cell. Infect. Microbiol. 2015, 5, 72. [Google Scholar] [CrossRef] [PubMed]
- Sieira, R.; Arocena, G.M.; Bukata, L.; Comerci, D.J.; Ugalde, R.A. Metabolic control of virulence genes in Brucella abortus: HutC coordinates virB expression and the histidine utilization pathway by direct binding to both promoters. J. Bacteriol. 2010, 192, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Arocena, G.; Zorreguieta, A.; Sieira, R. Expression of VjbR under nutrient limitation conditions is regulated at the post-transcriptional level by specific acidic pH values and urocanic acid. PLoS ONE 2012, 7, e35394. [Google Scholar] [CrossRef]
- Martínez-Núñez, C.; Altamirano-Silva, P.; Alvarado-Guillén, F.; Moreno, E.; Guzmán-Verri, C.; Chaves-Olarte, E. The two-component system BvrR/BvrS regulates the expression of the type IV secretion system VirB in Brucella abortus. J. Bacteriol. 2010, 192, 5603–5608. [Google Scholar] [CrossRef]
- Altamirano-Silva, P.; Meza-Torres, J.; Castillo-Zeledón, A.; Ruiz-Villalobos, N.; Zuñiga-Pereira, A.; Chacón-Díaz, C. Brucella abortus senses the intracellular environment through the BvrR/BvrS two-component system, which allows B. abortus to adapt to its replicative niche. Infect. Immun. 2018, 86, 1–15. [Google Scholar] [CrossRef]
- Kim, H.; Caswell, C.; Foreman, R.; Roop, R.M.; Crosson, S. The Brucella abortus general stress response system regulates chronic mammalian infection and is controlled by phosphorylation and proteolysis. J. Biol. Chem. 2013, 288, 13906–13916. [Google Scholar] [CrossRef] [PubMed]
- Gómez, L.A.; Alvarez, F.I.; Molina, R.E.; Soto-Shara, R.; Daza-Castro, C.; Flores, M.R.; León, Y.; Oñate, A. A zinc-dependent metalloproteinase of Brucella abortus is required in the intracellular adaptation of macrophages. Front. Microbiol. 2020, 11, 1586. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Román, L.; Riquelme-Neira, R.; Vidal, R.; Oñate, A. Roles of genomic island 3 (GI-3) BAB1_0267 and BAB1_0270 open reading frames (ORFs) in the virulence of Brucella abortus 2308. Vet. Microbiol. 2014, 172, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wei, Y.; Shen, Y.; Li, X.; Zhou, H.; Tai, C.; Deng, Z.; Ou, H. TADB 2.0: An updated database of bacterial type II toxin–antitoxin loci. Nucleic Acids Res. 2018, 46, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Céspedes, S.; Salgado, P.; Retamal-Díaz, A.; Vidal, R.; Oñate, A. Roles of genomic island 3 (GI-3) BAB1_0278 and BAB1_0263 open reading frames (ORFs) in the virulence of Brucella abortus in BALB/c mice. Vet. Microbiol. 2012, 156, 1–7. [Google Scholar] [CrossRef]
- Chan, W.; Moreno-Córdoba, I.; Yeo, C.; Espinosa, M. Toxin-antitoxin genes of the Gram-positive pathogen Streptococcus pneumoniae: So few and yet so many. Microbiol. Mol. Biol. Rev. 2012, 76, 773–791. [Google Scholar] [CrossRef] [PubMed]
- Alkhalili, R.; Wallenius, J.; Canbäck, B. Towards exploring toxin-antitoxin systems in Geobacillus: A screen for type II toxin-antitoxin system families in a thermophilic genus. Int. J. Mol. Sci. 2019, 20, 5869. [Google Scholar] [CrossRef]
- Álvarez, R.; Ortega-Fuentes, C.; Queraltó, C.; Inostroza, O.; Díaz-Yáñez, F.; González, R.; Calderón, I.; Fuentes, J.A.; Paredes-Sabja, D.; Gil, F. Evaluation of functionality of type II toxin-antitoxin systems of Clostridioides difficile R20291. Microbiol. Res. 2020, 239, 126539. [Google Scholar] [CrossRef]
- McDonnell, G.; Wood, H.; Devine, K.; McConnell, D. Genetic control of bacterial suicide: Regulation of the induction of PBSX in Bacillus subtilis. J. Bacteriol. 1994, 176, 5820–5830. [Google Scholar] [CrossRef]
- Earl, A.; Mohundro, M.; Mian, I.; Battista, J. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J. Bacteriol. 2002, 184, 6216–6224. [Google Scholar] [CrossRef]
- Bose, B.; Auchtung, J.M.; Lee, C.A.; Grossman, A.D. A conserved anti-repressor controls horizontal gene transfers by proteolysis. Mol. Microbiol. 2008, 70, 570–582. [Google Scholar] [CrossRef]
- Ludanyi, M.; Blanchard, L.; Dulermo, R.; Brandelet, G.; Bellanger, L.; Pignol, D.; Lemaire, D.; de Groot, A. Radiation response in Deinococcus deserti: IrrE is a metalloprotease that cleaves repressor protein DdrO. Mol. Microbiol. 2014, 94, 434–449. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, W.; Chen, M.; Pan, J.; Lu, W.; Ping, S.; Yan, Y.; Hou, X.; Yuan, M.; Zhan, Y.; et al. Genome-wide transcriptome and proteome analysis of Escherichia coli expressing IrrE, a global regulator of Deinococcus radiodurans. Mol. BioSyst. 2011, 7, 1613–1620. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Jung, J.H.; Blanchard, L.; de Groot, A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol. Rev. 2019, 43, 19–52. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Narumi, I.; Gao, G.; Tian, B.; Satoh, K.; Kitayama, S.; Shen, B. PprI: A general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem. Biophys. Res. Commun. 2003, 306, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, J.; Omelchenko, M.V.; Beliaev, A.S.; Venkateswaran, A.; Stair, J.; Wu, L.; Thompson, D.K.; Xu, D.; Rogozin, I.B.; et al. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc. Natl. Acad. Sci. USA 2003, 100, 4191–4196. [Google Scholar] [CrossRef]
- Tanaka, M.; Earl, A.M.; Howell, H.A.; Park, M.J.; Eisen, J.A.; Peterson, S.N.; Battista, J.R. Analysis of Deinococcus radiodurans’s transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 2004, 168, 21–33. [Google Scholar] [CrossRef]
- Ohba, H.; Satoh, K.; Yanagisawa, T.; Narumi, I. The radiation responsive promoter of the Deinococcus radiodurans pprA gene. Gene 2005, 363, 133–141. [Google Scholar] [CrossRef]
- Fernandez De Henestrosa, A.R.; Ogi, T.; Aoyagi, S.; Chafin, D.; Hayes, J.J.; Ohmori, H.; Woodgate, R. Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol. Microbiol. 2000, 35, 1560–1572. [Google Scholar] [CrossRef]
- Kawano, M.; Aravind, L.; Storz, G. An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol. Microbiol. 2007, 64, 738–754. [Google Scholar] [CrossRef]
- Weel-Sneve, R.; Bjoras, M.; Kristiansen, K. Overexpression of the LexA-regulated tisAB RNA in E. coli inhibits SOS functions; implications for regulation of the SOS response. Nucleic Acids Res. 2008, 36, 6249–6259. [Google Scholar] [CrossRef]
- Pan, J.; Wang, J.; Zhou, Z.; Yan, Y.; Zhang, W.; Lu, W. IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus. PLoS ONE 2009, 4, e4422. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Zhang, Y.; Hong, H.; Lu, W.; Lin, M.; Chen, M.; Zhang, W. Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans. Curr. Microbiol. 2010, 62, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, R.; Zhao, Z.; Zhou, Z.; Lu, W.; Zhang, W.; Chen, M. IrrE, an exogenous gene from Deinococcus Radiodurans, improves the growth of and ethanol production by a Zymomonas Mobilis strain under ethanol and acid stress. J. Microbiol. Biotechnol. 2010, 20, 1156–1162. [Google Scholar]
- Zhao, P.; Zhou, Z.; Zhang, W.; Lin, M.; Chen, M.; Wei, G. Global transcriptional analysis of Escherichia coli expressing IrrE, a regulator from Deinococcus radiodurans, in response to NaCl shock. Mol. Biosyst. 2015, 11, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Master, S.; Springer, B.; Sander, P.; Boettger, E.; Deretic, V.; Timmins, G. Oxidative stress response genes in Mycobacterium tuberculosis: Role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiology 2002, 148, 3139–3144. [Google Scholar] [CrossRef]
- Kim, J.; Sha, Z.; Mayfield, J. Regulation of Brucella abortus catalase. Infect. Immun. 2000, 68, 3861–3866. [Google Scholar] [CrossRef]
- Poole, L. Bacterial defenses against oxidants: Mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch. Biochem. Biophy. 2005, 433, 240–254. [Google Scholar] [CrossRef]
- Steele, K.; Baumgartner, J.; Valderas, M.; Roop, R.M., II. Comparative study of the roles of AhpC and KatE as respiratory antioxidants in Brucella abortus 2308. J. Bacteriol. 2010, 192, 4912–4922. [Google Scholar] [CrossRef]
- Zhang, B.; Gu, H.; Yang, Y.; Bai, H.; Zhao, C.; Si, M.; Su, T.; Shen, X. Molecular mechanisms of AhpC in resistance to oxidative stress in Burkholderia thailandensis. Front. Microbiol. 2019, 10, 1483. [Google Scholar] [CrossRef]
- Christman, M.; Storz, G.; Ames, B. OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc. Natl. Acad. Sci. USA 1989, 86, 3484–3488. [Google Scholar] [CrossRef]
- Tian, M.; Li, Z.; Qu, J.; Fang, T.; Yin, Y.; Zuo, D.; Abdelgawad, H.; Hu, H.; Wang, S.; Qi, J.; et al. The novel LysR-family transcriptional regulator BvtR is involved in the resistance of Brucella abortus to nitrosative stress, detergents and virulence through the genetic regulation of diverse pathways. Vet. Microbiol. 2022, 67, 109393. [Google Scholar] [CrossRef]
- Kim, H.S.; Willett, J.W.; Jain-Gupta, N.; Fiebig, A.; Crosson, S. The Brucella abortus virulence regulator, LovhK, is a sensor kinase in the general stress response signalling pathway. Mol. Microbiol. 2014, 94, 913–925. [Google Scholar] [CrossRef]
- Sycz, G.; Carrica, M.C.; Tseng, T.S.; Bogomolni, R.A.; Briggs, W.R.; Goldbaum, F.A.; Paris, G. LOV histidine kinase modulates the general stress response system and affects the virB operon expression in Brucella abortus. PLoS ONE 2015, 10, e0124058. [Google Scholar] [CrossRef] [PubMed]
- Willet, J.; Herrou, J.; Czyz, D.; Cheng, J.; Crosson, S. Brucella abortus ΔrpoE1 confers protective immunity against wild type challenge in a mouse model of brucellosis. Vaccine 2016, 34, 5073–5081. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Singh, S.; Dwivedi, S.; Srivastava, A.; Pandey, P.; Kumar, S.; Singh, B.; Tripathi, A. Catalase expression in Azospirillum brasilense Sp7 is regulated by a network consisting of OxyR and Two RpoH paralogs and including an RpoE1→RpoH5 regulatory cascade. Appl. Environ. Microbiol. 2018, 84, e01787-18. [Google Scholar] [CrossRef] [PubMed]
Biovar | Type | Toxin | Antitoxin | Location (Chr I) | Classification (T/A) | |
---|---|---|---|---|---|---|
1 | B. abortus bv. 1 str. 9-941 | II | BruAb1_0264 | BruAb1_0263 | 274,246–275,147 | COG2856/HTH Xre |
B. abortus 2308 | II | BAB1_0270 | *BAB_RS17200 | 270,612–271,513 | COG2856 (ZnMP)/HTH Xre | |
2 | B. abortus bv. 1 str. 9-941 | II | BruAb1_0430 | BruAb1_0431 | 435,226–435,800 | RelE/RHH-RelE |
B. abortus 2308 | II | BAB1_0436 | BAB1_0437 | 431,593–432,167 | ParE/RHH-RelE | |
3 | B. abortus bv. 1 str. 9-941 | II | BruAb1_0579 | BruAb1_0580 | 574,332–574,948 | phd-doc/AbrB-Fic |
B. abortus 2308 | II | BAB1_0581 | BAB1_0582 | 570,627–571,243 | Phd-doc/AbrB:SpoVT | |
4 | B. abortus bv. 1 str. 9-941 | II | BruAb1_0981 | BruAb1_0980 | 962,125–962,759 | BrnT/BrnA |
B. abortus 2308 | II | BAB1_0994 | BAB1_0993 | 962,125–962,759 | BrnT/BrnA |
Function | ORF/Gene | Sequence from 5′ to 3′ | |
---|---|---|---|
Housekeeping | 16s | Forward | agctagttggtggggtaaagg |
Reverse | gctgatcatcctctcagacca | ||
Antioxidant enzymes | katE (BAB2_0848) | Forward | accatgggtgacgttcctc |
Reverse | gatgagcttcaggttcagca | ||
ahpC (BAB2_0531) | Forward | cgatctggtcgtttgctgata | |
Reverse | caacgaaggtgtagcgatagg | ||
Transcriptional factors | oxyR (BAB2_0849) | Forward | cttttcgacgaccgttttct |
Reverse | cgaggcgagaaccgtatg | ||
oxyR-like (BAB2_0530) | Forward | tactcgaaaccgggcatt | |
Reverse | ctcatttgcgcaggcttt | ||
General stress response | phyR (BAB1_1671) | Forward | attttcatcaccgcatttcc |
Reverse | cggcttggtgacgagaaa | ||
rpoE1 (BAB1_1672) | Forward | gcttggctcttcaccattct | |
Reverse | agctgttcgctgaacatacc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, L.A.; Molina, R.E.; Soto, R.I.; Flores, M.R.; Coloma-Rivero, R.F.; Montero, D.A.; Oñate, Á.A. Unraveling the Role of the Zinc-Dependent Metalloproteinase/HTH-Xre Toxin/Antitoxin (TA) System of Brucella abortus in the Oxidative Stress Response: Insights into the Stress Response and Virulence. Toxins 2023, 15, 536. https://doi.org/10.3390/toxins15090536
Gómez LA, Molina RE, Soto RI, Flores MR, Coloma-Rivero RF, Montero DA, Oñate ÁA. Unraveling the Role of the Zinc-Dependent Metalloproteinase/HTH-Xre Toxin/Antitoxin (TA) System of Brucella abortus in the Oxidative Stress Response: Insights into the Stress Response and Virulence. Toxins. 2023; 15(9):536. https://doi.org/10.3390/toxins15090536
Chicago/Turabian StyleGómez, Leonardo A., Raúl E. Molina, Rodrigo I. Soto, Manuel R. Flores, Roberto F. Coloma-Rivero, David A. Montero, and Ángel A. Oñate. 2023. "Unraveling the Role of the Zinc-Dependent Metalloproteinase/HTH-Xre Toxin/Antitoxin (TA) System of Brucella abortus in the Oxidative Stress Response: Insights into the Stress Response and Virulence" Toxins 15, no. 9: 536. https://doi.org/10.3390/toxins15090536
APA StyleGómez, L. A., Molina, R. E., Soto, R. I., Flores, M. R., Coloma-Rivero, R. F., Montero, D. A., & Oñate, Á. A. (2023). Unraveling the Role of the Zinc-Dependent Metalloproteinase/HTH-Xre Toxin/Antitoxin (TA) System of Brucella abortus in the Oxidative Stress Response: Insights into the Stress Response and Virulence. Toxins, 15(9), 536. https://doi.org/10.3390/toxins15090536