Ochratoxin A in Poultry Supply Chain: Overview of Feed Occurrence, Carry-Over, and Pathognomonic Lesions in Target Organs to Promote Food Safety
Abstract
:1. Introduction
2. Human Hazard
3. OTA in Food and Feed
3.1. Occurrence of OTA in Feed and Transmission to Avian Species
3.2. Occurrence of OTA in Meat and Edible Offal in Avian Species
3.3. Occurrence of OTA in Eggs
4. OTA-Induced Lesions in Poultry Kidney and Liver
4.1. Gross Lesions
4.2. Histopathological Lesions in Kidney
4.3. Histopathological Lesions Caused by OTA in Livers
5. Prevention and Decontamination Methods from OTA in Feed
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Chen, J.; Zhu, Q.; Wan, J. Ochratoxin A in Dry-Cured Ham: OTA-Producing Fungi, Prevalence, Detection Methods, and Biocontrol Strategies—A Review. Toxins 2022, 14, 693. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hua, X.; Shi, J.; Jing, N.; Ji, T.; Lv, B.; Liu, L.; Chen, Y. Ochratoxin A: Occurrence and Recent Advances in Detoxification. Toxicon 2022, 210, 11–18. [Google Scholar] [CrossRef]
- Imaoka, T.; Yang, J.; Wang, L.; McDonald, M.G.; Afsharinejad, Z.; Bammler, T.K.; Van Ness, K.; Yeung, C.K.; Rettie, A.E.; Himmelfarb, J.; et al. Microphysiological System Modeling of Ochratoxin A-Associated Nephrotoxicity. Toxicology 2020, 444, 152582. [Google Scholar] [CrossRef]
- Stoev, S.D. New Evidences about the Carcinogenic Effects of Ochratoxin A and Possible Prevention by Target Feed Additives. Toxins 2022, 14, 380. [Google Scholar] [CrossRef]
- Stoev, S.D. Studies on Teratogenic Effect of Ochratoxin A given via Mouldy Diet in Mice in Various Sensitive Periods of the Pregnancy and the Putative Protection of Phenylalanine. Toxicon 2022, 210, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Gan, F.; Zhou, Y.; Hou, L.; Qian, G.; Chen, X.; Huang, K. Ochratoxin A Induces Nephrotoxicity and Immunotoxicity through Different MAPK Signaling Pathways in PK15 Cells and Porcine Primary Splenocytes. Chemosphere 2017, 182, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Khoi, C.-S.; Chen, J.-H.; Lin, T.-Y.; Chiang, C.-K.; Hung, K.-Y. Ochratoxin A-Induced Nephrotoxicity: Up-to-Date Evidence. Int. J. Mol. Sci. 2021, 22, 11237. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Naturally; IARC: Lyon, France, 1993; pp. 489–521. [Google Scholar]
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. OJ L 119/103, 22.07.2024. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023R0915 (accessed on 7 November 2024).
- Bozzo, G.; Ceci, E.; Bonerba, E.; Desantis, S.; Tantillo, G. Ochratoxin A in Laying Hens: High-Performance Liquid Chromatography Detection and Cytological and Histological Analysis of Target Tissues. J. Appl. Poult. Res. 2008, 17, 151–156. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Ruprich, J. Producers and Important Dietary Sources of Ochratoxin A and Citrinin. Toxins 2013, 5, 1574–1586. [Google Scholar] [CrossRef]
- Schrenk, D.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; Nebbia, C.S.; Nielsen, E.; et al. Risk Assessment of Ochratoxin A in Food. EFSA J. 2020, 18, e06113. [Google Scholar] [CrossRef]
- Petzinger, E.; Ziegler, K. Ochratoxin A from a Toxicological Perspective. J. Vet. Pharmacol. Ther. 2000, 23, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Bozzo, G.; Pugliese, N.; Samarelli, R.; Schiavone, A.; Dimuccio, M.M.; Circella, E.; Bonerba, E.; Ceci, E.; Camarda, A. Ochratoxin A and Aflatoxin B1 Detection in Laying Hens for Omega 3-Enriched Eggs Production. Agriculture 2023, 13, 138. [Google Scholar] [CrossRef]
- LNalle, C.L.; Angi, A.H.; Supit, M.A.J.; Ambarwati, S. Aflatoxin and Ochratoxin A Contamination in Corn Grains and Sago (Putak Meal) from Different Sources for Poultry in West Timor, Indonesia. Int. J. Poult. Sci. 2019, 18, 353–360. [Google Scholar] [CrossRef]
- Akinmusire, O.O.; El-Yuguda, A.D.; Musa, J.A.; Oyedele, O.A.; Sulyok, M.; Somorin, Y.M.; Ezekiel, C.N.; Krska, R. Mycotoxins in Poultry Feed and Feed Ingredients in Nigeria. Mycotoxin Res. 2019, 35, 149–155. [Google Scholar] [CrossRef]
- Zhai, S.; Zhu, Y.; Feng, P.; Li, M.; Wang, W.; Yang, L.; Yang, Y. Ochratoxin A: Its Impact on Poultry Gut Health and Microbiota, an Overview. Poult. Sci. 2021, 100, 101037. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Balasubramanian, B.; Park, S.; Jha, R.; Andretta, I.; Bakare, A.G.; Kim, I.H. Ochratoxin A: Carryover from Animal Feed into Livestock and the Mitigation Strategies. Anim. Nutr. 2021, 7, 56–63. [Google Scholar] [CrossRef]
- Mujahid, H. Protective Effect of Yeast Sludge and Whey Powder against Ochratoxicosis in Broiler Chicks. Pak. Vet. J. 2019, 39, 588–592. [Google Scholar] [CrossRef]
- Vlachou, M.; Pexara, A.; Solomakos, N.; Govaris, A. Ochratoxin A in Slaughtered Pigs and Pork Products. Toxins 2022, 14, 67. [Google Scholar] [CrossRef]
- Vila-Donat, P.; Marín, S.; Sanchis, V.; Ramos, A.J. A Review of the Mycotoxin Adsorbing Agents, with an Emphasis on Their Multi-Binding Capacity, for Animal Feed Decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Malir, J.; Toman, J. Ochratoxin A: 50 Years of Research. Toxins 2016, 8, 191. [Google Scholar] [CrossRef]
- Bozzo, G.; Ceci, E.; Bonerba, E.; Di Pinto, A.; Celano, G.V.; Tantillo, G. Occurrences of Ochratoxin A in Slaughtered Wild Boar (Sus Scrofa). Ital. J. Food Saf. 2013, 2, 39. [Google Scholar] [CrossRef]
- Commission Recommendation (EU) 2016/1319 of 29 July 2016 amending Recommendation 2006/576/EC as regards deoxynivalenol, zearalenone and ochratoxin A in pet food. O JL 208/58, 2.8.2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016H1319 (accessed on 20 September 2024).
- Alexander, J.; Autrup, H.; Bard, D.; Benford, D.; Carere, A.; Guido, L.C.; Cravedi, J.P.; Di Domenico, A.; Fanelli, R.; Fink-Gremmels, J.; et al. Opinion of the Scientific Panel on Contaminants in the Food Chain [CONTAM] Related to Ochratoxin A in Food. EFSA J. 2006, 4, 365. [Google Scholar] [CrossRef]
- Gong, L.; Zhu, H.; Li, T.; Ming, G.; Duan, X.; Wang, J.; Jiang, Y. Molecular Signatures of Cytotoxic Effects in Human Embryonic Kidney 293 cells Treated with Single and Mixture of Ochratoxin A and Citrinin. Food Chem. Toxicol. 2019, 123, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Özcan, Z.; Gül, G.; Yaman, I. Ochratoxin A Activates Opposing C-MET/PI3K/Akt and MAPK/ERK 1-2 Pathways in Human Proximal Tubule HK-2 Cells. Arch. Toxicol. 2015, 89, 1313–1327. [Google Scholar] [CrossRef] [PubMed]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Kamp, H.G.; Eisenbrand, G.; Janzowski, C.; Kiossev, J.; Latendresse, J.R.; Schlatter, J.; Turesky, R.J. Ochratoxin A Induces Oxidative DNA Damage in Liver and Kidney after Oral Dosing to Rats. Mol. Nutr. Food Res. 2005, 49, 1160–1167. [Google Scholar] [CrossRef]
- Petrik, J.; Žanić-Grubišić, T.; Barišić, K.; Pepeljnjak, S.; Radić, B.; Ferenčić, Ž.; Čepelak, I. Apoptosis and Oxidative Stress Induced by Ochratoxin A in Rat Kidney. Arch. Toxicol. 2003, 77, 685–693. [Google Scholar] [CrossRef]
- Pyo, M.C.; Choi, I.-G.; Lee, K.-W. Transcriptome Analysis Reveals the AhR, Smad2/3, and HIF-1α Pathways as the Mechanism of Ochratoxin A Toxicity in Kidney Cells. Toxins 2021, 13, 190. [Google Scholar] [CrossRef]
- Erikstein, B.S.; Hagland, H.R.; Nikolaisen, J.; Kulawiec, M.; Singh, K.K.; Gjertsen, B.T.; Tronstad, K.J. Cellular Stress Induced by Resazurin Leads to Autophagy and Cell Death via Production of Reactive Oxygen Species and Mitochondrial Impairment. J. Cell Biochem. 2010, 111, 574–584. [Google Scholar] [CrossRef]
- García-Pérez, E.; Ryu, D.; Kim, H.-Y.; Kim, H.D.; Lee, H.J. Human Proximal Tubule Epithelial Cells (HK-2) as a Sensitive In Vitro System for Ochratoxin A Induced Oxidative Stress. Toxins 2021, 13, 787. [Google Scholar] [CrossRef]
- Lee, H.J.; Pyo, M.C.; Shin, H.S.; Ryu, D.; Lee, K.-W. Renal Toxicity through AhR, PXR, and Nrf2 Signaling Pathway Activation of Ochratoxin A-Induced Oxidative Stress in Kidney Cells. Food Chem. Toxicol. 2018, 122, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Arbillaga, L.; Azqueta, A.; Ezpeleta, O.; Cerain, A.L.d. Oxidative DNA Damage Induced by Ochratoxin A in the HK-2 Human Kidney Cell Line: Evidence of the Relationship with Cytotoxicity. Mutagenesis 2006, 22, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Tozlovanu, M.; Canadas, D.; Pfohl-Leszkowicz, A.; Frenette, C.; Paugh, R.J.; Manderville, R.A. Glutathione Conjugates of Ochratoxin a as Biomarkers of Exposure / Glutationski Konjugati Okratoksina A Kao Biomarkeri Izloženosti. Arh. Hig. Rada. Toksikol. 2012, 63, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Girgis, S.M.; Hassanane, M.M.; Kassem, S.M.; Nada, S.A. Protective Role of Grape Seed Extract on Genotoxicity, Hepatic, and Renal Dysfunction Induced by Ochratoxin A in Rats. Int. J. Pharm. Biol. Sci. Arch. 2023, 5, 035–042. [Google Scholar] [CrossRef]
- Ozawa, S.; Ojiro, R.; Tang, Q.; Zou, X.; Jin, M.; Yoshida, T.; Shibutani, M. In Vitro and in Vivo Induction of Ochratoxin A Exposure-Related Micronucleus Formation in Rat Proximal Tubular Epithelial Cells and Expression Profiling of Chromosomal Instability-Related Genes. Food Chem. Toxicol. 2024, 185, 114486. [Google Scholar] [CrossRef]
- Thomadaki, H.; Scorilas, A. BCL2 Family of Apoptosis-Related Genes: Functions and Clinical Implications in Cancer. Crit Rev Clin. Lab. Sci. 2006, 43, 1–67. [Google Scholar] [CrossRef]
- Wu, X. BAX and BH3-Domain-Only Proteins in P53-Mediated Apoptosis. Front. Biosci. 2002, 7, A772. [Google Scholar] [CrossRef]
- Shimizu, S.; Kanaseki, T.; Mizushima, N.; Mizuta, T.; Arakawa-Kobayashi, S.; Thompson, C.B.; Tsujimoto, Y. Role of Bcl-2 Family Proteins in a Non-Apoptotic Programmed Cell Death Dependent on Autophagy Genes. Nat. Cell Biol. 2004, 6, 1221–1228. [Google Scholar] [CrossRef]
- Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F.T.; Zhou, T.T.; Liu, B.; Bao, J.K. Programmed Cell Death Pathways in Cancer: A Review of Apoptosis, Autophagy and Programmed Necrosis. Cell Prolif. 2012, 45, 487–498. [Google Scholar] [CrossRef]
- Song, Y.; Liu, W.; Zhao, Y.; Zang, J.; Gao, H. Ochratoxin A Induces Human Kidney Tubular Epithelial Cell Apoptosis through Regulating Lipid Raft/PTEN/AKT Signaling Pathway. Environ. Toxicol. 2021, 36, 1880–1885. [Google Scholar] [CrossRef]
- Khoi, C.S.; Lin, Y.W.; Chen, J.H.; Liu, B.H.; Lin, T.Y.; Hung, K.Y.; Chiang, C.K. Selective Activation of Endoplasmic Reticulum Stress by Reactive-Oxygen-Species-Mediated Ochratoxin A-Induced Apoptosis in Tubular Epithelial Cells. Int. J. Mol. Sci. 2021, 22, 10951. [Google Scholar] [CrossRef] [PubMed]
- Darbuka, E.; Gürkaşlar, C.; Yaman, I. Ochratoxin A Induces ERK1/2 Phosphorylation-Dependent Apoptosis through NF-ΚB/ERK Axis in Human Proximal Tubule HK-2 Cell Line. Toxicon 2021, 199, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Chou, X.; Ding, F.; Zhang, X.; Ding, X.; Gao, H.; Wu, Q. Sirtuin-1 Ameliorates Cadmium-Induced Endoplasmic Reticulum Stress and Pyroptosis through XBP-1s Deacetylation in Human Renal Tubular Epithelial Cells. Arch. Toxicol. 2019, 93, 965–986. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Feng, Y.; Xiong, G.; Whyte, S.; Duan, J.; Yang, Y.; Wang, K.; Yang, S.; Geng, Y.; Ou, Y.; et al. Caspase-11, a Specific Sensor for Intracellular Lipopolysaccharide Recognition, Mediates the Non-Canonical Inflammatory Pathway of Pyroptosis. Cell Biosci. 2019, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.; Erkes, D.A.; Nardone, A.; Aplin, A.E.; Fernandes-Alnemri, T.; Alnemri, E.S. Gasdermin Pores Permeabilize Mitochondria to Augment Caspase-3 Activation during Apoptosis and Inflammasome Activation. Nat. Commun. 2019, 10, 1689. [Google Scholar] [CrossRef]
- Ding, J.; Wang, K.; Liu, W.; She, Y.; Sun, Q.; Shi, J.; Sun, H.; Wang, D.-C.; Shao, F. Pore-Forming Activity and Structural Autoinhibition of the Gasdermin Family. Nature 2016, 535, 111–116. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature 2015, 526, 660–665. [Google Scholar] [CrossRef]
- Mao, X.; Li, H.; Ge, L.; Liu, S.; Hou, L.; Yue, D.; Du, H.; Pan, C.; Gan, F.; Liu, Y.; et al. Selenomethionine Alleviated Ochratoxin A Induced Pyroptosis and Renal Fibrotic Factors Expressions in MDCK Cells. J. Biochem. Mol. Toxicol. 2022, 36, e22933. [Google Scholar] [CrossRef]
- Li, H.; Mao, X.; Liu, K.; Sun, J.; Li, B.; Malyar, R.M.; Liu, D.; Pan, C.; Gan, F.; Liu, Y.; et al. Ochratoxin A Induces Nephrotoxicity in Vitro and in Vivo via Pyroptosis. Arch. Toxicol. 2021, 95, 1489–1502. [Google Scholar] [CrossRef]
- Ozawa, S.; Ojiro, R.; Tang, Q.; Zou, X.; Woo, G.; Yoshida, T.; Shibutani, M. Identification of Genes Showing Altered DNA Methylation and Gene Expression in the Renal Proximal Tubular Cells of Rats Treated with Ochratoxin A for 13 Weeks. J. Appl. Toxicol. 2023, 43, 1533–1548. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, L.; Dai, Y.; Li, H.; Huang, K.; Luo, Y.; Xu, W. An in Vitro Attempt at Precision Toxicology Reveals the Involvement of DNA Methylation Alteration in Ochratoxin A-Induced G0/G1 Phase Arrest. Epigenetics 2020, 15, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, Toxicology, and Exposure Assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Pavlovi, N.M. Balkan Endemic Nephropathy--Current Status and Future Perspectives. Clin. Kidney. J. 2013, 6, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Yordanova, P.; Wilfried, K.; Tsolova, S.; Dimitrov, P. Ochratoxin A and Β2-Microglobulin in BEN Patients and Controls. Toxins 2010, 2, 780–792. [Google Scholar] [CrossRef]
- Hmaissia Khlifa, K.; Ghali, R.; Mazigh, C.; Aouni, Z.; Machgoul, S.; Hedhili, A. Ochratoxin A Levels in Human Serum and Foods from Nephropathy Patients in Tunisia: Where Are You Now? Exp. Toxicol. Pathol. 2012, 64, 509–512. [Google Scholar] [CrossRef]
- Abid, S.; Hassen, W.; Achour, A.; Skhiri, H.; Maaroufi, K.; Ellouz, F.; Creppy, E.; Bacha, H. Ochratoxin A and Human Chronic Nephropathy in Tunisia: Is the Situation Endemic? Hum. Exp. Toxicol. 2003, 22, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Sherazi, S.T.H.; Shar, Z.H.; Sumbal, G.A.; Tan, E.T.; Bhanger, M.I.; Kara, H.; Nizamani, S.M. Occurrence of Ochratoxin A in Poultry Feeds and Feed Ingredients from Pakistan. Mycotoxin Res. 2015, 31, 1–7. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Chen, P.; Zeng, R.; Liang, Y. Ochratoxin A and Zearalenone in Poultry Feed Samples from South China. J. Food Saf. 2022, 42, e12944. [Google Scholar] [CrossRef]
- Fareed, G.; Khan, S.; Anjum, M.; Ahmed, N. Determination of Aflatoxin and Ochratoxin in Poultry Feed Ingredients and Finished Feed in Humid Semi-Tropical Environment. J. Adv. Vet. Anim. Res. 2014, 1, 201. [Google Scholar] [CrossRef]
- Pozzo, L.; Cavallarin, L.; Antoniazzi, S.; Guerre, P.; Biasibetti, E.; Capucchio, M.T.; Schiavone, A. Feeding a Diet Contaminated with Ochratoxin A for Broiler Chickens at the Maximum Level Recommended by the EU for Poultry Feeds (0.1 Mg/Kg). 2. Effects on Meat Quality, Oxidative Stress, Residues and Histological Traits. J. Anim. Physiol. Anim. Nutr. 2013, 97, 23–31. [Google Scholar] [CrossRef]
- Zaghini, A.; Simioli, M.; Roncada, P.; Rizzi, L. Effect of Saccharomyces Cerevisiae and Esterified Glucomannan on Residues of Ochratoxin A in Kidney, Muscle and Blood of Laying Hens. Ital. J. Anim. Sci. 2007, 6, 737–739. [Google Scholar] [CrossRef]
- Biró, K.; Solti, L.; Barna-Vetró, I.; Bagó, G.; Glávits, R.; Szabó, E.; Fink-Gremmels, J. Tissue Distribution of Ochratoxin A as Determined by HPLC and ELISA and Histopathological Effects in Chickens. Avian Pathol. 2002, 31, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; Nielsen, E.; et al. Risks for Animal Health Related to the Presence of Ochratoxin A (OTA) in Feed. EFSA J. 2023, 21, e08375. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, K. Survey of Pork, Poultry, Coffee, Beer and Pulses for Ochratoxin A. Food. Addit. Contam. 1998, 15, 550–554. [Google Scholar] [CrossRef]
- Guillamont, E.M.; Lino, C.M.; Baeta, M.L.; Pena, A.S.; Silveira, M.I.N.; Vinuesa, J.M. A Comparative Study of Extraction Apparatus in HPLC Analysis of Ochratoxin A in Muscle. Anal. Bioanal. Chem. 2005, 383, 570–575. [Google Scholar] [CrossRef]
- Guerrini, A.; Altafini, A.; Roncada, P. Assessment of Ochratoxin A Exposure in Ornamental and Self-Consumption Backyard Chickens. Vet. Sci. 2020, 7, 18. [Google Scholar] [CrossRef]
- Milićević, D.; Jovanović, M.; Matekalo-Sverak, V.; Radičević, T.; Petrović, M.M.; Lilić, S. A Survey of Spontaneous Occurrence of Ochratoxin A Residues in Chicken Tissues and Concurrence With Histopathological Changes in Liver and Kidneys. J. Environ. Sci. Health C 2011, 29, 159–175. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Nisar, S.; Asi, M.R.; Jinap, S. Natural Incidence of Aflatoxins, Ochratoxin A and Zearalenone in Chicken Meat and Eggs. Food Control 2014, 43, 98–103. [Google Scholar] [CrossRef]
- AL Khalail, N.I. Prevalence of Ochratoxin A in Poultry Feed and Meat from Jordan. Pak. J. Biol. Sci. 2018, 21, 239–244. [Google Scholar] [CrossRef]
- Alaboudi, A.R.; Osaili, T.M.; Otoum, G. Quantification of Mycotoxin Residues in Domestic and Imported Chicken Muscle, Liver and Kidney in Jordan. Food Control 2022, 132, 108511. [Google Scholar] [CrossRef]
- Cao, X.; Li, X.; Li, J.; Niu, Y.; Shi, L.; Fang, Z.; Zhang, T.; Ding, H. Quantitative Determination of Carcinogenic Mycotoxins in Human and Animal Biological Matrices and Animal-Derived Foods Using Multi-Mycotoxin and Analyte-Specific High Performance Liquid Chromatography-Tandem Mass Spectrometric Methods. J. Chromatogr. B. 2018, 1073, 191–200. [Google Scholar] [CrossRef]
- Murad, H.O.M. Levels of Ochratoxin A in Chicken Livers and Meat at Sulaimani City Markets. Int. J. Sci. Technol. 2015, 10, 60–64. [Google Scholar] [CrossRef]
- Tatfo Keutchatang, F.D.P.; Tchuenchieu, A.K.; Nguegwouo, E.; Mouafo, H.T.; Bouelet Ntsama, I.S.; Kansci, G.; Medoua, G.N. Occurrence of Total Aflatoxins, Aflatoxin B1, and Ochratoxin A in Chicken and Eggs in Some Cameroon Urban Areas and Population Dietary Exposure. J. Environ. Public Health 2022, 2022, 5541049. [Google Scholar] [CrossRef] [PubMed]
- Elgazzar, M.M. Ochratoxin a Residues in Meat and Edible Offals of Marketed Broilers and Hens. Assiut Vet. Med. J. 1998, 40, 236–249. [Google Scholar] [CrossRef]
- Bozzo, G.; Bonerba, E.; Ceci, E.; Colao, V.; Tantillo, G. Determination of Ochratoxin A in Eggs and Target Tissues of Experimentally Drugged Hens Using HPLC–FLD. Food Chem. 2011, 126, 1278–1282. [Google Scholar] [CrossRef]
- Denli, M.; Blandon, J.C.; Guynot, M.E.; Salado, S.; Perez, J.F. Efficacy of a New Ochratoxin-Binding Agent (OcraTox) to Counteract the Deleterious Effects of Ochratoxin A in Laying Hens. Poult. Sci. 2008, 87, 2266–2272. [Google Scholar] [CrossRef]
- Hassan, Z.U.; Khan, M.Z.; Khan, A.; Javed, I.; Hussain, Z. Effects of Individual and Combined Administration of Ochratoxin A and Aflatoxin B1 in Tissues and Eggs of White Leghorn Breeder Hens. J. Sci. Food Agric. 2012, 92, 1540–1544. [Google Scholar] [CrossRef]
- Stoev, S.D.; Anguelov, G.; Ivanov, I.; Pavlov, D. Influence of Ochratoxin A and an Extract of Artichoke on the Vaccinal Immunity and Health in Broiler Chicks. Exp. Toxicol. Pathol. 2000, 52, 43–55. [Google Scholar] [CrossRef]
- Stoev, S.D.; Koynarsky, V.; Mantle, P.G. Clinicomorphological Studies in Chicks Fed Ochratoxin A While Simultaneously Developing Coccidiosis. Vet. Res. Commun. 2002, 26, 189–204. [Google Scholar] [CrossRef]
- Kumar, A.; Jindal, N.; Shukla, C.L.; Asrani, R.K.; Ledoux, D.R.; Rottinghaus, G.E. Pathological Changes in Broiler Chickens Fed Ochratoxin A and Inoculated with Escherichia coli. Avian Pathol. 2004, 33, 413–417. [Google Scholar] [CrossRef]
- Koynarski, V.; Stoev, S.; Grozeva, N.; Mirtcheva, T.; Daskalov, H.; Mitev, J.; Mantle, P. Experimental Coccidiosis Provoked by Eimeria Acervulina in Chicks Simultaneously Fed on Ochratoxin A Contaminated Diet. Res. Vet. Sci. 2007, 82, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Hameed, M.R.; Khan, M.Z.; Khan, A.; Javed, I. Ochratoxin Induced Pathological Alterations in Broiler Chicks: Effect of Dose and Duration. Pak. Vet. J. 2013, 33, 145–149. [Google Scholar]
- Vasiljević, M.; Marinković, D.; Milićević, D.; Pleadin, J.; Stefanović, S.; Trialović, S.; Raj, J.; Petrujkić, B.; Trialović, J.N. Efficacy of a Modified Clinoptilolite Based Adsorbent in Reducing Detrimental Effects of Ochratoxin A in Laying Hens. Toxins 2021, 13, 469. [Google Scholar] [CrossRef] [PubMed]
- Hanif, N.Q.; Muhammad, G.; Siddique, M.; Khanum, A.; Ahmed, T.; Gadahai, J.A.; Kaukab, G. Clinico-Pathomorphological, Serum Biochemical and Histological Studies in Broilers Fed Ochratoxin A and a Toxin Deactivator (Mycofix® Plus). Br. Poult. Sci. 2008, 49, 632–642. [Google Scholar] [CrossRef]
- Gupta, S.; Jindal, N.; Khokhar, R.S.; Asrani, R.K.; Ledoux, D.R.; Rottinghaus, G.E. Individual and Combined Effects of Ochratoxin A and Salmonella Enterica Serovar Gallinarum Infection on Pathological Changes in Broiler Chickens. Avian Pathol. 2008, 37, 265–272. [Google Scholar] [CrossRef]
- Elaroussi, M.A.; Mohamed, F.R.; Elgendy, M.S.; El Barkouky, E.M.; Abdou, A.M.; Hatab, M.H. Ochratoxicosis in Broiler Chickens: Functional and Histological Changes in Target Organs. Int. J. Poult. Sci. 2008, 7, 414–422. [Google Scholar] [CrossRef]
- Santin, E.; Paulillo, A.C.; Maiorka, P.C.; Alessi, A.C.; Krabbe, E.L.; Maiorka, A. The Effects of Ochratoxin/Aluminosilicate Interaction on the Tissues and Humoral Immune Response of Broilers. Avian Pathol. 2002, 31, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Word Health Organization. Code of Practice for the Prevention and Reduction of Mycotoxin Contamination in Cereals. Codex Alimentarius International Food Standards 2003. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/ru/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXC%2B51-2003%252FCXC_051e.pdf (accessed on 20 September 2024).
- Peng, W.-X.; Marchal, J.L.M.; van der Poel, A.F.B. Strategies to Prevent and Reduce Mycotoxins for Compound Feed Manufacturing. Anim. Feed Sci. Technol. 2018, 237, 129–153. [Google Scholar] [CrossRef]
- Nada, S.; Nikola, T.; Bozidar, U.; Ilija, D.; Andreja, R. Prevention and Practical Strategies to Control Mycotoxins in the Wheat and Maize Chain. Food Control 2022, 136, 108855. [Google Scholar] [CrossRef]
- Amézqueta, S.; González-Peñas, E.; Murillo-Arbizu, M.; López de Cerain, A. Ochratoxin A Decontamination: A Review. Food Control 2009, 20, 326–333. [Google Scholar] [CrossRef]
- Ding, T.; Cullen, P.J.; Yan, W. Applications of Cold Plasma in Food Safety; Springer: Singapore, 2022. [Google Scholar]
- The ClassyFarm System. Available online: https://www.classyfarm.it/index.php/en/what-en (accessed on 4 November 2024).
OTA Treatment | Sample Type | OTA Content | Method | Reference |
---|---|---|---|---|
Broiler chicks control/OTA-treated (0.1 mg kg−1 feed)/35 days | Broiler chick serum | Control: 0.2 ± 0.1 ng mL−1 Treated: 1.2 ± 0.4 μg kg−1 | 2 HPLC-FD | [63] |
Broiler chick liver | Control: 1 ND Treated: 1.9 ± 0.2 μg kg−1 | |||
Broiler chick kidney | Control: 1 ND Treated: 3.6 ± 0.9 μg kg−1 | |||
Broiler chick breast | Control: 1 ND | |||
Broiler chick thigh | Control: 1 ND | |||
Laying Hens OTA-treated: 255–285 μg kg−1 feed | Laying hens kidney | 13.65 ± 3.58 μg kg−1 | 2 HPLC-FD | [10] |
Laying hens liver | 4.43 ± 0.64 μg kg−1 | |||
Laying hens other tissues | 1 ND | |||
Laying Hens OTA-treated: 0.2 mg kg−1 feed/12 weeks | Laying hens kidney | 2.47 ± 1.10 μg kg−1 | 2 HPLC-FD | [64] |
Laying hens muscle | 0.31 ± 0.22 μg kg−1 | |||
Laying hens blood | 1.06 ± 0.48 μg kg−1 | |||
Broiler chicks OTA-treated: 0.5 mg feed/4 weeks | Broiler chick liver | 4 MRC of OTA: 4 μg kg−1 after 7 days | 2 HPLC-FD | [65] |
4 MRC of OTA: 1.4 μg kg−1 after 7 days | 3 ELISA | |||
Broiler chick kidney | 4 MRC of OTA: 1.25 μg kg−1 after 7 days | 2 HPLC-FD | ||
4 MRC of OTA: 2.84 μg kg−1 after 7 days | 3 ELISA | |||
Broiler chick muscle | 4 MRC of OTA: Thigh: 0.06 μg kg−1 after 21 days Breast: 1 ND | 2 HPLC-FD | ||
4 MRC of OTA: Thigh: 0.84 μg kg−1 after 28 days Breast: 0.84 μg kg−1 after 28 days | 3 ELISA | |||
Broiler chick plasma | 4 MRC of OTA: 1.6 ng mL−1 after 14 days | 2 HPLC-FD | ||
4 MRC of OTA: 2.12 ng mL−1 after 14 days | 3 ELISA |
Country | Sample Type | Prevalence (%) | Mean of OTA Level (μg kg−1) | Range of OTA (μg kg−1) | Method | Reference |
---|---|---|---|---|---|---|
Denmark | Duck meat | 11/19—57.8% | 0.02 | 1 ND–0.09 | 3 HPLC 10 LOD: 0.02–0.03 μg kg−1 | [67] |
Duck liver | 4/7—57.1% | 0.06 | 1 ND–0.16 | |||
Goose meat | 5/12—41.6% | 0.03 | 1 ND–0.10 | |||
Goose liver | 4/12—33.33% | 0.02 | 1 ND–0.06 | |||
Turkey meat | 10/17—58.8% | 0.02 | 1 ND–0.11 | |||
Turkey liver | 3/17—17.6% | 0.04 | 1 ND–0.28 | |||
Chicken meat | 36/65—55.3% | 0.03 | 1 ND–0.11 | |||
Portugal | Chicken muscle | 9/12—75% | 2 NM | 2 NM | 4 HPLC-FD 10 LOD: 0.01 μg kg−1 11 LOQ: 0.04 μg kg−1 | [68] |
Turkey muscle | 9/13—69% | 0.02 ± 0.03 | 0.01–0.04 | |||
Italy | Poultry kidney | 0/120—0% | ≤LOD | 2 NM | 4 HPLC-FD 10 LOD: 0.1 μg kg−1 11 LOQ: 0.2 μg kg−1 | [69] |
Serbia | Chicken kidney | 17/60—28.33% | 0.51 ± 1.38 | 0.1—7.02 | 4 HPLC-FD 10 LOD: 0.2 μg kg−1 11 LOQ: 0.3 μg kg−1 | [70] |
Chicken liver | 23/60—38.33% | 0.58 ± 1.04 | 0.14—3.9 | |||
Chicken gizzard | 16/60—26.6% | 0.51 ± 1.75 | 0.25–9.94 | |||
Italy | Hen kidney | 2 NM | 47 ± 3.03 | 2 NM | 4 HPLC-FD | [14] |
Hen liver | 2 NM | 24 ± 1.92 | 2 NM | |||
Pakistan | Chicken broiler meat | 16/39—41% | Wings: 1.39 ± 0.78 Chest: 0.28 ± 0.79 Legs: 1.12 ± 0.19 Liver: 2.21 ± 0.43 | Wings: 0.06–2.50 Chest: 0.06–3.67 Legs: 0.06–2.12 Liver: 0.06–3.56 | 4 HPLC-FD 10 LOD: 0.06 μg/kg 11 LOQ: 0.18 μg/kg | [71] |
Chicken layers meat | 22/45—48% | Wings: 1.45 ± 0.24 Chest: 0.81 ± 0.14 Legs: 1.59 ± 0.67 Liver: 2.41 ± 0.72 | Wings: 0.06–3.90 Chest: 0.06–1.30 Legs: 0.06–2.10 Liver: 0.06–4.70 | |||
Domestic chicken meat | 9/31—29% | Wings: ≤LOD Chest: ≤LOD Legs: ≤LOD Liver: 0.71 ± 0.40 | Wings: 1 ND Chest: 1 ND Legs: 1 ND Liver: 0.06–2.40 | |||
Jordan | Poultry thigh and leg | 18/18—100% | 2.160 ± 0.270 | 1.90 ± 0.14–2.98 ± 0.50 | 5 ELISA | [72] |
Poultry liver | 18/18—100% | 5.860 ± 0.390 | 4.06 ± 0.66–7.68 ± 0.12 | |||
Poultry gizzard | 18/18—100% | 2.070 ± 0.133 | 1.89 ± 0.07–2.26 ± 0.19 | |||
Poultry breast | 12/18—66% | 3.062 ± 0.300 | 2.81 ± 0.52–3.31 ± 0.18 | |||
Jordan | Chicken meat | 0/150—0% | ≤LOD | 2 NM | 6 LC-TOF-MS/MS | [73] |
Chicken kidney | 0/50—0% | ≤LOD | 2 NM | |||
Chicken liver | 0/50—0% | ≤LOD | 2 NM | |||
China | Chicken liver | 1/5—20% | 1.05 | 2 NM | 7 LC-MS/MS 10 LOD: 0.15 μg kg−1 11 LOQ: 0.46 μg kg−1 | [74] |
Iraq | Chicken meat | 26/30—86.7% | 1.982 | 0.149—4.10 | 8 HPLC-UV | [75] |
Chicken liver | 17/30—57% | 1.865 | 1 ND—4.702 | |||
Cameroon | Chicken muscles | 2 NM | 1.4 ± 0.173 | 0.8–1.7 | 5 ELISA 10 LOD: 0.3–0.6 μg kg−1 11 LOQ: 1–2 μg kg−1 | [76] |
Chicken liver | 2 NM | 2.2667 ± 1 | 1–4.9 | |||
Egypt | Broiler muscle (50 days old) | 5/10—50% | 5.94 ± 2.21 | 2 NM | 9 TLC | [77] |
Broiler muscle (100 days old) | 6/10—60% | 7.41 ± 2.29 | 2 NM | |||
Hen muscle (2 years old) | 8/10—80% | 9.66 ± 2.42 | 2 NM | |||
Broiler fat (50 days old) | 7/10—70% | 9.51 ± 2.94 | 2 NM | |||
Broiler fat (100 days Old) | 7/10—70% | 16.02 ± 4.08 | 2 NM | |||
Hen fat (2 years old) | 9/10—90% | 17.39 ± 3.57 | 2 NM | |||
Broiler gizzard (50 days old) | 7/10—70% | 8.45 ± 2.93 | 2 NM | |||
Broiler gizzard (100 days old) | 8/10—80% | 15.69 ± 4.24 | 2 NM | |||
Hen gizzard (2 years old) | 9/10—90% | 15.32 ± 3.33 | 2 NM | |||
Broiler kidney (50 days old) | 10/10—100% | 12.90 ± 3.30 | 2 NM | |||
Broiler kidney (100 days old) | 10/10—100% | 16.67 ± 3.86 | 2 NM | |||
Hen kidney (2 years old) | 10/10—100% | 18.84 ± 3.30 | 2 NM | |||
Broiler liver (50 days old) | 8/10—80% | 8.97 ± 2.83 | 2 NM | |||
Broiler liver (100 days old) | 9/10—90% | 10.75 ± 3.07 | 2 NM | |||
Hen liver (2 years old) | 10/10—100% | 14 ± 2.54 | 2 NM |
OTA Treatment | OTA Content in Eggs | Method | Reference |
---|---|---|---|
Laying hens control/OTA- treated (0.1 mg kg−1 feed)/OTA-treated (0.2 mg kg−1 feed)/OTA-treated (1 mg kg−1 feed)/OTA-treated (2 mg kg−1 feed)/30 days | Control: 1 ND Treated (0.1 mg kg−1): 1 ND Treated (0.2 mg kg−1): 1 ND Treated (1 mg kg−1): 1 ND Treated (2 mg kg−1): 1 ND | 2 HPLC-FD | [78] |
Laying hens OTA-treated: 2 mg kg−1 feed/21 days | <3 LOD | 2 HPLC-FD 3 LOD: 0.05 μg kg−1 4 LOQ: 0.15 μg kg−1 | [79] |
Laying hens control/OTA- treated (3 mg kg−1 feed)/OTA-treated (5 mg kg−1 feed)/28 days | Control: 1 ND for all 28 days 5 MRC of OTA (3 mg kg−1): 4.857 ± 0.23 μg kg−1 after 13 days 5 MRC of OTA (5 mg kg−1): 7.396 ± 1.03 μg kg−1 after 21 days | 2 HPLC-FD | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonerba, E.; Manfredi, A.; Dimuccio, M.M.; Lorusso, P.; Pandiscia, A.; Terio, V.; Di Pinto, A.; Panseri, S.; Ceci, E.; Bozzo, G. Ochratoxin A in Poultry Supply Chain: Overview of Feed Occurrence, Carry-Over, and Pathognomonic Lesions in Target Organs to Promote Food Safety. Toxins 2024, 16, 487. https://doi.org/10.3390/toxins16110487
Bonerba E, Manfredi A, Dimuccio MM, Lorusso P, Pandiscia A, Terio V, Di Pinto A, Panseri S, Ceci E, Bozzo G. Ochratoxin A in Poultry Supply Chain: Overview of Feed Occurrence, Carry-Over, and Pathognomonic Lesions in Target Organs to Promote Food Safety. Toxins. 2024; 16(11):487. https://doi.org/10.3390/toxins16110487
Chicago/Turabian StyleBonerba, Elisabetta, Alessio Manfredi, Michela Maria Dimuccio, Patrizio Lorusso, Annamaria Pandiscia, Valentina Terio, Angela Di Pinto, Sara Panseri, Edmondo Ceci, and Giancarlo Bozzo. 2024. "Ochratoxin A in Poultry Supply Chain: Overview of Feed Occurrence, Carry-Over, and Pathognomonic Lesions in Target Organs to Promote Food Safety" Toxins 16, no. 11: 487. https://doi.org/10.3390/toxins16110487
APA StyleBonerba, E., Manfredi, A., Dimuccio, M. M., Lorusso, P., Pandiscia, A., Terio, V., Di Pinto, A., Panseri, S., Ceci, E., & Bozzo, G. (2024). Ochratoxin A in Poultry Supply Chain: Overview of Feed Occurrence, Carry-Over, and Pathognomonic Lesions in Target Organs to Promote Food Safety. Toxins, 16(11), 487. https://doi.org/10.3390/toxins16110487