Occurrence of Mycotoxins in Dried Fruits Worldwide, with a Focus on Aflatoxins and Ochratoxin A: A Review
Abstract
:1. Introduction
2. Mycotoxin Profile in Dried Fruits
2.1. Dried Vine Fruits
2.2. Dried Figs
2.3. Dates
2.4. Dried Plums (Prunes)
2.5. Dried Apricots
2.6. Dried Mulberries
2.7. Other Dried Fruits
3. Effect of Storage Conditions on Mycotoxin Formation
4. Impact of Climate Change on Mycotoxin Contamination
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sullivan, V.K.; Na, M.; Proctor, D.N.; Kris-Etherton, P.M.; Petersen, K.S. Consumption of dried fruits is associated with greater intakes of underconsumed nutrients, higher total energy intakes, and better diet quality in US adults: A cross sectional analysis of the National Health and Nutrition Examination Survey, 2007–2016. J. Acad. Nutr. Diet. 2021, 121, 1258–1272. [Google Scholar] [CrossRef] [PubMed]
- Omolola, A.O.; Jideani, A.I.O.; Kapila, P.F. Quality properties of fruits as affected by drying operation. Crit. Rev. Food Sci. Nutr. 2017, 57, 95–108. [Google Scholar] [CrossRef] [PubMed]
- INC (International Nut and Dried Fruit Council) (INC). Nuts & Dried Fruits Statistical Yearbook 2021/2022. INC Statistics. 2022. Available online: https://www.nutfruit.org/files/tech/1651579968_Statistical_Yearbook_2021-2022.pdf (accessed on 8 March 2023).
- FAO (Food and Agricultural Organisation). Proceedings of the Expert Consultation on Planning the Development of Sundrying Techniques in Africa; FAO: Rome, Italy, 1985. [Google Scholar]
- Brown, M. Processing and food and beverage shelf life. In Food and Beverage Stability and Shelf Life; Kilcast, D., Subramaniam, P., Eds.; Woodhead Publishing: Thorston, UK, 2011; pp. 184–243. [Google Scholar]
- Prabhakar, K.; Mallika, E.N. Dried fruits. In Encyclopedia of Food Microbiology; Batt, C.A., Tortorella, M.L., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 574–576. [Google Scholar]
- Sanchis, V.; Magan, N. Environmental conditions affecting mycotoxins. In Mycotoxins in Food; Magan, N., Olsen, M., Eds.; CRC Press: Boca Raton, FL, USA; Washington, DC, USA, 2004; pp. 174–189. [Google Scholar]
- EFSA (European Food Safety Authority). Mycotoxin Mixtures in Food and Feed: Holistic, Innovative, Flexible Risk Assessment Modelling Approach: MYCHIF; EFSA Supporting Publication: Parma, Italy, 2020; EN-1757. [Google Scholar]
- Alisaac, E.; Mahlein, A.-K. Fusarium head blight on wheat: Biology, modern detection and diagnosis and integrated disease management. Toxins 2023, 15, 192. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Risk assessment of aflatoxins in food. EFSA J. 2020, 18, 6040. [Google Scholar]
- EFSA (European Food Safety Authority). Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, 6113. [Google Scholar]
- Luo, S.; Du, H.; Kebede, H.; Liu, Y.; Xing, F. Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control 2021, 127, 108120. [Google Scholar] [CrossRef]
- Nan, M.; Xue, H.; Bi, Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins 2022, 14, 309. [Google Scholar] [CrossRef]
- De Sá, S.V.M.; Monteiro, C.; Fernandes, J.O.; Pinto, E.; Faria, M.A.; Cunha, S.C. Emerging mycotoxins in infant and children foods: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 1707–1721. [Google Scholar]
- Lopes, P.; Sobral, M.M.; Lopes, G.R.; Martins, Z.E.; Passos, C.P.; Petronilho, S.; Ferreira, I.M.P.L.V.O. Mycotoxins’ Prevalence in Food Industry By-Products: A Systematic Review. Toxins 2023, 15, 249. [Google Scholar] [CrossRef]
- Pandey, A.K.; Samota, M.K.; Kumar, A.; Silva, A.S.; Dubey, N.K. Fungal mycotoxins in food commodities: Present status and future concerns. Front. Sustain. Food Syst. 2023, 7, 1162595. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Effect on public health of a possible increase of the maximum level for “aflatoxin total” from 4 to 10 µg/kg in peanuts and processed products thereof, intended for direct human consumption or use as ingredient in foodstuffs. EFSA J. 2018, 16, 5175. [Google Scholar]
- IARC (International Agency for Research on Cancer). Some Naturally Occurring Substances, Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins; World Health Organization: Lyon, France, 1993; Volume 56, pp. 489–521. [Google Scholar]
- Eaton, D.L.; Gallagher, E.P. Mechanisms of Aflatoxin Carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 1994, 34, 135–172. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EU) No 1058/2012 of 12 November 2012 amending Regulation (EC) No 1881/2006 as regards maximum levels for aflatoxins in dried figs. Off. J. EU 2012, L313, 14–15. [Google Scholar]
- Frisvad, J.C.; Frank, J.M.; Houbraken, J.A.M.P.; Kuijpers, A.F.A.; Samson, R.A. New ochratoxin A producing species of Aspergillus section Circumdati. Stud. Mycol. 2004, 50, 23–43. [Google Scholar]
- Merla, C.; Andreoli, G.; Garino, C.; Vicari, N.; Tosi, G.; Guglielminetti, M.L.; Moretti, A.; Biancardi, A.; Arlorio, M.; Fabbi, M. Monitoring of ochratoxin A and ochratoxin-producing fungi in traditional salami manufactured in Northern Italy. Mycotoxin Res. 2018, 34, 107–116. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Opinion of the scientific panel on the contaminants in the food chain on a request from the commission related to ochratoxin A in food. Question No EFSA-Q-2005-154. EFSA J. 2006, 365, 1–56. [Google Scholar]
- Speijers, G.J.A.; Speijers, M.H.M. Combined toxic effects of mycotoxins. Toxicol. Lett. 2004, 153, 91–98. [Google Scholar] [CrossRef]
- Sangare-Tigori, B.; Moukha, S.; Kouadio, J.H.; Dano, D.S.; Betbeder, A.-M.; Achour, A.; Creppy, E.E. Ochratoxin A in human blood in Abidjan Côte d’Ivoire. Toxicon 2006, 47, 894–900. [Google Scholar] [CrossRef]
- Sedmíková, M.; Reisnerová, H.; Dufková, Z.; Bárta, I.; Jílek, F. Potential hazard of simultaneous occurrence of aflatoxin B-1 and ochratoxin A. Veteriarni Med. 2001, 46, 169–174. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 2002/1370 of 5 August 2022 amending Regulation (EC) No 1881/2006 as regards maximum levels of ochratoxin A in certain foodstuffs. Off. J. EU 2022, L206, 11–14. [Google Scholar]
- Trucksess, M.W.; Scott, P.M. Mycotoxins in botanicals and dried fruits: A review. Food Addit. Contam. Part A 2008, 25, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, W.; Ma, Z.; Zhang, Q.; Li, H. The Occurrence and Contamination Level of Ochratoxin A in Plant and Animal-Derived Food Commodities. Molecules 2021, 26, 6928. [Google Scholar] [CrossRef] [PubMed]
- Kaya, S.B.; Tosun, H. Occurrence of total aflatoxin, ochratoxin A and fumonisin in some organic foods. J. Pure Appl. Microbiol. 2013, 7, 2925–2932. [Google Scholar]
- Perrone, G.; De Girolamo, A.; Sarigiannis, Y.; Haidukowski, E.; Visconti, A. Occurrence of ochratoxin A, fumonisin B2 and black Aspergilli in raisins from Western Greece regions in relation to environmental and geographical factors. Food Addit. Contam. Part A 2013, 30, 1339–1347. [Google Scholar] [CrossRef]
- Abdallah, M.F.; Krska, R.; Sulyok, M. Occurrence of ochratoxins, fumonisin B2, aflatoxins (B1 and B2), and other secondary fungal metabolites in dried date palm fruits from Egypt: A mini survey. J. Food Sci. 2018, 83, 559–564. [Google Scholar] [CrossRef]
- Mongensen, J.M.; Frisvad, J.C.; Thrane, U.; Nielsen, K.F. Production of fumonisin B2 and B4 by Aspergillus niger on grapes and raisins. J. Agric. Food Chem. 2010, 58, 954–958. [Google Scholar] [CrossRef]
- Azaiez, I.; Giusti, F.; Sagratini, G.; Mañes, J.; Fernández-Franzón, M. Multi-mycotoxins Analysis in Dried Fruit by LC/MS/MS and a Modified QuEChERS Procedure. Food Anal. Methods 2014, 7, 935–945. [Google Scholar] [CrossRef]
- Azaiez, I.; Font, G.; Mañes, J.; Fernández-Franzón, M. Survey of mycotoxins in dates and dried fruits from Tunisian and Spanish markets. Food Control 2015, 51, 340–346. [Google Scholar] [CrossRef]
- Stroka, J.; Anklam, E.; Jörissen, U.; Gilbert, J.; Barmark, A.; Brera, C.; Clasen, P.-E.; Galagher, F.; Gardikis, J.; Jensen, L.B.; et al. Immunoaffinity Column Cleanup with Liquid Chromatography Using Post-Column Bromination for Determination of Aflatoxins in Peanut Butter, Pistachio Paste, Fig Paste, and Paprika Powder: Collaborative Study. J. AOAC Int. 2000, 83, 320–340. [Google Scholar] [CrossRef] [PubMed]
- Entwisle, A.C.; Williams, A.C.; Mann, P.J.; Slack, P.T.; Gilbert, J. Liquid chromatographic method with immunoaffinity column clean-up for determination of ochratoxin A in barley: Collaborative study. J. AOAC Int. 2000, 83, 1377–1383. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Analysis and Detection of Major Mycotoxins in Foods. Toxins 2020, 9, 518. [Google Scholar] [CrossRef]
- Shabeer, S.; Asad, S.; Jamal, A.; Ali, A. Aflatoxin Contamination, Its Impact and Management Strategies: An Updated Review. Toxins 2022, 14, 307. [Google Scholar] [CrossRef] [PubMed]
- UC IPM. Summer Bunch Rot (Sour Rot). UC IPM Pest Management Guidelines: Grape. UC ANR Publication 3448. 2016. Available online: https://www2.ipm.ucanr.edu/agriculture/grape/Summer-Bunch-Rot-Sour-Rot/ (accessed on 10 March 2023).
- Valero, A.; Marin, S.; Ramos, A.; Sanchis, V. Ochratoxin A-producing species in grapes and sun-dried grapes and their relation to ecophysiological factors. Lett. Appl. Microbiol. 2005, 41, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Magnoli, C.; Astoreca, A.; Ponsone, L.; Combina, M.; Palacio, G.; Rosa, C.A.R.; Dalcero, A.M. Survey of mycoflora and ochratoxin A in dried vine fruits from Argentina markets. Lett. Appl. Microbiol. 2004, 39, 326–331. [Google Scholar] [CrossRef]
- Palumbo, J.D.; O’keeffe, T.L.; Ho, Y.S.; Santillan, C.J. Occurrence of Ochratoxin A Contamination and Detection of Ochratoxigenic Aspergillus Species in Retail Samples of Dried Fruits and Nuts. J. Food Prot. 2015, 78, 836–842. [Google Scholar] [CrossRef]
- Şen, L.; Ocak, I.; Nas, S.; Şevik, R. Effects of different drying treatments on fungal population and ochratoxin A occurrence in sultana type grapes. Food Addit. Contam. Part A 2016, 33, 1444–1455. [Google Scholar] [CrossRef] [PubMed]
- Venkitasamy, C.; Zhao, L.; Zhang, R.; Pan, Z. Grapes. In Integrated Processing Technologies for Food and Agricultural By-Products; Pan, Z., Zhang, R., Zicari, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 133–163. [Google Scholar]
- RASFF (Rapid Alert System for Food and Feed). RASFF Portal. Available online: https://webgate.ec.europa.eu/rasff-window/screen/search (accessed on 16 November 2022).
- Iamanaka, B.T.; Taniwaki, M.H.; Menezes, H.C.; Vicente, E.; Fungaro, M.H.P. Incidence of toxigenic fungi and ochratoxin A in dried fruits sold in Brazil. Food Addit. Contam. 2005, 22, 1258–1263. [Google Scholar] [CrossRef] [PubMed]
- Lombaert, G.A.; Pellaers, P.; Neumann, G.; Kitchen, D.; Huzel, V.; Trelka, R.; Kotello, S.; Scott, P.M. Ochratoxin A in dried vine fruits on the Canadian retail market. Food Addit. Contam. 2004, 21, 578–585. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Zong, N.; Zhou, Z.; Ma, L. Ochratoxin A in dried vine fruits from Chinese markets. Food Addit. Contam. 2014, 8, 157–161. [Google Scholar] [CrossRef]
- Christofidou, M.; Kafouris, D.; Christodoulou, M.; Stefani, D.; Christoforou, E.; Nafti, G.; Christou, E.; Aletrari, M.; Iannou-Kakouri, E. Occurrence, surveillance, and control of mycotoxins in food in Cyprus for the years 2004–2013. Food Agric. Immunol. 2015, 26, 880–895. [Google Scholar] [CrossRef]
- Ostry, V.; Ruprich, J.; Skarkova, J. Raisins, ochratoxin A and human health. Mycotoxin Res. 2002, 2, 178–182. [Google Scholar] [CrossRef]
- Skarkova, J.; Ostry, V.; Malir, F.; Roubal, T. Determination of Ochratoxin A in Food by High Performance Liquid Chromatography. Anal. Lett. 2013, 46, 1495–1504. [Google Scholar] [CrossRef]
- Stefanaki, I.; Foufa, E.; Tsatsou-Dritsa, A.; Dais, P. Ochratoxin A concentrations in Greek domestic wines and other dried vine fruits. Food Addit. Contam. 2003, 20, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Kollia, E.; Kanapitsas, A.; Markaki, P. Occurrence of aflatoxin B1 and ochratoxin A in dried vine fruits from Greek market. Food Addit. Contam. Part B 2014, 7, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Varga, J.; Kocsubé, S.; Koncz, Z.; Téren, J. Mycobiota and ochratoxin A in raisins purchased in Hungary. Acta Aliment. 2006, 35, 289–294. [Google Scholar] [CrossRef]
- Feizy, J.; Beheshti, H.R.; Asadi, M. Ochratoxin A and aflatoxins in dried vine fruits from the Iranian market. Mycotoxin Res. 2012, 28, 237–242. [Google Scholar] [CrossRef]
- Heshmati, A.; Nejad, A.S.M. Ochratoxin A in dried grapes in Hamadan province, Iran. Food Addit. Contam. Part B 2015, 8, 255–259. [Google Scholar] [CrossRef]
- Rahimi, E.; Shakerian, A. Ochratoxin A in dried figs, raisings, apricots, dates on Iranian retail market. Health 2013, 05, 2077–2080. [Google Scholar] [CrossRef]
- Fanelli, F.; Cozzi, G.; Raiola, A.; Dini, I.; Mulè, G.; Logrieco, A.F.; Ritieni, A. Raisins and Currants as Conventional Nutraceuticals in Italian Market: Natural Occurrence of Ochratoxin A. J. Food Sci. 2017, 82, 2306–2312. [Google Scholar] [CrossRef] [PubMed]
- Sugita-Konishi, Y.; Nakajima, M.; Tabata, S.; Ishikuro, E.; Tanaka, T.; Norizuki, H.; Itoh, Y.; Aoyama, K.; Fujita, K.; Kai, S.; et al. Occurrence of Aflatoxins, Ochratoxin A, and Fumonisins in Retail Foods in Japan. J. Food Prot. 2006, 69, 1365–1370. [Google Scholar] [CrossRef]
- Zinedine, A.; Soriano, J.M.; Juan, C.; Mojemmi, B.; Moltó, J.C.; Bouklouze, A.; Cherrah, Y.; Idrissi, L.; El Aouad, R.; Mañes, J. Incidence of ochratoxin A in rice and dried fruits from Rabat and Salé area, Morocco. Food Addit. Contam. 2007, 24, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Asghar, M.A.; Ahmed, A.; Iqbal, J. Aflatoxins and ochratoxin A in export quality raisins collected from different areas of Pakistan. Food Addit. Contam. Part B 2016, 9, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.Z.; Mehmood, Z.; Asi, M.R.; Shahid, M.; Sehar, M.; Malik, N. Co-occurrence of aflatoxins and ochratoxin A in nuts, dry fruits, and nuty products. J. Food Saf. 2018, 38, e12462. [Google Scholar] [CrossRef]
- Hajok, I.; Kowalska, A.; Piekut, A.; Ćwieląg-Drabek, M. A risk assessment of dietary exposure to ochratoxin A for the Polish population. Food Chem. 2019, 284, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A.; Stanisz, E.; Waśkiewicz, A. Potential health benefits and quality of dried fruits: Goji fruits, cranberries and raisins. Food Chem. 2017, 221, 228–236. [Google Scholar] [CrossRef]
- Mikusová, P.; Cabon, M.; Melichárková, A.; Urík, M.; Ritieni, A.; Slovák, M. Genetic diversity, ochratoxin A and fumonisin profiles of strains of Aspergillus section Nigri isolated from dried vine fruits. Toxins 2020, 12, 592. [Google Scholar] [CrossRef]
- Möller, T.E.; Nyberg, M. Ochratoxin A in raisins and currants: Basic extraction procedure used in two small marketing surveys of the occurrence and control of the heterogeneity of the toxins in samples. Food Addit. Contam. 2003, 20, 1072–1076. [Google Scholar] [CrossRef]
- Çağlarırmak, N. Ochratoxin A, hydroxymethylfurfural and vitamin C levels of sun-dried grapes and sultanas. J. Food Process. Preserv. 2006, 30, 549–562. [Google Scholar] [CrossRef]
- Meyvaci, K.B.; Altindişli, A.; Aksoy, U.; Eltem, R.; Turgut, H.; Arasiler, Z.; Kartal, N. Ochratoxin A in sultanas from Turkey I: Survey of unprocessed sultanas from vineyards and packing-houses. Food Addit. Contam. 2005, 22, 1138–1143. [Google Scholar] [CrossRef]
- Aksoy, U.; Eltem, R.; Meyvaci, K.B.; Altindisli, A.; Karabat, S. Five-year survey of ochratoxin A in processed sultanas from Turkey. Food Addit. Contam. 2007, 24, 292–296. [Google Scholar] [CrossRef]
- Çelik, C. An Investigation of Ochratoxin A in Raisins by HPLC Sold in Adana Retail Markets. Master’s Thesis, University of Cukurova, Adana, Turkey, 2007. [Google Scholar]
- Bircan, C. Incidence of ochratoxin A in dried fruits and co-occurrence with aflatoxins in dried figs. Food Chem. Toxicol. 2009, 47, 1996–2001. [Google Scholar] [CrossRef] [PubMed]
- Akdeniz, A.S.; Ozden, S.; Alpertunga, B. Ochratoxin A in dried grapes and grape-derived products in Turkey. Food Addit. Contam. Part B 2013, 6, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Aslanoğlu, Z. Determination of Ochratoxin A and Fumonisin B2 in Dried Vine Fruits. Master’s Thesis, Istanbul Technical University, İstanbul, Turkey, 2014. [Google Scholar]
- Kulahi, A.; Kabak, B. A preliminary assessment of dietary exposure of ochratoxin A in Central Anatolia Region, Turkey. Mycotoxin Res. 2020, 36, 327–337. [Google Scholar] [CrossRef]
- MacDonald, S.; Wilson, P.; Barnes, K.; Damant, A.; Massey, R.; Mortby, E.; Shepherd, M.J. Ochratoxin A in dried vine fruit: Method development and survey. Food Addit. Contam. 1999, 16, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Miraglia, M.; Brera, C. Assessment of Dietary Intake of Ochratoxin A by the Population of EU Member States. Reports of Experts Participating in SCOOP Task 3.2.7.; Directorate-General Health and Consumer Protection: Rome, Italy, 2022. [Google Scholar]
- Juan, C.; Xinedine, A.; Moltó, J.C.; Idrissi, L.; Mañes, J. Aflatoxins levels in dried fruits and nuts from Rabat-Salé, Morocco. Food Control 2008, 19, 849–853. [Google Scholar] [CrossRef]
- Reazai, M.; Sayadi, M.; Akbarpour, B.; Mohammadpourfard, I.; Behzadi, A.B.; Teimoory, H. Safety of dried fruits marketed in Tehran as assessed by aflatoxin contamination. Int. J. Food Nutr. Saf. 2014, 5, 24–30. [Google Scholar]
- Luttfullah, G.; Hussain, A. Studies on contamination level of aflatoxins in some dried fruits and nuts of Pakistan. Food Control 2011, 22, 426–429. [Google Scholar] [CrossRef]
- Masood, M.; Iqbal, S.Z.; Asi, M.R.; Malik, N. Natural occurrence of aflatoxins in dry fruits and edible nuts. Food Control 2015, 55, 62–65. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific opinion on the appropriates to set a group health-based guidance value for fumonisins and their modified forms. Question No EFSA-Q-2015-00227. EFSA J. 2018, 16, 1–75. [Google Scholar]
- Logrieco, A.F.; Haidukowski, M.; Susca, A.; Mulè, G.; Munkvold, G.P.; Moretti, A. Aspergillus section Nigri as contributor of fumonisin B2 contamination in maize. Food Addit. Contam. Part A 2014, 31, 149–155. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Smedsgaard, J.; Samson, R.A.; Larsen, T.O.; Thrane, U. Fumonisin B2 production by Aspergillus niger. J. Agric. Food Chem. 2007, 14, 9727–9732. [Google Scholar] [CrossRef] [PubMed]
- Noonim, P.; Mahakarnchanakul, W.; Nielsen, K.F.; Frisvad, J.C.; Samson, R.A. Fumonisin B2 production by Aspergillus niger in Thai coffee beans. Food Addit. Contam. 2009, 26, 94–100. [Google Scholar] [CrossRef]
- Susca, A.; Proctor, R.H.; Mulè, G.; Stea, G.; Ritieni, A.; Logrieco, A.; Moretti, A. Correlation of Mycotoxin Fumonisin B2 Production and Presence of the Fumonisin Biosynthetic Gene fum8 in Aspergillus niger from Grape. J. Agric. Food Chem. 2010, 58, 9266–9272. [Google Scholar] [CrossRef]
- CAC (Codex Alimentarius Commission). Code of Practice for the Prevention and Reduction of Aflatoxin Contamination in Dried Figs; CAC/RCP: Rome, Italy, 2008. [Google Scholar]
- Colelli, G.; Amodio, M.L. Subtropical fruits: Figs. In Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce; Gil, M.I., Beaudry, R., Eds.; Academic Press: London, UK, 2020; pp. 427–434. [Google Scholar]
- Michailides, T.J.; Ferguson, L. University of California Pest Management Guidelines: Fig. UC ANR Publication 3447. 2009. Available online: https://www2.ipm.ucanr.edu/agriculture/fig/ (accessed on 14 January 2023).
- Mimoune, N.A.; Arroyo-Manzanares, N.; Gámiz-Gracia, L.; García-Campaña, A.M.; Bouti, K.; Sabaou, N.; Riba, A. Aspergillus section Flavi and aflatoxins in dried figs and nuts in Algeria. Food Addit. Contam. Part B 2018, 11, 119–125. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Nie, J.-Y.; Yan, Z.; Li, Z.-X.; Cheng, Y.; Farooq, S. Multi-mycotoxin exposure and risk assessments for Chinese consumption of nuts and dried fruits. J. Integr. Agric. 2018, 17, 1676–1690. [Google Scholar] [CrossRef]
- Heshmati, A.; Zohrevand, T.; Khaneghah, A.M.; Nejad, A.S.M.; Sant’ana, A.S. Co-occurrence of aflatoxins and ochratoxin A in dried fruits in Iran: Dietary exposure risk assessment. Food Chem. Toxicol. 2017, 106, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Di Sanzo, R.; Carabetta, S.; Campone, L.; Bonavita, S.; Iaria, D.; Fuda, S.; Rastrelli, L.; Russo, M. Assessment of mycotoxins co-occurrence in Italian dried figs and in dried figs-based products. J. Food Saf. 2018, 38, e12536. [Google Scholar] [CrossRef]
- Heperkan, D.; Somuncuoglu, S.; Karbancioglu-Güler, F.; Mecik, N. Natural contamination of cyclopiazonic acid in dried figs and co-occurrence of aflatoxin. Food Control 2012, 23, 82–86. [Google Scholar] [CrossRef]
- Kabak, B. Aflatoxins in hazelnuts and dried figs: Occurrence and exposure assessment. Food Chem. 2016, 211, 8–16. [Google Scholar] [CrossRef]
- Basegmez, H.I.O. Dietary Exposure Assessment of Aflatoxin from Dried Figs in Turkey. Hittite J. Sci. Eng. 2019, 6, 173–177. [Google Scholar] [CrossRef]
- Bakırcı, G.T. Investigation of aflatoxins levels in commercial dried figs from western Turkey. Int. Food Res. J. 2020, 27, 245–251. [Google Scholar]
- Kabak, B. Aflatoxins in foodstuffs: Occurrence and risk assessment in Turkey. J. Food Compos. Anal. 2021, 96, 103734. [Google Scholar] [CrossRef]
- Pavón, M.A.; González, I.; Martín, R.; García, T. Competitive direct ELISA based on a monoclonal antibody for detection of Ochratoxin A in dried fig samples. Food Agric. Immunol. 2012, 23, 83–91. [Google Scholar] [CrossRef]
- Han, Z.; Dong, M.; Han, W.; Shen, Y.; Nie, D.; Shi, W.; Zhao, Z. Occurrence and exposure assessment of multiple mycotoxins in dried fruits based on liquid chromatography-tandem mass spectrometry. World Mycotoxin J. 2016, 9, 465–474. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Asi, M.R.; Jinap, S. Aflatoxins in dates and date products. Food Control 2014, 43, 163–166. [Google Scholar] [CrossRef]
- Asghar, M.A.; Ahmed, A.; Zahir, E.; Iqbal, J.; Walker, G. Incidence of aflatoxins contamination in dry fruits and edible nuts collected from Pakistan. Food Control 2017, 78, 169–175. [Google Scholar] [CrossRef]
- Alghalibi, S.M.S.; Shater, A.-R.M. Mycoflora and mycotoxin contamination of some dried fruits in Yemen Republic. Assiut. Univ. Bull. Environ. Res. 2004, 7, 19–27. [Google Scholar]
- Shenasi, M.; Candlish, A.A.G.; Aidoo, K.E. The production of aflatoxins in fresh date fruits and under simulated storage conditions. J. Sci. Food Agric. 2002, 82, 848–853. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Ahmed, A.; Robinson, R.K. Susceptibility of date fruits (Phoenix dactylifera) to aflatoxin production. J. Sci. Food Agric. 1997, 74, 64–68. [Google Scholar] [CrossRef]
- Gherbawy, Y.A.; Elhariry, H.M.; Bahobial, A.A.S.; Azaiez, I.; Font, G.; Mañes, J.; Fernández-Franzón, M.; Teena, M.; Manickavasagan, A.; Ravikanth, L.; et al. Mycobiota and Mycotoxins (Aflatoxins and Ochratoxin) Associated with Some Saudi Date Palm Fruits. Foodborne Pathog. Dis. 2012, 9, 561–567. [Google Scholar] [CrossRef]
- Aidoo, K.E.; Tester, R.F.; Morrison, J.E.; MacFarlane, D. The composition and microbial quality of pre-packed dates purchased in Greater Glasgow. Int. J. Food Sci. Technol. 1996, 31, 433–438. [Google Scholar] [CrossRef]
- Hansmann, C.F.; Combrink, J.C. Plums and related fruits. In Encyclopedia of Food Sciences and Nutrition; Cballero, B., Ed.; Academic Press: Amsterdam, The Netherlands; Elsevier: Amsterdam, The Netherlands, 2003; pp. 4606–4610. [Google Scholar]
- Zohri, A.A.; Abdel- Gawad, K.M. Survey of microflora and mycotoxins of some dried fruits in Egypt. J. Basic Microbiol. 1993, 4, 279–288. [Google Scholar] [CrossRef]
- Janati, S.S.F.; Beheshti, H.R.; Asadi, M.; Mihanparast, S.; Feizy, J. Preliminary Survey of Aflatoxins and Ochratoxin A in Dried Fruits from Iran. Bull. Environ. Contam. Toxicol. 2012, 88, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Ozer, H.; Basegmez, H.I.O.; Ozay, G. Mycotoxin risks and toxigenic fungi in date, prune and dried apricot among Mediterranean crops. Phytopathol. Mediterr. 2012, 51, 148–157. [Google Scholar]
- Engel, G. Ochratoxin A in sweets, oil seeds and dairy products. Arch. Lebensmittel. 2000, 51, 98–101. [Google Scholar]
- Gunsen, U.; Buyukyoruk, I. Aflatoxins in retail products in Bursa, Turkey. Vet. Human Toxicol. 2004, 44, 289–290. [Google Scholar]
- Aksoy, U.; Dunbay, O.; Gülseri, O. Survey of aflatoxins and ochratoxin A in Turkish dried apricots. ISHS Acta Hortic. 1995, 384, 651–654. [Google Scholar] [CrossRef]
- Zhang, X.; Ou, X.; Zhou, Z.; Ma, L. Ochratoxin A in Chinese dried jujube: Method development and survey. Food Addit. Contam. Part A 2014, 32, 512–517. [Google Scholar] [CrossRef]
- Abramson, D. Mycotoxin formation and environmental factors. In Mycotoxins in Agriculture and Food Safety; Sinha, K.K., Bhatnagar, D., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1998; pp. 255–277. [Google Scholar]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to Prevent Mycotoxin Contamination of Food and Animal Feed: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef]
- Bradford, K.J.; Dahal, P.; Van Asbrouck, J.; Kunusoth, K.; Bello, P.; Thompson, J.; Wu, F. The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends Food Sci. Technol. 2018, 71, 84–93. [Google Scholar] [CrossRef]
- Naeem, I.; Ismail, A.; Rehman, A.U.; Ismail, Z.; Salma, S.; Naz, A.; Faraz, A.; de Oliveira, C.A.F.; Benkerroum, N.; Aslam, M.Z.; et al. Prevalence of aflatoxins in selected dry fruits, impact of storage conditions on contamination levels and associated health risks on Pakistan consumers. Int. J. Environ. Res. Public Health 2022, 19, 3404. [Google Scholar] [CrossRef]
- Galván, A.I.; Rodríguez, A.; Martín, A.; Serradilla, M.J.; Martínez-Dorado, A.; Córdoba, M.d.G. Effect of Temperature during Drying and Storage of Dried Figs on Growth, Gene Expression and Aflatoxin Production. Toxins 2021, 13, 134. [Google Scholar] [CrossRef]
- Daou, R.; Assaf, J.C.; El Khoury, A. Aflatoxins in the era of climate change: The Mediterranean experience. In Aflatoxins, Occurrence, Detection and Novel Detoxification Strategies; Assaf, J.C., Ed.; IntechOpen Limited: London, UK, 2022. [Google Scholar]
- Tans, P.; Keeling, D. Trends in Atmospheric Carbon Dioxide; U.S. Department of Commerce, Global Monitoring Laboratory: Gaithersburg, MD, USA, 2022.
- Medina, Á.; Rodríguez, A.; Magan, N. Climate change and mycotoxigenic fungi: Impacts on mycotoxin production. Curr. Opin. Food Sci. 2015, 5, 99–104. [Google Scholar] [CrossRef]
- Daou, R.; Joubrane, K.; Maroun, R.G.; Khabbaz, L.R.; Ismail, A.; El Khoury, A. Mycotoxins: Factors influencing production and control strategies. AIMS Agric. Food 2021, 6, 416–447. [Google Scholar] [CrossRef]
- Battilani, P.; Rossi, V.; Giorni, P.; Pietri, A.; Gualla, A.; Van der Fels-Klerx, H.J.; Booij, C.J.H.; Moretti, A.; Logrieco, A.; Miglietta, F.; et al. Modelling, predicting and mapping the emergence of aflatoxins in cereals in the EU due to climate change. EFSA Support. Publ. 2012, 9, 172. [Google Scholar] [CrossRef]
- Medina, Á.; Rodriguez, A.; Magan, N. Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front. Microbiol. 2014, 5, 348. [Google Scholar] [CrossRef] [PubMed]
- Váry, Z.; Mullins, E.; McElwain, J.C.; Doohan, F.M. The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide. Glob. Chang. Biol. 2015, 21, 2661–2669. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.M.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef]
- Kos, J.; Anić, M.; Radić, B.; Zadravec, M.; Hajnal, E.J.; Pleadin, J. Climate Change—A Global Threat Resulting in Increasing Mycotoxin Occurrence. Foods 2023, 12, 2704. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, P.; Warang, O.; Das, S.; Das, S. Impact of climate change on fruit crops—A review. Current World Environ. 2022, 17, 319–330. [Google Scholar] [CrossRef]
- Zingales, V.; Taroncher, M.; Martino, P.A.; Ruiz, M.-J.; Caloni, F. Climate Change and Effects on Molds and Mycotoxins. Toxins 2022, 14, 445. [Google Scholar] [CrossRef]
- Cervini, C.; Gallo, A.; Piemontese, L.; Magistà, D.; Logrieco, A.F.; Ferrara, M.; Solfrizzo, M.; Perrone, G. Effects of temperature and water activity change on ecophysiology of ochratoxigenic Aspergillus carbonarius in field-simulating conditions. Int. J. Food Microbiol. 2020, 315, 108420. [Google Scholar] [CrossRef] [PubMed]
- Cervini, C.; Verheecke-Vaessen, C.; Ferrara, M.; García-Cela, E.; Magistà, D.; Medina, A.; Gallo, A.; Magan, N.; Perrone, G. Interacting climate change factors (CO2 and temperature cycles) effects on growth, secondary metabolite gene expression and phenotypic ochratoxin A production by Aspergillus carbonarius strains on a grape-based matrix. Fungal Biol. 2021, 125, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, S.; Lasram, S.; Ramos, A.J.; Marin, S.; Mliki, A.; Sanchis, V.; Ghorbel, A. Alternating temperatures and photoperiod effects on fungal growth and Ochratoxin A production by Aspergillus carbonarius isolated from Tunisian grapes. Int. J. Food Microbiol. 2010, 139, 210–213. [Google Scholar] [CrossRef] [PubMed]
- García-Cela, E.; Ramos, A.J.; Sanchis, V.; Marin, S. Ochratoxigenic moulds and effectiveness of grape field antifungals in a climatic change scenario. J. Sci. Food Agric. 2012, 92, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Doymaz, I. Sun drying of seedless and seeded grapes. J. Food Sci. Technol. 2012, 49, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Desa, M.; Nurlaila, W.; Mohammad, M.; Fudholi, A. Review of drying technology of fig. Trends Food Sci. Technol. 2019, 88, 93–103. [Google Scholar] [CrossRef]
- Papadaki, A.; Kachrimanidou, V.; Lappa, I.K.; Eriotou, E.; Sidirokastritis, N.; Kampioti, A.; Kopsahelis, N. Mediterranean Raisins/Currants as Traditional Superfoods: Processing, Health Benefits, Food Applications and Future Trends within the Bio-Economy Era. Appl. Sci. 2021, 11, 1605. [Google Scholar] [CrossRef]
- Lachtar, D.; Zaouay, F.; Pereira, C.; Martin, A.; Abda, J.B.; Mars, M. Physicochemical and sensory quality of dried figs (Ficus carica L.) as affected by drying method and variety. J. Food Process. Preserv. 2022, 46, e16379. [Google Scholar] [CrossRef]
Country | Year | No. of Samples | Positive, n (%) | Range (μg/kg) | Mean (μg/kg) | Method | Reference |
---|---|---|---|---|---|---|---|
Argentina | NR a | 50 | 37 (74) | 1.4–14 | NR | HPLC-FLD b | [42] |
Brazil | 2002–2003 | 43 | 29 (67) | 0.1–33.9 | NR | HPLC-FLD | [47] |
Canada | 1998–2000 | 153 | 108 (71) | <0.1–26.6 | 2.74 | HPLC-FLD | [48] |
China | 2012 | 56 | 33 (59) | <0.07–12.83 | 0.99 | HPLC-FLD | [49] |
Cyprus | 2004–2013 | 43 | 30 (70) | 0.2–13.7 | 2.2 | HPLC-FLD | [50] |
Czech Republic | 1999–2002 | 48 | 18 (38) | 1.6–63.6 | 11.5 | HPTLC c | [51] |
Czech Republic | NR | 12 | 5 (42) | 0.10–2.17 | 0.46 | HPLC-FLD | [52] |
Greece | 1998–2000 | 81 | 60 (74) | 0.6–13.8 | 2.6 | HPLC-FLD | [53] |
Greece | 2011 | 41 | 30 (73) | 0.1–98.2 | NR | HPLC-FLD | [31] |
Greece | 2012 | 26 | 26 (100) | 2.8–138.3 | 47.2 | HPLC-FLD/ELISA d | [54] |
Hungary | NR | 20 | 18 (90) | 0.13–6.2 | NR | ELISA | [55] |
Iran | 2009–2011 | 40 | 4 (10) | 0.8–4.9 | 2.41 | HPLC-FLD | [56] |
Iran | 2012–2013 | 66 | 39 (59) | <0.16–8.40 | 2.98 | HPLC-FLD | [57] |
Iran | 2011 | 38 | 17 (45) | 2.9–18.2 | 7.0 | ELISA | [58] |
Italy | NR | 35 | 18 (51) | 0.05–12.61 | 2.6 | HPLC-FLD | [59] |
Japan | 2004–2005 | 11 | 7 (64) | 0.18–12.5 | 1.54 | HPLC-FLD | [60] |
Morocco | 2005 | 20 | 6 (30) | 0.05–4.95 | 0.96 | HPLC-FLD | [61] |
Pakistan | 2012–2014 | 170 | 122 (72) | 0.4–12.75 | 2.10 | HPLC-FLD | [62] |
Pakistan | 2016–2017 | 17 | 4 (24) | 0.18–18.5 | 5.6 | HPLC-FLD | [63] |
Poland | 2010–2014 | 36 | 17 (47) | 1.1–34 | 6.2 | HPLC-FLD | [64] |
Poland | NR | 5 | 2 (40) | 0.44–1.27 | 0.86 | LC-MS/MS e | [65] |
Slovakia | 2016 | 20 | 15 (75) | 0.8–10.6 | NR | ELISA | [66] |
Spain | NR | 3 | 1 (33) | 4.9 | 4.9 | LC-MS/MS | [34] |
Sweden | 1999–2002 | 118 | 96 (84) | <0.1–34.6 | NR | HPLC-FLD | [67] |
Turkey | NR | 20 | 20 (100) | 0.48–8.92 | 3.80 | HPLC-FLD | [68] |
Turkey | 1998–2004 | 264 | 179 (67.8) | 0.03–54 | 3.4 | HPLC-FLD | [69] |
Turkey | 1999–2003 | 1885 | 1713 (91) | <0.3–100 | 1.36 | HPLC-FLD | [70] |
Turkey | NR | 40 | 26 (65) | 0.38–20.90 | 3.43 | HPLC-FLD | [71] |
Turkey | NR | 53 | 28 (53) | 0.51–58.04 | NR | HPLC-FLD | [72] |
Turkey | 2008–2009 | 50 | 4 (8) | 0.19–2.59 | 1.15 | HPLC-FLD | [73] |
Turkey | NR | 60 | 11 (18) | 0.22–5.26 | 1.61 | HPLC-FLD | [74] |
Turkey | 2015–2016 | 50 | 21 (42) | 0.14–3.87 | 0.64 | HPLC-FLD | [75] |
United Kingdom | NR | 60 | 53 (88) | 0.3–53.6 | 6.4 | HPLC-FLD | [76] |
United States | 2012–2014 | 109 | 48 (44) | 0.28–15.34 | 2.26 | HPLC-FLD | [43] |
Country | No. of Samples | Positive, n (%) | Range (μg/kg) | Mean (μg/kg) | Method | Reference |
---|---|---|---|---|---|---|
Algeria | 33 | 25 (76) | 0.22–83.40 | NR a | HPLC-FLD b | [90] |
China | 20 | 3 (20) | 1.80–384.10 | 129.5 | LC-MS/MS c | [91] |
Iran | 22 | 13 (59) | 0.30–7.00 | 2.60 | HPLC-FLD | [92] |
Italy | 55 | 10 (18) | 0.19–8.41 | NR | HPLC-FLD | [93] |
Pakistan | 14 | 4 (29) | NR | 3.40 | HPLC-FLD | [63] |
Turkey | 48 | 11 (23) | 0.10–696.30 | 113.7 | HPLC-FLD | [94] |
Turkey | 130 | 16 (12) | 0.10–12.50 | 2.66 | HPLC-FLD | [95] |
Turkey | 23,547 | 2510 (11) | 0.20–431.4 | 5.56 | HPLC-FLD | [96] |
Turkey | 1973 | 310 (16) | 0.59–69.90 | 5.70 | HPLC-FLD | [97] |
Country | Mycotoxin | No. of Samples | Positive, n (%) | Range (μg/kg) | Mean (μg/kg) | Method | Reference |
---|---|---|---|---|---|---|---|
Brazil | OTA | 10 | 2 (20) | 0.1–5 | NR a | HPLC-FLD b | [47] |
China | OTA | 40 | 9 (23) | c LOD–61.4 | NR | LC-MS/MS d | [100] |
Egypt | AFB1 | 28 | 1 (4) | 14.4 | 14.4 | LC-MS/MS | [32] |
Egypt | OTA | 28 | 3 (11) | 1.48–6070 | NR | LC-MS/MS | [32] |
Iran | OTA | 10 | 2 (20) | 1.4–3.6 | 2.5 | ELISA e | [58] |
Iran | AFs | 22 | 9 (41) | 0.9–8.1 | 2.6 | HPLC-FLD | [92] |
Iran | OTA | 22 | 5 (23) | 0.5–2.1 | 1.2 | HPLC-FLD | [92] |
Pakistan | AFs | 17 | 5 (30) | LOD–15.50 | 3.90 | HPLC-FLD | [63] |
Pakistan | AFs | 8 | 2 (25) | 2.1–2.9 | 2.5 | HPLC-FLD | [80] |
Pakistan | AFs | 15 | 9 (60) | LOD–18.8 | 6.32 | HPLC-FLD | [81] |
Pakistan | AFs | 96 | 38 (40) | LOD-26.6 | 4.11 | HPLC-FLD | [101] |
Pakistan | AFs | 170 | 25 (15) | 0.24–5.87 | NR | HPLC-FLD | [102] |
Tunisia | OTA | 48 | 18 (38) | 0.57–3.34 | 1.26 | LC-MS/MS | [32] |
Yemen | AFs | 20 | 2 (10) | 110–180 | 145 | TLC f | [103] |
Country | Mycotoxin | No. of Samples | Positive, n (%) | Range (μg/kg) | Mean (μg/kg) | Method | Reference |
---|---|---|---|---|---|---|---|
Brazil | OTA | 21 | 1 (5) | <5 | <5 | HPLC-FLD a | [47] |
Egypt | OTA | 3 | 3 (100) | 210–280 | NR b | TLC c | [109] |
Iran | AFB1 | 15 | 2 (13) | 0.23–1.17 | 0.70 | HPLC-FLD | [110] |
Iran | OTA | 15 | 3 (20) | 0.22–2.62 | 1.28 | HPLC-FLD | [110] |
Pakistan | AFs | 16 | 6 (38) | d LOD–8.5 | 3.80 | HPLC-FLD | [63] |
Pakistan | AFs | 21 | 8 (38) | 0.04–14.76 | 3.72 | HPLC-FLD | [81] |
Pakistan | AFs | 10 | 3 (30) | 2.36–7.41 | 1.31 | HPLC-FLD | [102] |
Country | Mycotoxin | No. of Samples | Positive, n (%) | Range (μg/kg) | Mean (μg/kg) | Method | Reference |
---|---|---|---|---|---|---|---|
Iran | OTA | 15 | 1 (7) | 2.8 | 2.8 | ELISA a | [58] |
Iran | AFs | 22 | 18 (82) | 0.4–8.5 | 2.9 | HPLC-FLD b | [92] |
Iran | AFB1 | 30 | 9 (30) | 0.21–5.33 | 0.88 | HPLC-FLD | [110] |
Iran | OTA | 30 | 1 (3) | 2.83 | 2.83 | HPLC-FLD | [110] |
Pakistan | AFs | 13 | 3 (23) | c LOD–11.85 | 4.80 | HPLC-FLD | [63] |
Pakistan | AFs | 20 | 4 (20) | 1.5–10.3 | 4.55 | HPLC-FLD | [80] |
Pakistan | AFs | 20 | 7 (35) | LOD–11.5 | 4.75 | HPLC-FLD | [81] |
Pakistan | AFs | 65 | 21 (32) | 0.31–11.1 | 1.02 | HPLC-FLD | [102] |
Turkey | AFs | 26 | 2 (8) | LOD–10.5 | 0.61 | ELISA | [30] |
Turkey | OTA | 26 | 6 (23) | LOD–34.4 | 6.1 | ELISA | [30] |
Turkey | OTA | 20 | 1 (5) | 0.97 | 0.97 | HPLC-FLD | [72] |
Turkey | AFB1 | 15 | 3 (20) | NR d | 1.44 | ELISA | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Curbelo, M.Á.; Kabak, B. Occurrence of Mycotoxins in Dried Fruits Worldwide, with a Focus on Aflatoxins and Ochratoxin A: A Review. Toxins 2023, 15, 576. https://doi.org/10.3390/toxins15090576
González-Curbelo MÁ, Kabak B. Occurrence of Mycotoxins in Dried Fruits Worldwide, with a Focus on Aflatoxins and Ochratoxin A: A Review. Toxins. 2023; 15(9):576. https://doi.org/10.3390/toxins15090576
Chicago/Turabian StyleGonzález-Curbelo, Miguel Ángel, and Bulent Kabak. 2023. "Occurrence of Mycotoxins in Dried Fruits Worldwide, with a Focus on Aflatoxins and Ochratoxin A: A Review" Toxins 15, no. 9: 576. https://doi.org/10.3390/toxins15090576
APA StyleGonzález-Curbelo, M. Á., & Kabak, B. (2023). Occurrence of Mycotoxins in Dried Fruits Worldwide, with a Focus on Aflatoxins and Ochratoxin A: A Review. Toxins, 15(9), 576. https://doi.org/10.3390/toxins15090576