Primary Sequence and Three-Dimensional Structural Comparison between Malanin and Ricin, a Type II Ribosome-Inactivating Protein
Abstract
:1. Introduction
2. Results and Discussion
2.1. Homologous Alignment of Malanin
2.2. The Phylogenetic Relationship between Malanin and Other Type II RIPs
2.3. Three-Dimensional Structure of Malanin
2.4. Comparison between the Difference in Amino Acid Residues in Ricin and Malanin
2.5. Comparison between the Disulfide Bonds in Ricin and Malanin
2.6. Active Site Analysis of Malanin
3. Conclusions
4. Materials and Methods
4.1. Homologous Sequence Alignment of Malanin
4.2. The Phylogenetic Relationship of Malanin
4.3. Homology Modeling of Malanin
4.4. Disulfide Bond Prediction
4.5. Active Sites of Malanin
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, X.H.; Lin, Y.R. Flora of China; Science Press: Beijing, China, 1988; Volume 24. [Google Scholar]
- Wu, Z.; Raven, P.; Hong, D. Flora of China; Ulmaceae through Basellaceae; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2003; Volume 5. [Google Scholar]
- Fu, L.G. Red Data Book of Chinese Plant—The Rare and Endangered Plants; Science Press: Beijing, China, 1992; Volume 1. [Google Scholar]
- Xie, W.D.; Chen, J.H.; Lai, J.Y.; Shi, H.M.; Lin, S.F.; Liu, B.; Li, X. Life-table analysis of Malania oleifera, a rare and endangered plant. J. Cent. South Univ. For. Technol. 2009, 2, 73–76. [Google Scholar]
- Lai, J.; Shi, H.; Pan, C.; Chen, S.; Ye, Y.; Li, M.; Chen, F. Pollination biology of rare and endangered species Malania oleifera Chun et Lee. J. Beijing For. Univ. 2008, 2, 59–64. [Google Scholar]
- Ma, Y.; Chen, G.; Grumbine, R.E.; Dao, Z.; Sun, W. Conserving plant species with extremely small populations (PSESP) in China. Biodivers. Conserv. 2013, 3, 803–809. [Google Scholar] [CrossRef]
- Xie, W.; Chen, J.; Lai, J.; Shi, H.; Huang, K.; Liu, J.; Li, X. Analysis on relationship between geographic distribution of Malania oleifera and hydrothermal factors. J. Trop. Subtrop. Bot. 2009, 4, 388–394. [Google Scholar]
- Su, J.; Wang, J.; Fu, X.; Hou, L.; Zhu, P. Fatty acid composition and thermal characteristics of Malania oleifera seed oil. Adv. Compos. Hybrid Mater. 2022, 5, 1268–1279. [Google Scholar] [CrossRef]
- Tang, T.F.; Liu, X.M.; Ling, M.; Lai, F.; Zhang, L.; Zhou, Y.H.; Sun, R.R. Constituents of the essential oil and fatty acid from Malania oleifera. Ind. Crops Prod. 2013, 43, 1–5. [Google Scholar] [CrossRef]
- Xu, C.Q.; Liu, H.; Zhou, S.S.; Zhang, D.X.; Zhao, W.; Wang, S.; Chen, F.; Sun, Y.Q.; Nie, S.; Jia, K.H. Genome sequence of Malania oleifera, a tree with great value for nervonic acid production. GigaScience 2019, 8, giy164. [Google Scholar] [CrossRef]
- Ma, B.; Liang, S.F.; Zhao, D.Y.; XU, A.; Zhang, K.J. Study on plants containing nervonic acid. Acta Bot. Boreali-Occident. Sin. 2004, 12, 2362–2365. [Google Scholar]
- Yang, T.; Yu, Q.; Xu, W.; Li, D.Z.; Chen, F.; Liu, A. Transcriptome analysis reveals crucial genes involved in the biosynthesis of nervonic acid in woody Malania oleifera oilseeds. BMC Plant Biol. 2018, 18, 247–260. [Google Scholar] [CrossRef]
- Yuan, Y.; Dai, X.C.; Wang, D.B.; Zeng, X.H. Purification, characterization and cytotoxicity of malanin, a novel plant toxin from the seeds Malanin oleifera. Toxicon 2009, 54, 121–127. [Google Scholar] [CrossRef]
- Citores, L.; Ferreras, J.M. Biological Activities of Ribosome-Inactivating Proteins. Toxins 2023, 15, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Gupta, S.; Sharma, N.R.; Paul, K. Expanding role of Ribosome-inactivating Proteins: From toxins to therapeutics. IUBMB Life 2022, 2, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.J.; Wang, Y.; Guo, F.; Zhang, Y.; Jin, T. Atomic-resolution structures of type I ribosome inactivating protein alpha-momorcharin with different substrate analogs. Int. J. Biol. Macromol. 2020, 164, 265–276. [Google Scholar] [CrossRef]
- Milic, M.; Savic, J.; Tubic, L. Expression of the gene for ribosome-inactivating protein, SoRIP2, as a tool for the evaluation of somatic embryogenesis in spinach. Plant Cell 2017, 3, 483–492. [Google Scholar]
- Joachim, S.; Alexander, W.; Matthias, F.M. Ribosome-Inactivating and Related Proteins. Toxins 2015, 7, 1556–1615. [Google Scholar] [CrossRef]
- Khirehgesh, M.R.; Sharifi, J.; Safari, F.; Akbari, B. Immunotoxins and nanobody-based immunotoxins: Review and update. J. Drug Target. 2021, 8, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Stirpe, F. Ribosome-inactivating proteins. Toxicon 2004, 4, 355–383. [Google Scholar] [CrossRef]
- Lamb, F.I.; Roberts, L.M.; Lord, J.M. Nucleotide sequence of cloned cDNA coding for preproricin. Eur. J. Biochem. 1985, 148, 265–270. [Google Scholar] [CrossRef]
- Funatsu, G.; Kimura, M.; Funatsu, M. Primary structure of Ala chain of ricin D. Agric. Biol. Chem. 1979, 10, 2221–2224. [Google Scholar] [CrossRef]
- Funatsu, G.; Yoshitake, S.; Funatsu, M. Primary structure of Ile chain of ricin D. Agric. Biol. Chem. 1978, 2, 501–503. [Google Scholar] [CrossRef]
- Rudolph, M.J.; Vance, D.J.; Cheung, J.; Franklin, M.C.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Herrera, C.; Shoemaker, C.B.; Mantis, N.J. Crystal structures of ricin toxin’s enzymatic subunit (RTA) in complex with neutralizing and non-neutralizing single-chain antibodies. J. Mol. Biol. 2014, 17, 3057–3068. [Google Scholar] [CrossRef] [PubMed]
- Montfort, W.B.; Villafranca, J.E.; Monzingo, A.F.; Ernst, S.R.; Katzin, B.J.; Rutenber, E.E.; Xuong, N.; Hamlin, R.C.; Robertus, J.D. The three-dimensional structure of ricin at 2.8 A. J. Biol.Chem. 1987, 262, 5398–5403. [Google Scholar] [CrossRef]
- Wei, C.H.; Koh, C. Crystalline ricin D, a toxic anti-tumor lectin from seeds of Ricinus communis. J. Biol. Chem. 1978, 6, 2061–2066. [Google Scholar] [CrossRef]
- Funatsu, G.; Islam, M.R.; Minami, Y.; Sung-Sil, K.; Kimura, M. Conserved amino acid residues in ribosome-inactivating proteins from plants. Biochimie 1991, 73, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Voss, C.; Eyol, E.; Frank, M.; von der Lieth, C.W.; Berger, M.R. Identification and characterization of riproximin, a new type II ribosome-inactivating protein with antineoplastic activity from Ximenia americana. FASEB J. 2006, 20, 1194–1196. [Google Scholar] [CrossRef]
- Bayer, H.; Ey, N.; Wattenberg, A.; Voss, C.; Berger, M.R. Purification and characterization of riproximin from Ximenia americana fruit kernels. Protein Expr. Purif. 2012, 82, 97–105. [Google Scholar] [CrossRef]
- Lord, J.M.; Roberts, L.M.; Robertus, J.D. Ricin: Structure, mode of action, and some current applications. FASEB J. 1994, 8, 201–208. [Google Scholar] [CrossRef]
- Barbieri, L.; Battelli, M.G.; Stirpe, F. Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta 1993, 1154, 237–282. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, R.S.; Gong, Z.Z.; Liu, W.Y. Studies of three genes encoding cinnamomin (a type II RIP) isolated from the seeds of camphor tree and their expression patterns. Gene 2002, 284, 215–223. [Google Scholar] [CrossRef]
- Tahirov, T.H.; Lu, T.H.; Liaw, Y.C.; Chen, Y.L.; Lin, J. Crystal structure of abrin-a at 2.14 A. J. Mol. Biol. 1995, 250, 354–367. [Google Scholar] [CrossRef]
- Kimura, M.; Sumizawa, T.; Funatsum, G. The complete amino acid sequences of the B-chains of abrin-a and abrin-b, toxic proteins from the seeds of Abrus precatorius. Biosci. Biotechnol. Biochem. 1993, 57, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Olsnes, S.; Pihl, A. Isolation and properties of abrin: A toxic protein inhibiting protein synthesis: Evidence for different biological functions of its two constituent-peptide chains. Eur. J. Biochem. 1973, 1, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, E.J.; Barre, A.; Barbieri, L.; Valbonesi, P.; Rouge, P.; Van Leuven, F.; Stirpe, F.; Peumans, W.J. Type 1 ribosome-inactivating proteins are the most abundant proteins in iris (Iris hollandica var. Professor Baauw) bulbs: Characterization and molecular cloning. Biochem J. 1997, 3, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Girbés, T.; Citores, L.; Iglesias, R.; Ferreras, J.M.; Muñoz, R.; Rojo, M.A.; Arias, F.J.; García, J.R.; Méndez, E.; Calonge, M. Ebulin 1, a nontoxic novel type 2 ribosome-inactivating protein from Sambucus ebulus L. leaves. J. Biol. Chem. 1993, 24, 18195–18198. [Google Scholar] [CrossRef]
- Girbés, T.; Citores, L.; Miguel Ferreras, J.; Angeles Rojo, M.; Iglesias, R.; Muñoz, R.; Javier Arias, F.; Calonge, M.; Ramón García, J.; Méndez, E. Isolation and partial characterization of nigrin B, a non-toxic novel type 2 ribosome-inactivating protein from the bark of Sambucus nigra L. Plant Mol. Biol. 1993, 6, 1181–1186. [Google Scholar] [CrossRef]
- Citores, L.; Muñoz, R.; De Benito, F.M.; Iglesias, R.; Ferreras, J.M.; Girbes, T. Differential sensitivity of HELA cells to the type 2 ribosome-inactivating proteins ebulin l, nigrin b and nigrin f as compared with ricin. Cell Mol. Biol. 1996, 4, 473–476. [Google Scholar]
- Van, D.E.J.; Roy, S.; Barre, A.; Rougé, P.; Van, L.F.; Peumans, W.J. The major elderberry (Sambucus nigra) fruit protein is a lectin derived from a truncated type 2 ribosome-inactivating protein. Plant J. 1997, 12, 1251–1260. [Google Scholar]
- Chen, Y.; Vandenbussche, F.; Rougé, P.; Proost, P.; Peumans, W.J.; Van, D.E.J. A complex fruit-specific type-2 ribosome-inactivating protein from elderberry (Sambucus nigra) is correctly processed and assembled in transgenic tobacco plants. Eur. J. Biochem. 2002, 12, 2897–2906. [Google Scholar] [CrossRef]
- Van, D.E.J.; Barre, A.; Rougé, P.; Van, L.F.; Peumans, W.J. Characterization and molecular cloning of Sambucus nigra agglutinin V (nigrin b), a GalNAc-specific type-2 ribosome-inactivating protein from the bark of elderberry (Sambucus nigra). Eur. J. Biochem. 1996, 2, 505–513. [Google Scholar]
- Mach, L.; Scher, F.W.; Ammann, M.; Poetsch, J.; Bertsch, W.; März, L.; Glössl, J. Purification and partial characterization of a novel lectin from elder (Sambucus nigra L.) fruit. Biochem. J. 1991, 3, 667–671. [Google Scholar] [CrossRef]
- Citores, L.; Benito, F.M.D.; Iglesias, R.; Ferreras, J.M.; Jiménez, P.; Argüeso, P.; Farias, G.; Méndez, E.; Girbés, T. Isolation and characterization of a new non-toxic two-chain ribosome-inactivating protein from fruits of elder (Sambucus nigra L.). J. Exp. Bot. 1996, 10, 1577–1585. [Google Scholar] [CrossRef]
- Chen, Y.; Rougé, P.; Peumans, W.J.; Van, D.E.J. Mutational analysis of the carbohydrate-binding activity of the NeuAc(alpha-2,6) Gal/GalNAc-specific type 2 ribosome-inactivating protein from elderberry (Sambucus nigra) fruits. Biochem. J. 2002, 2, 587–592. [Google Scholar] [CrossRef]
- Broekaert, W.F.; Nsimba, L.M.; Peeters, B.; Peumans, W. A lectin from elder (Sambucus nigra L.) bark. Biochem J. 1984, 1, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Van, D.E.; Roy, S.; Barre, A.; Citores, L.; Mostafapous, K.; Rougé, P.; Van, L.F.; Girbés, T.; Goldstein, I.J.; Peumans, W.J. Elderberry (Sambucus nigra) bark contains two structurally different Neusac (α2,6) Gal/Galnac-binding type 2 ribosome-inactivating proteins. Eur. J. Biochem. 1997, 3, 648–655. [Google Scholar]
- Van, D.E.J.; Barre, A.; Rougé, P.; Van, L.F.; Peumans, W.J. Isolation and molecular cloning of a novel type 2 ribosome-inactivating protein with an inactive B chain from elderberry (Sambucus bigra) bark. J. Biol. Chem. 1997, 13, 8353–8360. [Google Scholar]
- Kaku, H.; Tanaka, Y.; Tazaki, K.; Minami, E.; Mizuno, H.; Shibuya, N. Sialylated oligosaccharide-specific plant lectin from Japanese elderberry (Sambucus sieboldiana) bark tissue has a homologous structure to type II ribosome-inactivating proteins, ricin and abrin: cDNA cloning and molecular modeling study. J. Biol. Chem. 1996, 3, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Van, D.E.J.; Hao, Q.; Charels, D.; Barre, A.; Rougé, P.; Van, L.F.; Peumans, W.J. Characterization and molecular cloning of two different type 2 ribosome-inactivating proteins from the monocotyledonous plant polygonatum multiflorum. Eur. J. Biochem. 2000, 9, 2746–2759. [Google Scholar]
- Park, C.H.; Lee, D.W.; Kang, T.B.; Lee, K.H.; Yoon, T.J.; Kim, J.B.; Do, M.S.; Song, S.K. cDNA cloning and sequence analysis of the lectin genes of the Korean Mistletoe (Viscum album coloratum). Mol. Cells 2001, 2, 215–220. [Google Scholar] [CrossRef]
- Stirpe, F.; Legg, R.F.; Onyon, L.J.; Ziska, P.; Franz, H. Inhibition of protein synthesis by a toxic lectin from Viscum album L. (Mistletoe). Biochem. J. 1980, 3, 843–845. [Google Scholar] [CrossRef]
- Kourmanova, A.G.; Soudarkina, O.J.; Olsnes, S.; Kozlov, J.V. Cloning and characterization of the genes encoding toxic lectins in mistletoe (Viscum album L). Eur. J. Biochem. 2004, 271, 2350–2360. [Google Scholar] [CrossRef]
- Wacker, R.; Stoeva, S.; Pfüller, K.; Pfüller, U.; Voelter, W. Complete structure determination of the A chain of mistletoe lectin III from Viscum album L. ssp. album. J. Pept. Sci. 2004, 3, 138–148. [Google Scholar] [CrossRef]
- Mishra, V.; Sharma, R.S.; Yadav, S.; Babu, C.R.; Singh, T.P. Purification and characterization of four isoforms of Himalayan mistletoe ribosome-inactivating protein from Viscum album having unique sugar affinity. Arch. Biochem. Biophys. 2004, 2, 288–301. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Toyama, J.; Akashi, R. Molecular characterization of a galactose-binding lectin from Momordica charantia seeds and its expression in tobacco cells. Asian J. Plant Sci. 2009, 8, 544–550. [Google Scholar] [CrossRef]
- Sharma, A.; Pohlentz, G.; Bobbili, K.B.; Jeyaprakash, A.A.; Chandran, T.; Mormann, M.; Swamy, M.J.; Vijayan, M. The sequence and structure of snake gourd (Trichosanthes anguina) seed lectin, a three-chain nontoxic homologue of type II RIPs. Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
- Chambery, A.; Di, M.A.; Monti, M.M.; Stirpe, F.; Parente, A. Volkensin from Adenia volkensii harms (kilyambiti plant), a type 2 ribosome-inactivating protein. Eur. J. Biochem. 2004, 271, 108–117. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421–430. [Google Scholar] [CrossRef]
- Remmert, M.; Biegert, A.; Hauser, A.; Söding, J. HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 2012, 2, 173–175. [Google Scholar] [CrossRef]
- Lappi, D.A.; Kapmeyer, W.; Beglau, J.M.; Kaplan, N.O. The disulfide bond connecting the chains of ricin. Proc. Natl. Acad. Sci. USA 1978, 3, 1096–1100. [Google Scholar] [CrossRef]
- Frankel, A.; Welsh, P.; Richardson, J.; Robertus, J.D. Role of arginine 180 and glutamic acid 177 of ricin toxin a chain in enzymatic inactivation of ribosomes. Mol. Cell. Biol. 1990, 12, 6257–6263. [Google Scholar]
- Ullah, A.; Ullah, K.; Ali, H.; Betzel, C.; Ur Rehman, S. The sequence and a three-dimensional structural analysis reveal substrate specificity among snake venom phosphodiesterases. Toxins 2019, 11, 625–649. [Google Scholar] [CrossRef]
- Yao, F.; Xu, X.Y.; Du, X.; Cao, K.; Pan, Q. Detection and characterization of a theta-replicating plasmid pLP60 from Lactobacillus plantarum PC518 by inverse PCR. Heliyon 2019, 8, e02164. [Google Scholar] [CrossRef]
- Girbés, T.; Ferreras, J.M.; Arias, F.J.; Stirpe, F. Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini-Rev. Med. Chem. 2004, 4, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Hirai, H.; Iwamasa, Y. Reconstructing phylogenetic trees from multipartite quartet systems. Algorithmica 2022, 84, 1875–1896. [Google Scholar] [CrossRef]
- Wang, C.J.; Gong, L.; Zeng, Z.L. Genome-based analysis of SFTSV causing severe encephalitis with brain lesions. J. Neuro Virol. 2020, 2, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.; Bertoni1, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo, C.T.; Bertoni, M.; Bordoli, L.; et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014, 42, W252–W258. [Google Scholar] [CrossRef] [PubMed]
- Bienert, S.; Waterhouse, A.; de Beer, T.A.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository-new features and Functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef]
- Nageswara, S.; Guntuku, G.; Yakkali, B.L. Purification, characterization and structural elucidation of serralysin-like alkaline metalloprotease from a novel source. J. Genet. Eng. Biotechnol. 2019, 17, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Liu, Q.; Qiu, Y.; Fan, X.; Han, Q.; Liu, Y.; Zhang, L.; Xue, C. Identification of a novel phospholipase D with high transphosphatidylation activity and its application in synthesis of phosphatidylserine and DHA-phosphatidylserine. J. Biotechnol. 2017, 249, 51–58. [Google Scholar] [CrossRef]
- Tolami, H.F.; Sharafshah, A.; Tolami, L.F.; Keshavarz, P. Haplotype-based association and in silico studies of OPRM1 gene variants with susceptibility to opioid dependence among addicted iranians undergoing methadone treatment. J. Mol. Neurosci. 2020, 4, 504–513. [Google Scholar] [CrossRef]
- Małajowicz, J.; Kuśmirek, S. Structure and properties of ricin—The toxic protein of Ricinus communis. Postepy Biochem. 2019, 2, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Day, P.J.; Ernst, S.R.; Frankel, A.E.; Monzingo, A.F.; Pascal, J.M.; Molina-Svinth, M.C.; Robertus, J.D. Structure and activity of an active site substitution of ricin a chain. Biochemistry 1996, 35, 11098–11103. [Google Scholar] [CrossRef] [PubMed]
- Schlossman, D.; Withers, D.; Welsh, P.; Alexander, A.; Robertus, J.; Frankel, A. Role of glutamic acid 177 of the ricin toxin A chain in enzymatic inactivation of ribosomes. Mol. Cell. Biol. 1989, 11, 5012–5021. [Google Scholar]
Family | Species | Protein | Swiss-Prot/TrEMBL Accession Number | References |
---|---|---|---|---|
Olacaceae | Malania oleifera | Malanin | / | [12,13] |
Olacaceae | Ximenia americana L. | Riproximin (Rpx) | Q2PA54 | [28,29] |
Euphorbiaceae | Ricinus communis | Ricin | P02879 | [30] |
Euphorbiaceae | Ricinus communis | Ricin Agglutinin (RCA) | P06750 | [31] |
Lauraceae | Cinnamomum camphora | Cinnamomin I | Q94BW5 | [32] |
Lauraceae | Cinnamomum camphora | Cinnamomin II | Q94BW4 | [32] |
Lauraceae | Cinnamomum camphora | Cinnamomin III | Q94BW3 | [32] |
Fabaceae | Abrus precatorius | Abrin-a | P11140 | [33] |
Fabaceae | Abrus precatorius | Abrin-b | Q06077 | [34] |
Fabaceae | Abrus precatorius | Abrin-c | P28590 | [35] |
Fabaceae | Abrus precatorius | Abrin-d | Q06076 | [35] |
Fabaceae | Abrus precatorius | APA | Q9M6E9 | [31] |
Iridaceae | Iris hollandica | IRAb | Q8W2E7 | [36] |
Iridaceae | Iris hollandica | IRAr | Q8W2E8 | [36] |
Sambucaceae | Sambucus ebulus | Ebulin l | Q9AVR2 | [37] |
Sambucaceae | Sambucus nigra | Nigrin b | P33183 | [38] |
Sambucaceae | Sambucus nigra | Nigrin 1 | Q8GT32 | [39] |
Sambucaceae | Sambucus nigra | Nigrin f | O04367 | [39] |
Sambucaceae | Sambucus nigra | SNA-IV | O04366 | [40] |
Sambucaceae | Sambucus nigra | SNA-IVl | Q945S4 | [41] |
Sambucaceae | Sambucus nigra | SNA-V1 | Q945S2 | [42] |
Sambucaceae | Sambucus nigra | SNAlm | Q8GTA5 | [43] |
Sambucaceae | Sambucus nigra | SNAld | Q8GTA6 | [44] |
Sambucaceae | Sambucus nigra | SNAIf | O22415 | [45] |
Sambucaceae | Sambucus nigra | SNAI | Q41358 | [46] |
Sambucaceae | Sambucus nigra | SNAI’ | P93543 | [47] |
Sambucaceae | Sambucus nigra | SNLRP1 | O04072 | [48] |
Sambucaceae | Sambucus nigra | SNLRP2 | O04071 | [48] |
Sambucaceae | Sambucus sieboldiana | Sieboldin a (SSA) | D25317 (GenBank) | [49] |
Liliaceae | Polygonatum multiflorum | RIPt | Q9M653 | [50] |
Liliaceae | Polygonatum multiflorum | RIPm | Q9M654 | [50] |
Viscaceae | Viscum album coloratum | VCA | Q8W243 | [51] |
Viscaceae | Viscum album | Mistletoe lectin (ML) I | P81446 | [52] |
Viscaceae | Viscum album | ML II | Q6H266 | [53] |
Viscaceae | Viscum album | ML III | P82683 | [54] |
Viscaceae | Viscum album | ML IV | Q6ITZ3 | [55] |
Cucurbitaceae | Momordica charantia L. | MCL1 | B7X8M2 | [56] |
Cucurbitaceae | Trichosanthes anguina L. | SGSL | U3KRF8 | [57] |
Passifloraceae | Adenia volkensii Harms | Volkensin | Q70US9 | [58] |
Amino Acid Residues in Chain A | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AA Position | Malanin | Ricin | Changes | Charge | Spatial Location in Malanin | AA Position | Malanin | Ricin | Changes | Charge | Spatial Location in Malanin |
4 | K | I | + ↔ NAL | + ↔ 0 | outside | 145 | D | S | − ↔ PU | − ↔ PU | outside |
10 | S | A | PU ↔ NAL | PU ↔ 0 | outside | 149 | H | Y | + ↔ NAR | + ↔ 0 | outside |
12 | T | A | PU ↔ NAL | PU ↔ 0 | outside | 150 | R | Y | + ↔ NAR | + ↔ 0 | outside |
13 | V | T | NAL↔ PU | 0↔ PU | outside | 152 | G | T | NAL ↔ PU | 0 ↔ PU | outside |
14 | S | V | PU ↔ NAL | PU ↔ 0 | outside | 153 | T | G | PU ↔ NAL | PU ↔ 0 | outside |
15 | K | Q | + ↔ PU | + ↔ PU | outside | 154 | H | G | + ↔ NAL | + ↔ 0 | outside |
19 | R | T | + ↔ PU | + ↔ PU | outside | 155 | G | T | NAL↔ PU | 0 ↔ PU | outside |
23 | Q | R | PU ↔ + | PU ↔ + | outside | 156 | D | Q | − ↔ PU | − ↔ PU | outside |
24 | S | A | PU ↔ NAL | PU ↔ 0 | outside | 157 | R | L | + ↔ NAL | + ↔ 0 | outside |
27 | D | G | − ↔ NAL | − ↔ 0 | outside | 158 | A | P | NAL↔ PU | 0 ↔ PU | outside |
30 | A | T | NAL ↔ PU | 0 ↔ PU | outside | 159 | K | T | + ↔ PU | + ↔ PU | outside |
32 | P | G | PU ↔ NAL | PU ↔ 0 | outside | 164 | L | F | NAL↔ NAR | 0 ↔ 0 | / |
33 | Q | A | PU ↔ NAL | PU ↔ 0 | outside | 169 | L | Q | NAL↔PU | 0 ↔ PU | inside |
35 | R | V | + ↔ NAL | + ↔ 0 | outside | 178 | R | Q | + ↔ PU | + ↔ PU | inside |
38 | G | E | NAL ↔ − | 0 ↔ − | outside | 182 | N | G | PU ↔ NAL | PU ↔ 0 | inside |
43 | F | P | NAR ↔ PU | 0 ↔ PU | outside | 185 | A | R | NAL↔ + | 0 ↔ + | outside |
44 | D | N | − ↔ PU | − ↔ PU | outside | 186 | R | T | + ↔ PU | + ↔ PU | outside |
45 | P | R | PU ↔ + | PU ↔ + | outside | 187 | T | R | PU ↔ + | PU ↔ + | outside |
46 | N | V | PU ↔ NAL | PU ↔ 0 | outside | 189 | S | R | PU ↔ + | PU ↔ + | outside |
47 | N | G | PU ↔ NAL | PU ↔ 0 | outside | 190 | S | Y | PU ↔ NAR | PU ↔ 0 | outside |
50 | D | I | − ↔ NAL | − ↔ 0 | outside | 191 | H | N | + ↔ PU | + ↔ PU | outside |
62 | N | H | PU ↔ + | PU ↔ + | outside | 192 | G | R | NAL ↔ + | 0 ↔ + | outside |
65 | D | L | − ↔ NAL | − ↔ 0 | outside | 193 | Y | R | NAR ↔ + | 0 ↔ + | outside |
66 | V | S | NAL ↔ PU | 0 ↔ PU | outside | 194 | G | S | NAL↔ PU | 0 ↔ PU | outside |
84 | R | G | + ↔ NAL | + ↔ 0 | outside | 195 | T | A | PU ↔ NAL | PU ↔ 0 | outside |
85 | G | N | NAL↔ PU | 0 ↔ PU | outside | 199 | N | D | PU ↔ − | PU ↔ − | outside |
86 | E | S | − ↔ PU | − ↔ PU | outside | 200 | G | P | NAL ↔ PU | 0 ↔ PU | outside |
87 | S | A | PU ↔ NAL | PU ↔ 0 | outside | 201 | A | S | NA L↔ PU | 0 ↔ PU | outside |
91 | Q | H | PU ↔ + | PU ↔ + | outside | 204 | R | T | + ↔ PU | + ↔ PU | outside |
92 | D | P | − ↔ PU | − ↔ PU | outside | 206 | V | E | NAL ↔ − | 0 ↔ − | outside |
93 | A | D | NAL↔ − | 0 ↔ − | outside | 207 | R | N | + ↔ PU | + ↔ PU | outside |
95 | H | Q | + ↔ PU | + ↔ PU | outside | 208 | R | S | + ↔ PU | + ↔ PU | outside |
96 | V | E | NAL↔ − | 0 ↔ − | outside | 210 | D | G | − ↔ NAL | − ↔ 0 | outside |
98 | F | I | NAR↔ NAL | 0 ↔ 0 | / | 218 | H | E | + ↔ − | + ↔ − | outside |
100 | N | H | PU ↔ + | PU ↔ + | outside | 220 | E | N | − ↔ PU | − ↔ PU | outside |
105 | T | V | PU ↔ NAL | PU ↔ 0 | outside | 221 | E | Q | − ↔ PU | − ↔ PU | outside |
107 | Q | R | PU ↔ + | PU ↔ + | outside | 222 | D | G | − ↔ NAL | − ↔ 0 | outside |
110 | L | F | NAL↔ NAR | 0 ↔ 0 | / | 224 | S | F | PU ↔ NAR | PU ↔ 0 | outside |
111 | T | A | PU ↔ NAL | PU ↔ 0 | outside | 225 | F | A | NAR ↔ NAL | 0 ↔ 0 | / |
117 | A | D | NAL↔ − | 0 ↔ − | outside | 233 | S | R | PU ↔ + | PU ↔ + | outside |
118 | D | R | − ↔ + | − ↔ + | outside | 235 | Y | G | NAR ↔ NAL | 0 ↔ 0 | / |
120 | L | E | NAL↔ − | 0 ↔ − | outside | 236 | V | S | NAL ↔ PU | 0 ↔ PU | outside |
121 | G | Q | NAL↔ PU | 0 ↔ PU | outside | 237 | P | K | PU ↔ + | PU ↔ + | outside |
125 | L | N | NAL↔ PU | 0 ↔ PU | outside | 241 | S | Y | PU ↔ NAR | PU ↔ 0 | inside |
126 | S | L | PU ↔ NAL | PU ↔ 0 | outside | 242 | N | D | PU ↔ − | PU ↔ − | inside |
127 | D | R | − ↔ + | − ↔ + | outside | 244 | M | S | NAL ↔ PU | 0 ↔ PU | inside |
128 | L | E | NAL↔ − | 0 ↔ − | outside | 245 | P | I | PU ↔ NAL | PU ↔ 0 | inside |
129 | D | N | − ↔ PU | − ↔ PU | outside | 246 | E | L | − ↔ NAL | − ↔ 0 | inside |
130 | R | I | + ↔ NAL | + ↔ 0 | outside | 249 | A | P | NAL↔ PU | 0 ↔ PU | inside |
131 | L | E | NAL↔ − | 0 ↔ − | outside | 250 | T | I | PU ↔ NAL | PU ↔ 0 | inside |
137 | I | N | NAL↔ PU | 0 ↔ PU | outside | 257 | I | R | NAL ↔ + | 0 ↔ + | outside |
138 | Q | G | PU ↔ NAL | PU ↔ 0 | outside | 259 | E | A | − ↔ NAL | − ↔ 0 | outside |
142 | S | E | PU ↔ − | PU ↔ − | outside | 260 | K | P | + ↔ PU | + ↔ PU | outside |
Amino Acid Residues in Chain B | |||||||||||
AA Position | Malanin | Ricin | Changes | Charge | Spatial Location in Malanin | AA Position | Malanin | Ricin | Changes | Charge | Spatial Location in Malanin |
3 | T | V | PU ↔ NAL | PU ↔ 0 | outside | 157 | N | G | PU ↔ NAL | PU ↔ 0 | outside |
5 | T | M | PU ↔ NAL | PU ↔ 0 | outside | 158 | D | Q | − ↔ PU | − ↔ PU | outside |
7 | E | P | − ↔ PU | − ↔ PU | outside | 165 | V | S | NAL↔ PU | 0 ↔ PU | outside |
9 | F | P | NAR ↔ PU | 0 ↔ PU | outside | 166 | D | S | − ↔ PU | − ↔ PU | outside |
10 | T | I | PU ↔ NAL | PU ↔ 0 | outside | 177 | P | A | PU ↔ NAL | PU ↔ 0 | inside |
25 | G | D | NAL↔ − | 0 ↔ − | outside | 179 | R | G | + ↔ NAL | + ↔ 0 | inside |
27 | F | R | NAR↔ + | 0 ↔ + | outside | 185 | E | Q | − ↔ PU | − ↔ PU | outside |
29 | N | H | PU ↔ + | PU ↔ + | outside | 189 | L | N | NAL↔ PU | 0 ↔ PU | outside |
32 | D | N | − ↔ PU | − ↔ PU | outside | 193 | Y | S | NAR ↔ PU | 0 ↔ PU | outside |
33 | P | A | PU ↔ NAL | PU ↔ 0 | outside | 194 | Y | D | NAR↔ − | 0 ↔ − | outside |
35 | I | Q | NAL ↔ PU | 0 ↔ PU | outside | 195 | E | S | − ↔ PU | − ↔ PU | outside |
43 | A | T | NAL ↔ PU | 0 ↔ PU | outside | 197 | Q | I | PU ↔ NAL | PU ↔ 0 | outside |
55 | G | N | NAL↔ PU | 0↔ PU | outside | 198 | S | R | PU ↔ + | PU ↔ + | outside |
60 | K | N | + ↔ PU | + ↔ PU | outside | 200 | D | T | − ↔ PU | − ↔ PU | outside |
73 | S | V | PU ↔ NAL | PU ↔ 0 | outside | 202 | T | V | PU ↔ NAL | PU ↔ 0 | outside |
81 | A | N | NAL ↔ PU | 0 ↔ PU | outside | 203 | I | K | NAL ↔ + | 0 ↔ + | outside |
91 | E | Q | − ↔ PU | − ↔ PU | outside | 205 | N | L | PU ↔ NAL | PU ↔ 0 | outside |
108 | S | A | PU ↔ NAL | PU ↔ 0 | outside | 206 | I | S | NAL ↔ PU | 0 ↔ PU | outside |
110 | E | T | − ↔ PU | − ↔ PU | outside | 207 | A | C | NAL ↔ PU | 0 ↔ PU | outside |
115 | D | G | − ↔ NAL | − ↔ 0 | outside | 208 | S | G | PU ↔ NAL | PU ↔ 0 | outside |
122 | V | T | NAL↔ PU | 0↔ PU | outside | 210 | S | A | PU ↔ NAL | PU ↔ 0 | outside |
124 | N | I | PU ↔ NAL | PU ↔ 0 | outside | 215 | R | G | + ↔ NAL | + ↔ 0 | outside |
126 | S | A | PU ↔ NAL | PU ↔ 0 | outside | 216 | E | Q | − ↔ PU | − ↔ PU | outside |
127 | S | V | PU ↔ NAL | PU ↔ 0 | outside | 221 | Q | K | PU ↔ + | PU ↔ + | inside |
128 | R | S | + ↔ PU | + ↔ PU | outside | 230 | H | Y | + ↔ NAR | + ↔ 0 | outside |
133 | A | P | NAL ↔ PU | 0 ↔ PU | inside | 231 | L | S | NAL↔ PU | 0 ↔ PU | outside |
136 | E | N | − ↔ PU | − ↔ PU | outside | 239 | R | A | + ↔NAL | + ↔ 0 | outside |
145 | W | V | NAR↔ NAL | 0↔ 0 | / | 252 | F | L | NAR ↔ NAL | 0 ↔ 0 | / |
147 | F | L | NAR ↔ NAL | 0 ↔ 0 | / | 255 | N | D | PU ↔ − | PU ↔ − | outside |
148 | R | Y | + ↔ NAR | + ↔ 0 | outside | 259 | Q | I | PU ↔ NAL | PU ↔ 0 | outside |
149 | D | G | − ↔ NAL | − ↔ 0 | outside | 261 | F | L | NAR ↔ NAL | 0 ↔ 0 | / |
156 | G | S | NAL ↔ PU | 0 ↔ PU | outside |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Wu, S.; Day, P.J.R. Primary Sequence and Three-Dimensional Structural Comparison between Malanin and Ricin, a Type II Ribosome-Inactivating Protein. Toxins 2024, 16, 440. https://doi.org/10.3390/toxins16100440
Yuan Y, Wu S, Day PJR. Primary Sequence and Three-Dimensional Structural Comparison between Malanin and Ricin, a Type II Ribosome-Inactivating Protein. Toxins. 2024; 16(10):440. https://doi.org/10.3390/toxins16100440
Chicago/Turabian StyleYuan, Yan, Shuxiao Wu, and Philip J. R. Day. 2024. "Primary Sequence and Three-Dimensional Structural Comparison between Malanin and Ricin, a Type II Ribosome-Inactivating Protein" Toxins 16, no. 10: 440. https://doi.org/10.3390/toxins16100440
APA StyleYuan, Y., Wu, S., & Day, P. J. R. (2024). Primary Sequence and Three-Dimensional Structural Comparison between Malanin and Ricin, a Type II Ribosome-Inactivating Protein. Toxins, 16(10), 440. https://doi.org/10.3390/toxins16100440