Botulinum Toxin Treatment of Psoriasis—A Comprehensive Review
Abstract
:1. Introduction
2. Study Design
3. Results
4. Animal Studies
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michalek, I.; Loring, B.; John, S. A systematic review of worldwide epidemiology of psoriasis. J. Eur. Acad. Dermatol. Venereol. 2016, 31, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Paller, A.S.; Singh, R.; Cloutier, M.; Gauthier-Loiselle, M.; Emond, B.; Guerin, A.; Ganguli, A. Prevalence of Psoriasis in Children and Adolescents in the United States: A Claims-Based Analysis. J. Drugs Dermatol. JDD 2018, 17, 187–194. [Google Scholar] [PubMed]
- Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA 2020, 323, 1945–1960. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, H.; Lin, W.; Lu, L.; Su, J.; Chen, X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct. Target. Ther. 2023, 8, 437. [Google Scholar]
- Lee, H.-J.; Kim, M. Challenges and Future Trends in the Treatment of Psoriasis. Int. J. Mol. Sci. 2023, 24, 13313. [Google Scholar] [CrossRef]
- Krueger, G.G.; Feldman, S.R.; Camisa, C.; Duvic, M.; Elder, J.T.; Gottlieb, A.B.; Koo, J.; Krueger, J.G.; Lebwohl, M.; Lowe, N.; et al. Two considerations for patients with psoriasis and their clinicians: What defines mild, moderate, and severe psoriasis? What constitutes a clinically significant improvement when treating psoriasis? J. Am. Acad. Dermatol. 2000, 43, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Saalbach, A.; Kunz, M. Impact of Chronic Inflammation in Psoriasis on Bone Metabolism. Front. Immunol. 2022, 13, 925503. [Google Scholar]
- Sieminska, I.; Pieniawska, M.; Grzywa, T.M. The Immunology of Psoriasis—Current Concepts in Pathogenesis. Clin. Rev. Allergy Immunol. 2024, 66, 164–191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jankovic, J. Botulinum toxin: State of the art. Mov. Disord. 2017, 32, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.A.; Schütz, S.G.; Simpson, D.M. Botulinum Toxin for Neuropathic Pain and Spasticity: An Overview. Pain Manag. 2014, 4, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Borodic, G.E.; Acquadro, M.; Johnson, E.A. Botulinum toxin therapy for pain and inflammatory disorders: Mechanisms and therapeutic effects. Expert Opin. Investig. Drugs 2001, 10, 1531–1544. [Google Scholar] [PubMed]
- Grando, S.; Zachary, C. The non-neuronal and nonmuscular effects of botulinum toxin: An opportunity for a deadly molecule to treat disease in the skin and beyond. Br. J. Dermatol. 2018, 178, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.P.; Shan, X.F.; Qiu, J.X.; Wang, L.N.; Xiang, R.L.; Cai, Z.G. Botulinum toxin type A inhibits M1 macrophage polarization by deactivation of JAK2/STAT1 and IκB/NFκB pathway and contributes to scar alleviation in aseptic skin wound healing. Biomed. Pharmacother. 2024, 174, 116468. [Google Scholar]
- Zanchi, M.; Favot, F.; Bizzarini, M.; Piai, M.; Donini, M.; Sedona, P. Botulinum toxin type-A for the treatment of inverse psoriasis. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Saber, M.; Brassard, D.; Benohanian, A. Inverse Psoriasis and Hyperhidrosis of the Axillae Responding to Botulinum Toxin Type A. Arch. Dermatol. 2011, 147, 629–630. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, E.; Ward, N.L. Efficacy of botulinum neurotoxin type A for treating recalcitrant plaque psoriasis. J. Drugs Dermatol. 2014, 13, 1407–1408. [Google Scholar] [PubMed]
- Todberg, T.; Zachariae, C.; Bregnhøj, A.; Hedelund, L.; Bonefeld, K.; Nielsen, K.; Iversen, L.; Skov, L.; Todberg, T.; Zachariae, C.; et al. The effect of botulinum neurotoxin A in patients with plaque psoriasis—An exploratory trial. J. Eur. Acad. Dermatol. Venereol. 2017, 32, E81–E82. [Google Scholar] [CrossRef] [PubMed]
- Aschenbeck, K.A.; Hordinsky, M.K.; Kennedy, W.R.; Wendelschafer-Crabb, G.; Ericson, M.E.; Kavand, S.; Bertin, A.; Dykstra, D.D.; Panoutsopoulou, I.G. Neuromodulatory treatment of recalcitrant plaque psoriasis with onabotulinumtoxinA. J. Am. Acad. Dermatol. 2018, 79, 1156–1159. [Google Scholar] [CrossRef] [PubMed]
- González, C.; Franco, M.; Londoño, A.; Valenzuela, F. Breaking paradigms in the treatment of psoriasis: Use of botulinum toxin for the treatment of plaque psoriasis. Dermatol. Ther. 2020, 33, e14319. [Google Scholar] [CrossRef] [PubMed]
- Gharib, K.; Mostafa, A.; Elsayed, A. Evaluation of Botulinum Toxin Type A Injection in the Treatment of Localized Chronic Pruritus. J. Clin. Aesthet. Dermatol. 2020, 13, 12–17. [Google Scholar] [PubMed] [PubMed Central]
- Khattab, F.M.; Samir, M.A. Botulinum toxin type-A versus 5-fluorouracil in the treatment of plaque psoriasis: Comparative study. J. Cosmet. Dermatol. 2021, 20, 3128–3132. [Google Scholar] [CrossRef] [PubMed]
- Botsali, A.; Erbil, H. Management of nail psoriasis with a single injection of abobotulinum toxin. J. Cosmet. Dermatol. 2020, 20, 1418–1420. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.N.; Beiu, C.; Iliescu, M.G.; Mihai, M.M.; Popa, L.G.; Stănescu, A.M.A.; Berteanu, M. Botulinum Toxin Use for Modulating Neuroimmune Cutaneous Activity in Psoriasis. Medicina 2022, 58, 813. [Google Scholar] [CrossRef] [PubMed]
- Juntongjin, P.; Srisinlapakig, S.; Nitayavardhana, S. Botulinum toxin injection shows promise in nail psoriasis: A comparative randomized controlled trial. JAAD Int. 2024, 16, 105–111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ward, N.L.; Kavlick, K.D.; Diaconu, D.; Dawes, S.M.; Michaels, K.A.; Gilbert, E. Botulinum Neurotoxin A Decreases Infiltrating Cutaneous Lymphocytes and Improves Acanthosis in the KC-Tie2 Mouse Model. J. Investig. Dermatol. 2012, 132, 1927–1930. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amalia, S.N.; Uchiyama, A.; Baral, H.; Inoue, Y.; Yamazaki, S.; Fujiwara, C.; Sekiguchi, A.; Yokoyama, Y.; Ogino, S.; Torii, R.; et al. Suppression of neuropeptide by botulinum toxin improves imiquimod-induced psoriasis-like dermatitis via the regulation of neuroimmune system. J. Dermatol. Sci. 2020, 101, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Q.; Chen, X.-Y.; Cui, Y.-Z.; Yan, B.-X.; Zhou, Y.; Wang, Z.-Y.; Xu, F.; Huang, Y.-Z.; Zheng, Y.-X.; Man, X.-Y. Cutaneous nerve fibers participate in the progression of psoriasis by linking epidermal keratinocytes and immunocytes. Cell. Mol. Life Sci. 2022, 79, 267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.; Sun, P.-Y.; Jiang, Y.; Liu, Y.; Liu, Z.; Han, S.-L.; Wang, B.-S.; Huang, Y.-X.; Ren, A.-R.; Lu, J.-F.; et al. Sensory ASIC3 channel exacerbates psoriatic inflammation via a neurogenic pathway in female mice. Nat. Commun. 2024, 15, 5288. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wride, A.M.; Chen, G.F.; Spaulding, S.L.; Tkachenko, E.; Cohen, J.M. Biologics for Psoriasis. Dermatol. Clin. 2024, 42, 339–355. [Google Scholar] [CrossRef] [PubMed]
- Riol-Blanco, L.; Ordovas-Montanes, J.; Perro, M.; Naval, E.; Thiriot, A.; Alvarez, D.; Paust, S.; Wood, J.N.; Von Andrian, U.H. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 2014, 510, 157–161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, X.; Gao, C.; Wang, L.; Chu, X.; Shi, Q.; Yang, H.; Li, T. Botulinum toxin type A ameliorates adjuvant-arthritis pain by inhibiting microglial activation-mediated neuroinflammation and intracellular molecular signaling. Toxicon 2020, 178, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Khanijou, S.; Rubino, J.; Aoki, K.R. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 2004, 107, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Izumi, M.; Ikeuchi, M.; Ji, Q.; Tani, T. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J. Biomed. Sci. 2012, 19, 77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hou, Y.-P.; Zhang, Y.-P.; Song, Y.-F.; Zhu, C.-M.; Wang, Y.-C.; Xie, G.-L. Botulinum toxin type A inhibits rat pyloric myoelectrical activity and substance P release in vivo. Can. J. Physiol. Pharmacol. 2007, 85, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.-F.; Xie, J.-F.; Ren, Y.-X.; Wang, C.; Kong, X.-P.; Zong, X.-J.; Fan, L.-L.; Hou, Y.-P. The Inhibitory Effect of Botulinum Toxin Type A on Rat Pyloric Smooth Muscle Contractile Response to Substance P In Vitro. Toxins 2015, 7, 4143–4156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dressler, D.; Saberi, F.A. Botulinum Toxin: Mechanisms of Action. Eur. Neurol. 2005, 53, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Lacković, Z.; Filipović, B.; Matak, I.; Helyes, Z. Activity of botulinum toxin type A in cranial dura: Implications for treatment of migraine and other headaches. Br. J. Pharmacol. 2015, 173, 279–291. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Tai, N.Z.; Fan, Z.H. Effect of botulinum toxin type A on the expression of substance P, calcitonin gene-related peptide, transforming growth factor beta-1 and alpha smooth muscle actin A in wound healing in rats. Zhonghua Zheng Xing Wai Ke Za Zhi 2009, 25, 50–53. (In Chinese) [Google Scholar] [PubMed]
- Huang, P.P.; Khan, I.; Suhail, M.S.A.; Malkmus, S.; Yaksh, T.L. Spinal Botulinum Neurotoxin B: Effects on Afferent Transmitter Release and Nociceptive Processing. PLoS ONE 2011, 6, e19126. [Google Scholar] [CrossRef]
- Cady, R.; Turner, I.; Dexter, K.; Beach, M.E.; Cady, R.; Durham, P. An Exploratory Study of Salivary Calcitonin Gene-Related Peptide Levels Relative to Acute Interventions and Preventative Treatment with OnabotulinumtoxinA in Chronic Migraine. Headache: J. Head Face Pain 2013, 54, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Grumelli, C.; Verderio, C.; Pozzi, D.; Rossetto, O.; Montecucco, C.; Matteoli, M. Internalization and Mechanism of Action of Clostridial Toxins in Neurons. NeuroToxicology 2005, 26, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, O. The binding of botulinum neurotoxins to different peripheral neurons. Toxicon 2018, 147, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Matak, I.; Bölcskei, K.; Bach-Rojecky, L.; Helyes, Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins 2019, 11, 459. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Purkiss, J.; Welch, M.; Doward, S.; Foster, K. Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: Involvement of two distinct mechanisms. Biochem. Pharmacol. 2000, 59, 1403–1406. [Google Scholar] [CrossRef] [PubMed]
- James, J.; Otto, T.; Gao, J.; Porter, M.L. Oral Psoriasis Therapies. Dermatol. Clin. 2024, 42, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Martina, E.; Diotallevi, F.; Radi, G.; Campanati, A.; Offidani, A. Therapeutic Use of Botulinum Neurotoxins in Dermatology: Systematic Review. Toxins 2021, 13, 120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Author and Date | Study Type | #pt | Type of Psoriasis | Type of Toxin | Dose | Results |
---|---|---|---|---|---|---|
Zanchi et al., 2008 [14] | Pro, OL | 15 | Inverse psoriasis | onaA | Total dose: 50–100 units, divided into 20–40 sites | Extension of erythema, intensity and infiltration showed improvement in 13 out of 15 subjects (87%). All patients reported symptom relief. |
Saber et al., 2011 [15] | Case report | 1 | Inverse psoriasis | onaA | Total dose: 100 units | The patient experienced significant improvement of axillary psoriasis within one week of receiving the injections. |
Gilbert & Ward, 2014 [16] | Case report | 1 | Plaque psoriasis | aboA | Total dose of 30 units divided in 8 sites. | Improvement of plaque severity within 3 weeks—complete remission after 7 months. Recurrence in 8th month. |
Todberg et al., 2017 [17] | DB, PC | 8 | Plaque psoriasis | aboA | Total dose: 36 units, divided in 9 sites | Failed to improve the appearance of plaques. |
Aschenbeck et al., 2018 [18] | Pro, OL | 8 | Plaque psoriasis | onaA | Total dose: 28–95 units | Injections were correlated with significantly reduced PASI and PGA scores (p < 0.01) for both scales. |
González et al., 2020 [19] | Pro, OL | 8 | Plaque psoriasis | aboA | Total dose of up to 50 units, 5 units cm3 | Significant improvement in TCS score in all subjects (p < 0.05) 4 weeks post-treatment. |
Gharib et al., 2020 [20] | Pro, OL | 4 | Inverse psoriasis | aboA | Total dose: 50–100 units | Statistically significant reductions in both the EASI score and PASI score after treatment |
Khattab & Samir, 2021 [21] | Refinex versus 5-fluouracil | 35 | Plaque psoriasis | Refinex | Total dose: 50–100 units | The response rate was 85% for Refinex and 90% for 5-FU (no significant difference). Side effect rate was similar. The recurrence rate was 15% for both agents. |
Botsali & Erbil, 2020 [22] | Pro, OL | 2 | Nail psoriasis | aboA | Total dose: 15 units, divided in two sites | In both patients, VAS assessment of nail lesions improved by more than 4 grades. |
Popescu et al., 2022 [23] | Case report | 1 | Plaque psoriasis | abo-A, IM for spasticity | Total dose: 1000 units | Marked improvement after a single trial in a patient who had failed responding to steroids and UV-B. |
Juntongjin et al., 2024 [24] | Botulinum toxin versus triamcinolone acetonide and vitamin D | 16 | Nail psoriasis | aboA | Total dose: 30 units divided in 4 sites | One intralesional dose of BoNT-A delivered outcomes comparable to multiple TA injection sessions showing sustained effectiveness, especially in lesions affecting the nail bed. |
Author and Date | Animal Model | # | Toxin | Dose | Assessed | Results |
---|---|---|---|---|---|---|
Ward et al., 2012 [25] | KC-Tie2 Mouse | 11 | aboA | 9 units/kg intradermal injection, compared with saline | Histologic analysis and immunostaining for CD11c, CD4, F4/80, CD8 | aboA injections led to significant reductions in psoriasiform skin inflammation and epidermal hyperplasia, as well as decreases in infiltrating CD4+ T cells and CD11c+ DCs, occurring simultaneously with improvements in acanthosis. |
Amalia et al., 2021 [26] | Mice, imiquimod (IMQ) induced Psoriasis-like model | 10 | rimaB | 2 units injected intradermally in 4 sites | PASI, histological examination by immunostaining, real-time RT-PCR | Marked decrease in PSI score, reduction of CD4, T cells, CD11c+ dendritic cells and IL-17A/F production in the lesion. Significant decrease in PGP9.5 and nerve fibers and neuropeptides. |
Chen et al., 2022 [27] | Pre-treated IMQ model mice and Spinal hemi-sectioned mice | NS | onaA | Total: 1 unit (0.25)/site, subcutaneously | Immunofluorescence, histochemistry, western blotting, immunoelectron microscopy, qRT-PCR, ELISA, RNA sequence reanalysis | Skin injected by onaA showed less scaling and reduced erythema and thickness. PASI was significantly lower in onaA-injected skin than controls. Skin injected with onaA showed reduction of CGRP-positive cells and reduced secretion of CGRP in cell culture. |
Huang et al., 2024 [28] | ASIC3 mice | NS | BoNT-A | 30 units/kg | Immunofluorescence, histologic analysis of skin inflammation, CGRP release assay, flow cytometry, skin pH assessment | Reduced keratinocyte proliferation and epidermal thickening, decreased the elevated level of cytokines. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaseminejad-Bandpey, A.; Etemadmoghadam, S.; Jabbari, B. Botulinum Toxin Treatment of Psoriasis—A Comprehensive Review. Toxins 2024, 16, 449. https://doi.org/10.3390/toxins16100449
Ghaseminejad-Bandpey A, Etemadmoghadam S, Jabbari B. Botulinum Toxin Treatment of Psoriasis—A Comprehensive Review. Toxins. 2024; 16(10):449. https://doi.org/10.3390/toxins16100449
Chicago/Turabian StyleGhaseminejad-Bandpey, Ali, Shahroo Etemadmoghadam, and Bahman Jabbari. 2024. "Botulinum Toxin Treatment of Psoriasis—A Comprehensive Review" Toxins 16, no. 10: 449. https://doi.org/10.3390/toxins16100449
APA StyleGhaseminejad-Bandpey, A., Etemadmoghadam, S., & Jabbari, B. (2024). Botulinum Toxin Treatment of Psoriasis—A Comprehensive Review. Toxins, 16(10), 449. https://doi.org/10.3390/toxins16100449