Incidence of Aflatoxins and Ochratoxin A in Wheat and Corn from Albania
Abstract
:1. Introduction
2. Results and Discussion
2.1. Occurrence of aFs and OTA in Grains
2.2. Comparison with the Incidence of aFs from Other Countries
3. Conclusions
4. Materials and Methods
4.1. Sample Collection
4.2. Standards and Chemicals
4.3. Sample Preparation
4.4. LC–MS/MS Operation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussein, H.S.; Brasel, J.M. Toxicity, metabolism, and impact of mycotoxins on the humans and animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef] [PubMed]
- Bräse, S.; Encinas, A.; Keck, J.; Nising, C.F. Chemistry and biology of mycotoxins and related fungal metabolites. Chem. Rev. 2009, 109, 3903–3990. [Google Scholar] [PubMed]
- Bhat, R.; Rai, R.V.; Karim, A.A. Mycotoxins in food and fed: Present status and future concerns. Compr. Rev. Food Sci. Food Saf. 2010, 9, 57–81. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Steinberg, P. A food toxicological contemplation of mycotoxins. Ernaehrungs Umsch. Int. 2013, 60, 146–151. [Google Scholar]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategy. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.-H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Arce-López, B.; Lizarraga, E.; Vettorazzi, A.; González-Peñas, E. Human biomonitoring of mycotoxins in blood, plasma, and serum in recent years: A review. Toxins 2020, 12, 147. [Google Scholar] [CrossRef]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction, and prevention of the risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef]
- Zhang, X.; Li, G.; Wu, D.; Liu, J.; Wu, Y. Recent advances on emerging nanomaterials for controlling the mycotoxin contamination: From detection to elimination. Food Front. 2020, 1, 360–381. [Google Scholar] [CrossRef]
- Wu, F. Global impacts of aflatoxin in maize: Trade and human health. World Mycotoxin J. 2015, 8, 137–142. [Google Scholar] [CrossRef]
- Ferrigo, D.; Raiola, A.; Causin, R. Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules 2016, 21, 627. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.I.; Taniwaki, M.H.; Cole, M.B. Mycotoxin production in major crops as influenced by growing, harvesting, storage, and processing, with emphasis on the achievement of Food Safety Objectives. Food Control 2013, 32, 205–215. [Google Scholar] [CrossRef]
- Perrone, G.; Gallo, A. Aspergillus species and their associated mycotoxins. In Mycotoxigenic Fungi. Methods and Protocols; Moretti, A., Susca, A., Eds.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; Volume 1542, pp. 33–49. [Google Scholar]
- Udovicki, B.; Audenaert, K.; De Saeger, S.; Rajkovic, A. Overview on the mycotoxins incidence in Serbia in the period 2004–2016. Toxins 2018, 10, 279. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef]
- Pereira, V.L.; Fernandes, J.O.; Cunha, S.C. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajslova, J.; Mayar, S.; Krska, R. Worldwide contamination of food crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Kępińska-Pacelik, J.; Biel, W. Alimentary risk of mycotoxins for humans and animals. Toxins 2021, 13, 822. [Google Scholar] [CrossRef]
- Wu, F.; Groopman, J.D.; Pestka, J.J. Public health impacts of foodborne mycotoxins. Annu. Rev. Food Sci. Technol. 2014, 5, 351–372. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, L 119, 103–157. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj (accessed on 5 August 2023).
- Filazi, A.; Sireli, U.T. Occurrences of aflatoxins in food. In Aflatoxins-Recent Advances and Prospects; Razzaghi-Abyaneh, M., Ed.; InTech: London, UK, 2013; pp. 143–170. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Scientific opinion—Risk assessment of aflatoxins in food. EFSA J. 2020, 18, 6040. [Google Scholar] [CrossRef]
- Rushing, B.R.; Selim, M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Chemical Agents and Related Occupations. A Review of Human Carcinogens. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2012. Available online: http://monographs.iarc.fr/ENG/Monographs/vol100F/ (accessed on 31 July 2023).
- Liu, Y.; Wu, F. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environ. Health Persp. 2010, 118, 818–824. [Google Scholar] [CrossRef]
- Ráduly, Z.; Szabó, L.; Madar, A.; Pócsi, I.; Csernoch, L. Toxicological and medical aspects of Aspergillus-derived mycotoxins entering the Feed and Food Chain. Front. Microbiol. 2020, 10, 2908. [Google Scholar] [CrossRef]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef]
- Perrone, G.; Susca, A. Penicillium species and their associated mycotoxins. In Mycotoxigenic Fungi. Methods and Protocols; Moretti, A., Susca, A., Eds.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; Volume 1542, pp. 107–119. [Google Scholar]
- Cotty, P.J.; Jaime-Garcia, R. Influences of climate on aflatoxin producing fungi and aflatoxin contamination. Int. J. Food Microbiol. 2007, 119, 109–115. [Google Scholar] [CrossRef]
- Griessler, K.; Rodrigues, I.; Handl, J.; Hofstetter, U. The occurrence of mycotoxins in Southern Europe. World Mycotoxin J. 2010, 3, 301–309. [Google Scholar] [CrossRef]
- Kos, J.; Škrinjar, M.; Mandić, A.I.; Mišan, A.Č.; Bursić, V.P.; Šarić, B.; Janić-Hajnal, E. Presence of aflatoxins in cereals from Serbia. Food Feed Res. 2014, 41, 31–38. [Google Scholar] [CrossRef]
- Kos, J.; Janić Hajnal, E.; Šarić, B.; Jovanov, P.; Mandić, A.; Đuragić, O.; Kokić, B. Aflatoxins in maize harvested in the Republic of Serbia over the period 2012–2016. Food Addit. Contam. B 2018, 11, 246–255. [Google Scholar] [CrossRef]
- Kos, J.; Janic Hajnal, E.; Malachova, A.; Steiner, D.; Stranska, M.; Krska, R.; Poschmaier, B.; Sulyok, M. Mycotoxins in maize harvested in the Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food Chem. 2020, 312, 126034. [Google Scholar] [CrossRef]
- de Rijk, T.C.; van Egmond, H.P.; van der Fels-Klerx, H.J.; Herbes, R.; de Nijs, M.; Samson, R.; Slate, A.B.; van der Spiegel, M. A study of the 2013 Western European issue of aflatoxin contamination of maize from the Balkan area. World Mycotoxin J. 2015, 8, 641–651. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; Van Der Fels-Klerx, H.J.; Moretti, A.; Leggieri, M.C.; Brera, C. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [PubMed]
- Gagiu, V.; Mateescu, E.; Armeanu, I.; Dobre, A.A.; Smeu, I.; Cucu, M.E.; Oprea, O.A.; Iorga, E.; Belc, N. Post-harvest contamination with mycotoxins in the context of the geographic and agroclimatic conditions in Romania. Toxins 2018, 10, 533. [Google Scholar] [CrossRef]
- Kovač, M.; Bulaić, M.; Nevistić, A.; Rot, T.; Babić, J.; Panjičko, M.; Kovač, T.; Šarkanj, B. Regulated Mycotoxin Occurrence and Co-Occurrence in Croatian Cereals. Toxins 2022, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Binder, E.M.; Tan, L.M.; Chin, L.J.; Handl, J.; Richard, J. Worldwide occurrence of mycotoxins in commodities, feeds, and feed ingredients. Anim. Feed Sci. Techol. 2007, 137, 265–282. [Google Scholar] [CrossRef]
- Serrano, A.B.; Font, G.; Ruiz, M.J.; Ferrer, E. Co-occurrence and risk assessment of mycotoxins in food and diet from Mediterranean area. Food Chem. 2012, 135, 423–429. [Google Scholar] [CrossRef]
- Bryła, M.; Waśkiewicz, A.; Podolask, G.; Szymczyk, K.; Jędrzejczak, R.; Damaziak, K.; Sułek, A. Occurrence of 26 mycotoxins in the grain of cereals cultivated in Poland. Toxins 2016, 8, 160. [Google Scholar] [CrossRef]
- Jakovac-Strajn, B.; Pavšič-Vrtač, K.; Ujčič-Vrhovnik, I.; Vengušt, A.; Tavčar-Kalcher, G. Microbiological and mycotoxicological contamination in Slovenian primary grain production. Toxicol. Environ. Chem. 2010, 92, 1551–1563. [Google Scholar] [CrossRef]
- Alkadri, D.; Rubert, J.; Prodi, A.; Pisi, A.; Manes, J.; Soler, C. Natural co-occurrence of mycotoxins in wheat grains from Italy and Syria. Food Chem. 2014, 157, 111–118. [Google Scholar] [CrossRef]
- Kirinčič, S.; Škrjanc, B.; Kos, N.; Kozolc, B.; Pirnat, N.; Tavčar-Kalcher, G. Mycotoxins in cereals and cereal products in Slovenia—Official control of foods in the years 2008–2012. Food Control 2015, 50, 157–165. [Google Scholar] [CrossRef]
- Pleadin, J.; Vulić, A.; Perši, N.; Škrivanko, M.; Capek, B.; Cvetnić, Ž. Aflatoxin B1 occurrence in maize sampled from Croatian farms and feed factories during 2013. Food Control 2014, 40, 286–291. [Google Scholar] [CrossRef]
- Pleadin, J.; Vulić, A.; Perši, N.; Škrivanko, M.; Capek, B.; Cvetnić, Ž. Annual and regional variations of aflatoxin B1 levels seen in grains and feed coming from Croatian dairy farms over a 5-year period. Food Control 2015, 47, 221–225. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, I.; Handl, J.; Binder, E.M. Mycotoxin occurrence in commodities, feeds and feed ingredients sourced in the Middle East and Africa. Food Addit. Contam. B 2011, 4, 168–179. [Google Scholar] [CrossRef]
- Aasa, A.O.; Fru, F.F.; Adelusi, O.A.; Oyeyinka, S.A.; Njobeh, P.B. A review of toxigenic fungi and mycotoxins in feeds and food commodities in West Africa. World Mycotoxin J. 2023, 16, 33–47. [Google Scholar] [CrossRef]
- Ayeni, K.I.; Sulyok, M.; Krska, R.; Warth, B. Mycotoxins in complementary foods consumed by infants and young children within the first 18 months of life. Food Control 2023, 144, 109328. [Google Scholar] [CrossRef]
- Abdallah, M.F.; Girgin, G.; Bydar, T.; Krska, R.; Sulyok, M. Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maizecorn samples from Egypt using LC-MS/MS. J. Sci. Food Agric. 2017, 97, 4419–4428. [Google Scholar] [CrossRef]
- Dong, T.; Fan, L.; Liang, J.; Wang, L.; Yuan, X.; Wang, Y.; Zhao, S. Risk assessment of mycotoxins in stored maize: Case study of Shandong, China. World Mycotoxin J. 2020, 13, 313–320. [Google Scholar] [CrossRef]
- Jiang, D.; Li, F.; Zheng, F.; Zhou, J.; Li, L.; Shen, F.; Chen, J.; Li, E. Occurrence and dietary exposure assessment of multiple mycotoxins in corn-based food products from Shandong, China. Food Addit. Contam. B 2019, 12, 10–17. [Google Scholar] [CrossRef]
- Sun, L.; Li, R.; Tai, B.; Hussain, S.; Wang, G.; Liu, X.; Xing, F. Current status of major mycotoxins contamination in food and feed in Asia—A review. Food Sci. Techol. 2023, 3, 231–244. [Google Scholar] [CrossRef]
- Janić Hajnal, E.; Kos, J.; Krulj, J.; Krstović, S.; Jajić, I.; Pezo, L.; Šarić, B.; Nedeljković, N. Aflatoxins contamination of maize in Serbia: The impact of weather conditions in 2015. Food Addit. Contam. Part A 2017, 34, 1999–2010. [Google Scholar] [CrossRef]
- Soleimany, F.; Jinap, S.; Abas, F. Determination of mycotoxins in cereals by liquid chromatography tandem mass spectrometry. Food Chem. 2012, 130, 1055–1060. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Data. Crops. Production. 2023. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 21 June 2023).
- INSTAT. Institute of Statistics of Albania Area of Field Crop. 2023. Available online: http://www.instat.gov.al/al/temat/bujq%C3%ABsia-dhe-peshkimi/bujq%C3%ABsia/#tab2. (accessed on 21 June 2023).
- Lee, H.J.; Ryu, D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef]
- Topi, D.; Spahiu, J.; Rexhepi, A.; Marku, N. Two-year survey of aflatoxin M1 in milk marketed in Albania and human exposure assessment. Food Control 2022, 136, 108831. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC), No 401/2006 of February 23, 2006, laid down the sampling methods and analysis for the official control of mycotoxins levels in foodstuffs. Off. J. Eur. Union 2006, L 70, 12–34.
- Topi, D.; Babič, J.; Pavšič-Vrtač, K.; Tavčar-Kalcher, G.; Jakovac-Strajn, B. Incidence of Fusarium mycotoxins in wheat and maize from Albania. Molecules 2021, 26, 172. [Google Scholar] [CrossRef]
- Rasmussen, R.R.; Storm, I.M.L.D.; Rasmussen, P.H.; Smedsgaard, J.; Nielsen, K.F. Multi-mycotoxin analysis of silage by LC-MS/MS. Anal. Bioanal. Chem. 2010, 397, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.M.T.; Della Gatta, S.; Suman, M.; Visconti, A. Development and in-house validation of a robust and sensitive solid-phase extraction liquid chromatography/tandem mass spectrometry method for the quantitative determination of aflatoxins B1, B2, G1, G2, ochratoxin A, deoxynivalenol, zearalenone, T-2, and HT-2 toxins in cereal-based foods. Rapid Commun. Mass Spectrom. 2011, 25, 1869–1880. [Google Scholar]
- Schenzel, J.; Forrer, H.R.; Vogelgsang, S.; Bucheli, T.D. Development, validation and application of a multi-mycotoxin method for the analysis of whole wheat plants. Mycotoxin Res. 2012, 28, 135–147. [Google Scholar] [CrossRef]
AFB1 | AFB2 | AFG1 | AFG2 | Sum | OTA | |
---|---|---|---|---|---|---|
2014 | ||||||
Analyzed samples | 31 | 31 | 31 | 31 | 31 | 31 |
Positive samples | 23 | 15 | 15 | 25 | 28 | 2 |
Incidence (%) | 74 | 48 | 48 | 81 | 90 | 6.0 |
Mean value (μg kg−1) | 464 | 93.9 | 158 | 16.4 | 531 | 260 |
Median value (μg kg−1) | 21.1 | 8.5 | 5.4 | 1.3 | 6.6 | 260 |
Minimum value (μg kg−1) | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 187 |
Maximum value (μg kg−1) | 3550 | 539 | 978 | 144 | 4822 | 333 |
2015 | ||||||
Analyzed samples | 14 | 14 | 14 | 14 | 14 | 14 |
Positive samples | 3 | 0 | 0 | 1 | 4 | 1 |
Incidence (%) | 21 | 0.0 | 0.0 | 7.1 | 29 | 7.1 |
Mean value (μg kg−1) | 55.7 | - | - | 0.2 | 41.8 | 488 |
Median value (μg kg−1) | 31.7 | - | - | 0.2 | 20.6 | 488 |
Minimum value (μg kg−1) | 9.4 | - | - | 0.2 | 0.2 | 488 |
Maximum value (μg kg−1) | 126 | - | - | - | 126 | 488 |
2014–2015 | ||||||
Analyzed samples | 45 | 45 | 45 | 45 | 45 | 45 |
Positive samples | 26 | 15 | 15 | 26 | 32 | 3 |
Incidence (%) | 58 | 33 | 33 | 58 | 71 | 7.0 |
Mean value (μg kg−1) | 417 | 93.9 | 158 | 15.8 | 469 | 336 |
Median value (μg kg−1) | 22.2 | 8.5 | 5.4 | 1.3 | 8.5 | 333 |
Minimum value (μg kg−1) | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 187 |
Maximum value (μg kg−1) | 3550 | 539 | 978 | 144 | 4822 | 488 |
AFB1 | AFB2 | AFG1 | AFG2 | Sum | OTA | |
---|---|---|---|---|---|---|
2014 | ||||||
Analyzed samples | 35 | 35 | 35 | 35 | 35 | 35 |
Positive samples | 2 | 0 | 0 | 11 | 13 | 1 |
Incidence (%) | 6 | 0 | 0 | 31 | 37 | 3 |
Mean value (μg kg−1) | 0.3 | - | - | 0.3 | 0.3 | 611 |
Median value (μg kg−1) | 0.3 | - | - | 0.2 | 0.2 | 611 |
Minimum value (μg kg−1) | 0.2 | - | - | 0.2 | 0.2 | 611 |
Maximum value (μg kg−1) | 0.4 | - | - | 0.3 | 0.4 | 611 |
2015 | ||||||
Analyzed samples | 36 | 36 | 36 | 36 | 36 | 36 |
Positive samples | 0 | 0 | 0 | 0 | 0 | 0 |
Incidence (%) | - | - | - | - | - | - |
Mean value (μg kg−1) | - | - | - | - | - | - |
Median value (μg kg−1) | - | - | - | - | - | - |
Minimum value (μg kg−1) | - | - | - | - | - | - |
Maximum value (μg kg−1) | - | - | - | - | - | - |
2014–2015 | ||||||
Analyzed samples | 71 | 71 | 71 | 71 | 71 | 71 |
Positive samples | 2 | 0 | 0 | 11 | 13 | 1 |
Incidence (%) | 3 | 0 | 0 | 15 | 18 | 1.5 |
Mean value (μg kg−1) | 0.3 | - | - | 0.3 | 0.3 | 611 |
Median value (μg kg−1) | 0.3 | - | - | 0.2 | 0.2 | 611 |
Minimum value (μg kg−1) | 0.2 | - | - | 0.2 | 0.2 | 611 |
Maximum value (μg kg−1) | 0.4 | - | - | 0.3 | 0.4 | 611 |
AFB1 | AFB2 | AFG1 | AFG2 | Sum | OTA | |
---|---|---|---|---|---|---|
Fieri | ||||||
Analyzed samples | 4 | 4 | 4 | 4 | 4 | 4 |
Positive samples | 4 | 3 | 4 | 4 | 4 | 0 |
Incidence (%) | 100 | 75 | 100 | 100 | 100 | 0.0 |
Mean value (μg kg−1) | 315 | 39.6 | 5.08 | 2.50 | 352 | - |
Median value (μg kg−1) | 12.7 | 1.91 | 2.92 | 2.43 | 18.7 | - |
Minimum value (μg kg−1) | 2.82 | 0.20 | 0.22 | 0.82 | 5.65 | - |
Maximum value (μg kg−1) | 1232 | 117 | 14.3 | 4.34 | 1367 | - |
Lushnja | ||||||
Analyzed samples | 7 | 7 | 7 | 7 | 7 | 7 |
Positive samples | 7 | 6 | 7 | 7 | 7 | 1 |
Incidence (%) | 100 | 85.7 | 100 | 100 | 100 | 14 |
Mean value (μg kg−1) | 1235 | 173 | 332 | 54.7 | 1795 | 187 |
Median value (μg kg−1) | 36.2 | 155 | 7.22 | 3.08 | 46.7 | 187 |
Minimum value (μg kg−1) | 5.46 | 1.79 | 2.39 | 0.2 | 1.0 | 187 |
Maximum value (μg kg−1) | 3550 | 539 | 978 | 144 | 4822 | 187 |
Kruja | ||||||
Analyzed samples | 7 | 7 | 7 | 7 | 7 | 7 |
Positive samples | 7 | 5 | 3 | 6 | 7 | 1 |
Incidence (%) | 100 | 71 | 43 | 86 | 100 | 14 |
Mean value (μg kg−1) | 93.7 | 14.2 | 8.98 | 1.60 | 109 | 333 |
Median value (μg kg−1) | 10.6 | 10.0 | 0.32 | 1.01 | 12.0 | 333 |
Minimum value (μg kg−1) | 0.32 | 0.21 | 0.16 | 0.18 | 0.32 | 333 |
Maximum value (μg kg−1) | 344 | 47.5 | 26.5 | 3.47 | 393 | 333 |
Elbasan | ||||||
Analyzed samples | 6 | 6 | 6 | 6 | 6 | 6 |
Positive samples | 2 | 1 | 0 | 5 | 5 | 0 |
Incidence (%) | 33 | 17 | 0.0 | 83 | 83 | 0.0 |
Mean value (μg kg−1) | 48.6 | 8.54 | - | 1.03 | 22.2 | - |
Median value (μg kg−1) | 48.6 | 8.54 | - | 1.17 | 1.58 | - |
Minimum value (μg kg−1) | 1.42 | 8.54 | - | 0.25 | 0.25 | - |
Maximum value (μg kg−1) | 95.8 | 8.54 | - | 1.58 | 106 | - |
Korça | ||||||
Analyzed samples | 7 | 7 | 7 | 7 | 7 | 7 |
Positive samples | 3 | 0 | 1 | 3 | 5 | 0 |
Incidence (%) | 43 | 0.0 | 14 | 43 | 71 | 0.0 |
Mean value (μg kg−1) | 1.29 | - | 0.24 | 0.80 | 1.30 | - |
Median value (μg kg−1) | 1.39 | - | 0.24 | 0.77 | 1.39 | - |
Minimum value (μg kg−1) | 0.85 | - | 0.24 | 0.56 | 0.56 | - |
Maximum value (μg kg−1) | 1.62 | - | 0.24 | 1.06 | 1.86 | - |
Country | Sampling Year | Analytical Method | LOD/LOQ (μg kg−1) | Mycotoxin | No. of Samples | Positive Sample Rate (%) | Mean (μg kg−1) | Median (μg kg−1) | Max (μg kg−1) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Albania | 2014–2015 | LC–MS/MS | 0.6/2.0 | AFB1 | 45 | 58 | 417 a | 22.2 a | 3550 | This study |
aFs | 45 | 71 | 469 a | 8.5 a | 263 | |||||
OTA | 45 | 7.0 | 336 a | 333 a | 488 | |||||
Serbia | 2012 | LC–MS/MS | 0.33/1.0 | AFB1 | 40 | 60 | - | - | 70.3 | [33] |
ELISA | 1.40/5.0 | |||||||||
Serbia | 2015 | HPLC–FLD | 0.4/1.3 | AFB1 | 180 | 57.2 | 11.4 ± 14.5 | - | 88.8 | [56] |
- | aFs | 180 | 57.2 | 12.7 ± 17.3 | - | 91.4 | ||||
Serbia | 2012 | LC–MS/MS | 0.25/- | AFB1 | 51 | 94 | 44 ± 49 | 26 | 205 | [35] |
2013 | 51 | 33 | 8 ± 11 | 5 | 48 | |||||
2014 | 51 | 0 | - | - | - | |||||
2015 | 51 | 90 | 8 ± 9 | 4 | 41 | |||||
2012 | 0.4/- | OTA | 51 | 25 | 53 ± 108 | 6 | 318 | |||
2013 | 51 | 2 | - | - | - | |||||
2014 | 51 | 0 | - | - | - | |||||
2015 | 51 | 18 | 6 ± 8 | 5 | 27 | |||||
Croatia | 2013 | ELISA | 1.0/1.7 | AFB1 | 972 | 31.4 | 38.46 | - | 2072 | [47] |
Croatia | 2016 | LC–MS/MS | 0.3/1.0 | AFB1 | 61 | 0 | - | - | - | [39] |
2017 | 23 | 8.7 | 5.5 | - | 9.7 | |||||
2016 | 0.3/1.0 | OTA | 61 | 0 | - | - | - | |||
2017 | 23 | 0 | - | - | - | |||||
Slovenia | 2007–2008 | HPLC–FLD | 0.2/0.6 | AFB1 | 58 | 0 | - | - | - | [43] |
10/30 | OTA | 58 | 1.7 | 30 | 30 | 30 | ||||
Slovenia | 2008–2012 | LC–MS/MS | -/0.2 | AFB1 | 69 b | 0 | - | - | - | [45] |
-/0.8 | aFs | 69 b | 0 | - | - | - | ||||
-/1 | OTA | 69 b | 0 | - | - | - | ||||
Romania | 2012–2015 | ELISA | - | aFs | 97 c | 45.4 | 3.85 ± 14.80 | <1.75 | 82.94 | [38] |
- | OTA | 97 c | 6.8 | 2.70 ± 0.43 | <2.50 | 6.72 | ||||
EU | 2000–2006 | - | 0.1–0.2/- | AFB1 | 943 | 14 | 0.26 | 0.12 | 8 | [4] |
0.2–0.4/- | aFs | 943 | 14 | 0.41 | 0.24 | 9 | ||||
- | 0.01–0.5/- | OTA | 5180 c | 54 | 0.29 | - | 33.3 | |||
Egypt | 2014–2015 | LC–MS/MS | 0.72/2.4 | AFB1 | 79 | 16 | - | 4.81 | 197.5 | [52] |
2.8/9.4 | OTA | 79 | 3 | - | <LOQ | 11 | ||||
Middle East and | 2009 | HPLC–FLD | 0.3/0.8 | aFs | 63 | 35 | 28 | 32 a | 343 | [49] |
African countries | 0.2/30.5 | OTA | 1 | 0 | - | - | - | |||
Shandong, China | 2014–2015 | UPLC–Q-TOF-MS | 0.05/0.1 | AFB1 | 520 | 18.08 | 7.62 | - | 573.13 | [53] |
Shandong, China | 2016 | LC–MS/MS | 0.01/0.03 | AFB1 | 90 b | 32.2 | 0.22 | - | 8.04 | [54] |
OTA | 90 b | 0 | - | - | - | |||||
Global | 2008–2017 | HPLC | 0.2–2.7/- | AFB1 | 15,889 | 24 | - | 4 | 6105 | [48] |
LC–MS/MS | 0.2–5/- | |||||||||
ELISA | 1–3/- | |||||||||
HPLC | 0.06–2/- | OTA | 6388 | 5 | - | 3 a | 889 | |||
LC–MS/MS | 0.2–100/- | |||||||||
ELISA | 0.2–2/- | |||||||||
Global | - | - | aFs | 55 c | 1642 | [60] | ||||
- | - | OTA | 29 c | 1164 |
Country | Sampling Year | Analytical Method | LOD/LOQ (μg kg−1) | Mycotoxin | No. of Samples | Positive Sample Rate (%) | Mean (μg kg−1) | Median (μg kg−1) | Max (μg kg−1) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Albania | 2014–2015 | LC–MS/MS | 0.6/2.0 | AFB1 | 71 | 3 | 0.3 | 0.3 | 0.4 | This study |
aFs | 71 | 18 | 0.3 | 0.2 | 0.4 | |||||
OTA | 71 | 1.0 | 611 a | 611 a | 611 | |||||
Serbia | 2012 | LC–MS/MS | 0.33/1.0 | AFB1 | 30 | 0 | - | - | - | [33] |
ELISA | 1.40/5.0 | |||||||||
Croatia | 2013 | ELISA | 1.0/1.7 | AFB1 | 201 | 7.5 | 1.65 | - | 5.41 | [47] |
Croatia | 2016 | LC–MS/MS | 0.3/1.0 | AFB1 | 57 | 0 | - | - | - | [39] |
2017 | 47 | 2.1 | 16.2 | - | 16.2 | |||||
2016 | 0.3/1.0 | OTA | 57 | 0 | - | - | - | |||
2017 | 47 | 4 | 153.7 | - | 614 | |||||
Slovenia | 2007–2008 | HPLC–FLD | 0.2/0.6 | AFB1 | 20 | 5 | 0.2 | 0.2 | 0.2 | [43] |
10/30 | OTA | 20 | 0 | - | - | - | ||||
Slovenia | 2008–2012 | LC–MS/MS | -/0.2 | AFB1 | 80 b | 0 | - | - | - | [45] |
-/0.8 | aFs | 80 b | 0 | - | - | - | ||||
-/1 | OTA | 80 b | 2.5 | 3.9 ± 2.8 | - | 5.8 | ||||
Romania | 2012–2015 | ELISA | - | aFs | 97 c | 45.4 | 3.85 ± 14.80 | <1.75 | 82.94 | [38] |
- | OTA | 97 c | 6.8 | 2.70 ± 0.43 | <2.50 | 6.72 | ||||
Italy | 2009–2010 | LC–MS/MS | 0.2/1 | AFB1 | 46 | 0 | - | - | - | [44] |
0.4/1 | OTA | 46 | 0 | - | - | - | ||||
Mediterranean area | 2009–2010 | LC–MS/MS | -/0.25 | AFB1 | 65 | 15 | - | - | 66.7 | [41] |
Poland | 2014 | UHPLC–HRMS | -/5 | aFs | 99 | 0 | - | - | - | [42] |
-/4 | OTA | 99 | 0 | - | - | - | ||||
EU | 2000–2006 | - | 0.1–0.2/- | AFB1 | 3010 d | 7 | 0.35 | 0.20 | 109 | [4] |
0.2–0.4/- | aFs | 3010 d | 7 | 0.51 | 0.40 | 117 | ||||
0.01–0.5/- | OTA | 5180 d | 54 | 0.29 | - | 33.3 | ||||
The Middle East and | 2009 | HPLC–FLD | 0.3/0.8 | aFs | 32 e | 19 | 1 | 2 a | 7 | [49] |
African countries | 0.2/30.5 | OTA | 1 | 0 | - | - | - | |||
Global | 2008–2017 | HPLC | 0.2–2.7/- | AFB1 | 2210 | 10 | - | 1 | 161 | [48] |
LC–MS/MS | 0.2–5/- | |||||||||
ELISA | 1–3/- | |||||||||
HPLC | 0.06–2/- | OTA | 1973 | 9 | - | 3 | 364 | |||
LC–MS/MS | 0.2–100/- | |||||||||
ELISA | 0.2–2/- |
Mycotoxin | Mode of Ionization | Retention Time (min) | Ion Precursor (m/z) | Quantifier Ion (m/z) | Qualifier Ion (m/z) |
---|---|---|---|---|---|
AFB1 | ESI+ | 5.25 | 313.2 | 213.2 | 241.1 |
AFB2 | ESI+ | 4.75 | 215.2 | 243.2 | 259.1 |
AFG1 | ESI+ | 2.92 | 329.1 | 214.8 | 199.9 |
AFG2 | ESI+ | 5.33 | 331.1 | 189.0 | 285.1 |
OTA | ESI+ | 11.10 | 404.2 | 221.0 | 239.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topi, D.; Babič, J.; Jakovac-Strajn, B.; Tavčar-Kalcher, G. Incidence of Aflatoxins and Ochratoxin A in Wheat and Corn from Albania. Toxins 2023, 15, 567. https://doi.org/10.3390/toxins15090567
Topi D, Babič J, Jakovac-Strajn B, Tavčar-Kalcher G. Incidence of Aflatoxins and Ochratoxin A in Wheat and Corn from Albania. Toxins. 2023; 15(9):567. https://doi.org/10.3390/toxins15090567
Chicago/Turabian StyleTopi, Dritan, Janja Babič, Breda Jakovac-Strajn, and Gabrijela Tavčar-Kalcher. 2023. "Incidence of Aflatoxins and Ochratoxin A in Wheat and Corn from Albania" Toxins 15, no. 9: 567. https://doi.org/10.3390/toxins15090567
APA StyleTopi, D., Babič, J., Jakovac-Strajn, B., & Tavčar-Kalcher, G. (2023). Incidence of Aflatoxins and Ochratoxin A in Wheat and Corn from Albania. Toxins, 15(9), 567. https://doi.org/10.3390/toxins15090567