Mycotoxin Challenge in Dairy Cows: Assessment of the Efficacy of an Anti-Mycotoxin Agent by Adopting an In Vitro Rumen Simulation Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vitro Gas Production
2.2. Anti-Mycotoxin Agent Efficacy
2.3. Multivariate Statistics Highlight the Effects of the Anti-Mycotoxin Agent
3. Conclusions
4. Materials and Methods
- -
- Dose 1 simulated 30 mg per cow per day of the anti-mycotoxin agent;
- -
- Dose 2 simulated 90 mg per cow per day of the anti-mycotoxin agent.
4.1. Contaminated Starter for the In Vitro Trials
4.2. Preparation of Mycotoxins Solutions
4.3. In Vitro Experimental Design
- -
- Control: the substrate of corn–barley meal with the inoculum of mycotoxins;
- -
- Dose 1: the substrate of corn–barley meal with the inoculum of mycotoxins and a low dose of the anti-mycotoxin agent (30 mg/cow/d);
- -
- Dose 2: the substrate of corn–barley meal with the inoculum of mycotoxins and a high dose of the anti-mycotoxin agent (90 mg/cow/d).
4.4. Rumen Fluid Collection
4.5. Inoculum Procedure
4.6. Extraction Step and Multiscreening of Mycotoxins
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fink-Gremmels, J. The Role of Mycotoxins in the Health and Performance of Dairy Cows. Vet. J. 2008, 176, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Fink-Gremmels, J. Mycotoxins in Cattle Feeds and Carry-over to Dairy Milk: A Review. Food Addit. Contam. 2008, 25, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Zinedine, A.; El Akhdari, S. Food Safety and Climate Change: Case of Mycotoxins. In Handbook of Research on Global Environmental Changes and Human Health; IGI Global: Hershey, PA, USA, 2019; pp. 39–62. Available online: https://www.igi-global.com/chapter/food-safety-and-climate-change/268132 (accessed on 1 September 2024).
- Magnoli, A.P.; Poloni, V.L.; Cavaglieri, L. Impact of Mycotoxin Contamination in the Animal Feed Industry. Curr. Opin. Food Sci. 2019, 29, 99–108. [Google Scholar] [CrossRef]
- Rodrigues, I. A Review on the Effects of Mycotoxins in Dairy Ruminants. Anim. Prod. Sci. 2014, 54, 1155–1165. [Google Scholar] [CrossRef]
- Streit, E.; Schwab, C.; Sulyok, M.; Naehrer, K.; Krska, R.; Schatzmayr, G. Multi-Mycotoxin Screening Reveals the Occurrence of 139 Different Secondary Metabolites in Feed and Feed Ingredients. Toxins 2013, 5, 504–523. [Google Scholar] [CrossRef]
- Jouany, J.P.; Yiannikouris, A.; Bertin, G. Risk Assessment of Mycotoxins in Ruminants and Ruminant Products. Options Mediterr. A 2009, 85, 205–224. [Google Scholar]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to Prevent Mycotoxin Contamination of Food and Animal Feed: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef]
- Assessing Quality and Safety of Animal Feeds. Available online: https://www.fao.org/4/y5159e/y5159e04.htm (accessed on 26 July 2024).
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current Situation of Mycotoxin Contamination and Co-Occurrence in Animal Feed Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef]
- Nesic, K.; Ivanovic, S.; Nesic, V. Fusarial Toxins: Secondary Metabolites of Fusarium Fungi. Rev. Environ. Contam. Toxicol. 2014, 228, 101–120. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Frisvad, J.C.; Bertuzzi, T.; Nielsen, K.F. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects. Toxins 2015, 7, 3057–3111. [Google Scholar] [CrossRef]
- Błajet-Kosicka, A.; Twaruzek, M.; Kosicki, R.; Sibiorowska, E.; Grajewski, J. Co-Occurrence and Evaluation of Mycotoxins in Organic and Conventional Rye Grain and Products. Food Control 2014, 38, 61–66. [Google Scholar] [CrossRef]
- Pereira, C.S.; Cunha, S.C.; Fernandes, J.O. Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef] [PubMed]
- Latorre, A.; Dagnac, T.; Lorenzo, B.F.; Llompart, M. Occurrence and Stability of Masked Fumonisins in Corn Silage Samples. Food Chem. 2015, 189, 38–44. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Park, M.A.; Ha, J.K. Mycotoxins and Their Biotransformation in the Rumen: A Review. Asian-Australas. J. Anim. Sci. 2010, 23, 1250–1260. [Google Scholar] [CrossRef]
- Whitlow, L.W.; Hagler, W.M. Mycotoxins in Dairy Cattle: Occurrence, Toxicity, Prevention and Treatment. Available online: https://www.researchgate.net/profile/Lon-Whitlow/publication/237664280_Mycotoxins_in_dairy_cattle_Occurrence_toxicity_prevention_and_treatment/links/0f3175324e0b3a4827000000/Mycotoxins-in-dairy-cattle-Occurrence-toxicity-prevention-and-treatment.pdf (accessed on 1 September 2024).
- Coulombe, R.A. Biological Action of Mycotoxins. J. Dairy Sci. 1993, 76, 880–891. [Google Scholar] [CrossRef]
- Gallo, A.; Ghilardelli, F.; Atzori, A.S.; Zara, S.; Novak, B.; Faas, J.; Fancello, F. Co-Occurrence of Regulated and Emerging Mycotoxins in Corn Silage: Relationships with Fermentation Quality and Bacterial Communities. Toxins 2021, 13, 232. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Martinez-Tuppia, C.; Queiroz, O.C.M.; Jiang, Y.; Drouin, P.; Wu, F.; Vyas, D.; Adesogan, A.T. Silage Review: Mycotoxins in Silage: Occurrence, Effects, Prevention, and Mitigation. J. Dairy Sci. 2018, 101, 4034–4059. [Google Scholar] [CrossRef]
- Jard, G.; Liboz, T.; Mathieu, F.; Guyonvarch, A.; Lebrihi, A. Review of Mycotoxin Reduction in Food and Feed: From Prevention in the Field to Detoxification by Adsorption or Transformation. Food Addit. Contam. Part A 2011, 28, 1590–1609. [Google Scholar] [CrossRef] [PubMed]
- Debevere, S.; Schatzmayr, D.; Reisinger, N.; Aleschko, M.; Haesaert, G.; Rychlik, M.; Croubels, S.; Fievez, V. Evaluation of the Efficacy of Mycotoxin Modifiers and Mycotoxin Binders by Using an In Vitro Rumen Model as a First Screening Tool. Toxins 2020, 12, 405. [Google Scholar] [CrossRef]
- Custodio, L.; Prados, L.F.; Figueira, D.N.; Yiannikouris, A.; Gloria, E.M.; Holder, V.B.; Pettigrew, J.E.; Santin, E.; Resende, F.D.; Siqueira, G.R. Mycotoxin-Contaminated Diets and an Adsorbent Affect the Performance of Nellore Bulls Finished in Feedlots. Animal 2020, 14, 2074–2082. [Google Scholar] [CrossRef]
- Daou, R.; Joubrane, K.; Maroun, R.G.; Khabbaz, L.R.; Ismail, A.; El Khoury, A.; Daou, R.; Joubrane, K.; Maroun, R.G.; Khabbaz, L.R.; et al. Mycotoxins: Factors Influencing Production and Control Strategies. AIMS Agric. Food 2021, 6, 416–447. [Google Scholar] [CrossRef]
- Colović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Ðuragić, O.; Kos, J.; Pinotti, L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins 2019, 11, 617. [Google Scholar] [CrossRef] [PubMed]
- Seeling, K.; Lebzien, P.; Dänicke, S.; Spilke, J.; Südekum, K.H.; Flachowsky, G. Effects of Level of Feed Intake and Fusarium Toxin-Contaminated Wheat on Rumen Fermentation as Well as on Blood and Milk Parameters in Cows. J. Anim. Physiol. Anim. Nutr. 2006, 90, 103–115. [Google Scholar] [CrossRef]
- Seeling, K.; Dänicke, S.; Valenta, H.; Van Egmond, H.P.; Schothorst, R.C.; Jekel, A.A.; Lebzien, P.; Schollenberger, M.; Razzazi-Fazeli, E.; Flachowsky, G. Effects of Fusarium Toxin-Contaminated Wheat and Feed Intake Level on the Biotransformation and Carry-over of Deoxynivalenol in Dairy Cows. Food Addit. Contam. 2006, 23, 1008–1020. [Google Scholar] [CrossRef]
- Debevere, S.; Cools, A.; de Baere, S.; Haesaert, G.; Rychlik, M.; Croubels, S.; Fievez, V. In Vitro Rumen Simulations Show a Reduced Disappearance of Deoxynivalenol, Nivalenol and Enniatin B at Conditions of Rumen Acidosis and Lower Microbial Activity. Toxins 2020, 12, 101. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, G.; Li, X.; Guan, Y.; Wang, Y.; Yuan, X.; Sun, G.; Wang, Z.; Li, X. Inflammatory Mechanism of Rumenitis in Dairy Cows with Subacute Ruminal Acidosis. BMC Vet. Res. 2018, 14, 135. [Google Scholar] [CrossRef]
- Valgaeren, B.; Théron, L.; Croubels, S.; Devreese, M.; De Baere, S.; Van Pamel, E.; Daeseleire, E.; De Boevre, M.; De Saeger, S.; Vidal, A.; et al. The Role of Roughage Provision on the Absorption and Disposition of the Mycotoxin Deoxynivalenol and Its Acetylated Derivatives in Calves: From Field Observations to Toxicokinetics. Arch. Toxicol. 2019, 93, 293–310. [Google Scholar] [CrossRef]
- Santos, R.R.; Fink-Gremmels, J. Mycotoxin Syndrome in Dairy Cattle: Characterisation and Intervention Results. World Mycotoxin J. 2014, 7, 357–366. [Google Scholar] [CrossRef]
- Abeni, F.; Migliorati, L.; Terzano, G.M.; Capelletti, M.; Gallo, A.; Masoero, F.; Pirlo, G. Effects of Two Different Blends of Naturally Mycotoxin-Contaminated Maize Meal on Growth and Metabolic Profile in Replacement Heifers. Animal 2014, 8, 1667–1676. [Google Scholar] [CrossRef]
- Sabatini, A.; Danieli, P.P.; Bernabucci, U.; Ronchi, B. Evaluation of mycotoxins contamination in intensive beef cattle production system. Ital. J. Anim. Sci. 2007, 6 (Suppl. S1), 466–468. [Google Scholar] [CrossRef]
- Caloni, F.; Spotti, M.; Auerbach, H.; Op Den Camp, H.; Fink Gremmels, J.; Pompa, G. In Vitro Metabolism of Fumonisin B1 by Ruminal Microflora. Vet. Res. Commun. 2000, 24, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Antonissen, G.; Martel, A.; Pasmans, F.; Ducatelle, R.; Verbrugghe, E.; Vandenbroucke, V.; Li, S.; Haesebrouck, F.; Van Immerseel, F.; Croubels, S. The Impact of Fusarium Mycotoxins on Human and Animal Host Susceptibility to Infectious Diseases. Toxins 2014, 6, 430–452. [Google Scholar] [CrossRef] [PubMed]
- Loh, Z.H.; Ouwerkerk, D.; Klieve, A.V.; Hungerford, N.L.; Fletcher, M.T. Toxin Degradation by Rumen Microorganisms: A Review. Toxins 2020, 12, 664. [Google Scholar] [CrossRef] [PubMed]
- Zain, M.E. Impact of Mycotoxins on Humans and Animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef]
- Korosteleva, S.N.; Smith, T.K.; Boermans, H.J. Effects of Feedborne Fusarium Mycotoxins on the Performance, Metabolism, and Immunity of Dairy Cows. J. Dairy Sci. 2007, 90, 3867–3873. [Google Scholar] [CrossRef]
- Battacone, G.; Nudda, A.; Palomba, M.; Mazzette, A.; Pulina, G. The Transfer of Aflatoxin M1 in Milk of Ewes Fed Diet Naturally Contaminated by Aflatoxins and Effect of Inclusion of Dried Yeast Culture in the Diet. J. Dairy Sci. 2009, 92, 4997–5004. [Google Scholar] [CrossRef]
- Battacone, G.; Nudda, A.; Rassu, S.P.G.; Decandia, M.; Pulina, G. Excretion Pattern of Aflatoxin M1 in Milk of Goats Fed a Single Dose of Aflatoxin B1. J. Dairy Sci. 2012, 95, 2656–2661. [Google Scholar] [CrossRef]
- Torres-Pacheco, I. Aflatoxins: Detection, Measurement and Control; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Nadziakiewicza, M.; Kehoe, S.; Micek, P. Physico-Chemical Properties of Clay Minerals and Their Use as a Health Promoting Feed Additive. Animals 2019, 9, 714. [Google Scholar] [CrossRef]
- Yiannikouris, A.; Apajalahti, J.; Kettunen, H.; Ojanperä, S.; Bell, A.N.W.; Keegan, J.D.; Moran, C.A. Efficient Aflatoxin B1 Sequestration by Yeast Cell Wall Extract and Hydrated Sodium Calcium Aluminosilicate Evaluated Using a Multimodal In-Vitro and Ex-Vivo Methodology. Toxins 2021, 13, 24. [Google Scholar] [CrossRef]
- Chlebicz, A.; Śliżewska, K. In Vitro Detoxification of Aflatoxin B1, Deoxynivalenol, Fumonisins, T-2 Toxin and Zearalenone by Probiotic Bacteria from Genus Lactobacillus and Saccharomyces Cerevisiae Yeast. Probiotics Antimicrob. Proteins 2020, 12, 289–301. [Google Scholar] [CrossRef]
- Kharayat, B.S.; Singh, Y. Mycotoxins in Foods: Mycotoxicoses, Detection, and Management. In Microbial Contamination and Food Degradation; Academic Press: Cambridge, MA, USA, 2018; pp. 395–421. [Google Scholar] [CrossRef]
- Da Silva, E.O.; Bracarense, A.P.F.L.; Oswald, I.P. Mycotoxins and Oxidative Stress: Where Are We? World Mycotoxin J. 2018, 11, 113–133. [Google Scholar] [CrossRef]
- European Commission. Commission regulation (EC) No. 386/2009 of 12 May 2009 amending Regulation (EC) No. 1831/2003 of the European Parliament and of the Council as regards the establishment of a new functional group of feed additives. Off. J. Eur. Union 2009, 118, 66. [Google Scholar]
- Boudergue, C.; Burel, C.; Dragacci, S.; Favrot, M.C.; Fremy, J.M.; Massimi, C.; Prigent, P.; Debongnie, P.; Pussemier, L.; Boudra, H.; et al. Review of mycotoxin -detoxifying agents used as feed additives: Mode of action, efficacy and feed/food safety. EFSA Support. Publ. 2009, 6, 22E. [Google Scholar] [CrossRef]
- Quesada-Vázquez, S.; Codina Moreno, R.; Della Badia, A.; Castro, O.; Riahi, I. Promising Phytogenic Feed Additives Used as Anti-Mycotoxin Solutions in Animal Nutrition. Toxins 2024, 16, 434. [Google Scholar] [CrossRef] [PubMed]
- Takiya, C.S.; Ribeiro, V.C.; de Almeida, C.V.; Bugoni, M.; Vittorazzi, P.C.; Chesini, R.G.; Grigoletto, N.T.S.; de Freitas, A.C.; Vieira, D.J.C.; de Souza, A.H.; et al. Feeding phytogenic ingredients combined or not with Lithothamnium calcareum and a mycotoxin binder to lactating cows: Effects on performance, nutrient digestibility, physiological parameters, and nitrogen excretion. Anim. Feed. Sci. Technol. 2023, 303, 115718. [Google Scholar] [CrossRef]
- Basiouni, S.; Tellez-Isaias, G.; Latorre, J.D.; Graham, B.D.; Petrone-Garcia, V.M.; El-Seedi, H.R.; Yalçın, S.; El-Wahab, A.A.; Visscher, C.; May-Simera, H.L.; et al. Anti-Inflammatory and Antioxidative Phytogenic Substances against Secret Killers in Poultry: Current Status and Prospects. Vet. Sci. 2023, 10, 55. [Google Scholar] [CrossRef]
- Guerrini, A.; Tedesco, D.E.A. Restoring Activity of Milk Thistle (Silybum marianum L.) on Serum Biochemical Parameters, Oxidative Status, Immunity, and Performance in Poultry and Other Animal Species, Poisoned by Mycotoxins: A Review. Animals 2023, 13, 330. [Google Scholar] [CrossRef]
- Niu, Y.; He, J.; Ahmad, H.; Shen, M.; Zhao, Y.; Gan, Z.; Zhang, L.; Zhong, X.; Wang, C.; Wang, T. Dietary Curcumin Supplementation Increases Antioxidant Capacity, Upregulates Nrf2 and Hmox1 Levels in the Liver of Piglet Model with Intrauterine Growth Retardation. Nutrients 2019, 11, 2978. [Google Scholar] [CrossRef]
- Zhai, S.S.; Ruan, D.; Zhu, Y.W.; Li, M.C.; Ye, H.; Wang, W.C.; Yang, L. Protective Effect of Curcumin on Ochratoxin A—Induced Liver Oxidative Injury in Duck Is Mediated by Modulating Lipid Metabolism and the Intestinal Microbiota. Poult. Sci. 2020, 99, 1124–1134. [Google Scholar] [CrossRef]
- Armanini, E.H.; Boiago, M.M.; de Oliveira, P.V.; Roscamp, E.; Strapazzon, J.V.; de Lima, A.G.; Copetti, P.M.; Morsch, V.M.; de Oliveira, F.C.; Wagner, R.; et al. Inclusion of a phytogenic bend in broiler diet as a performance enhancer and anti-aflatoxin agent: Impacts on health, performance, and meat quality. Res. Vet. Sci. 2021, 137, 186–193. [Google Scholar] [CrossRef]
- Yang, Q.; Cheng, L.; Zhang, T.; Yaron, S.; Jiang, H.; Sui, Z.; Corke, H. Phenolic profiles, antioxidant, and antiproliferative activities of turmeric (Curcuma longa). Ind. Crops Prod. 2020, 152, 112561. [Google Scholar] [CrossRef]
- Gowda, N.K.; Ledoux, D.R.; Rottinghaus, G.E.; Bermudez, A.J.; Chen, Y.C. Antioxidant efficacy of curcuminoids from turmeric (Curcuma longa L.) powder in broiler chickens fed diets containing aflatoxin B1. Br. J. Nutr. 2009, 102, 1629–1634. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, D.; Steidler, S.; Galletti, S.; Tameni, M.; Sonzogni, O.; Ravarotto, L. Efficacy of Silymarin-Phospholipid Complex in Reducing the Toxicity of Aflatoxin B1 in Broiler Chicks. Poult. Sci. 2004, 83, 1839–1843. [Google Scholar] [CrossRef] [PubMed]
- Ledur, P.C.; Santurio, J.M. Cytoprotective Effects of Curcumin and Silymarin on PK-15 Cells Exposed to Ochratoxin A, Fumonisin B1 and Deoxynivalenol. Toxicon 2020, 185, 97–103. [Google Scholar] [CrossRef]
- Papatsiros, V.G.; Papakonstantinou, G.I.; Voulgarakis, N.; Eliopoulos, C.; Marouda, C.; Meletis, E.; Valasi, I.; Kostoulas, P.; Arapoglou, D.; Riahi, I.; et al. Effects of a Curcumin/Silymarin/Yeast-Based Mycotoxin Detoxifier on Redox Status and Growth Performance of Weaned Piglets under Field Conditions. Toxins 2024, 16, 168. [Google Scholar] [CrossRef]
- Papatsiros, V.G.; Eliopoulos, C.; Voulgarakis, N.; Arapoglou, D.; Riahi, I.; Sadurní, M.; Papakonstantinou, G.I. Effects of a Multi-Component Mycotoxin-Detoxifying Agent on Oxidative Stress, Health and Performance of Sows. Toxins 2023, 15, 580. [Google Scholar] [CrossRef]
- Limaye, A.; Yu, R.C.; Chou, C.C.; Liu, J.R.; Cheng, K.C. Protective and Detoxifying Effects Conferred by Dietary Selenium and Curcumin against AFB1-Mediated Toxicity in Livestock: A Review. Toxins 2018, 10, 25. [Google Scholar] [CrossRef]
- Binder, E.M. Managing the Risk of Mycotoxins in Modern Feed Production. Anim. Feed Sci. Technol. 2007, 133, 149–166. [Google Scholar] [CrossRef]
- Çelik, K. Chapter 12—The efficacy of mycotoxin-detoxifying and biotransforming agents in animal nutrition. In Nanomycotoxicology; Academic Press: Cambridge, MA, USA, 2020; pp. 271–284. [Google Scholar] [CrossRef]
- Hussain, Z.; Thu, H.E.; Amjad, M.W.; Hussain, F.; Ahmed, T.A.; Khan, S. Exploring Recent Developments to Improve Antioxidant, Anti-Inflammatory and Antimicrobial Efficacy of Curcumin: A Review of New Trends and Future Perspectives. Mater. Sci. Eng. C 2017, 77, 1316–1326. [Google Scholar] [CrossRef]
- Pauletto, M.; Giantin, M.; Tolosi, R.; Bassan, I.; Barbarossa, A.; Zaghini, A.; Dacasto, M. Curcumin Mitigates AFB1-Induced Hepatic Toxicity by Triggering Cattle Antioxidant and Anti-Inflammatory Pathways: A Whole Transcriptomic In Vitro Study. Antioxidants 2020, 9, 1059. [Google Scholar] [CrossRef]
- Hackett, E.S.; Twedt, D.C.; Gustafson, D.L. Milk Thistle and Its Derivative Compounds: A Review of Opportunities for Treatment of Liver Disease. J. Vet. Intern. Med. 2013, 27, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Motawe, H.F.A.; Abdel Salam, A.F.; El Meleigy, K.M. Reducing the toxicity of aflatoxin in broiler chickens’ diet by using probiotic and yeast. Int. J. Poult. Sci. 2014, 13, 397. [Google Scholar] [CrossRef]
- Pfliegler, W.P.; Pusztahelyi, T.; Pócsi, I. Mycotoxins—Prevention and decontamination by yeasts. J. Basic Microbiol. 2015, 55, 805–818. [Google Scholar] [CrossRef]
- Kolawole, O.; Siri-Anusornsak, W.; Petchkongkaw, A.; Meneely, J.; Elliott, C. The Efficacy of Additives for the Mitigation of Aflatoxins in Animal Feed: A Systematic Review and Network Meta-Analysis. Toxins 2022, 14, 707. [Google Scholar] [CrossRef]
- Yiannikouris, A.; François, J.; Poughon, L.; Dussap, C.G.; Bertin, G.; Jeminet, G.; Jouany, J.P. Adsorption of Zearalenone by β-d-Glucans in the Saccharomyces Cerevisiae Cell Wall. J. Food Prot. 2004, 67, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, M. Microbiological decontamination of mycotoxins: Opportunities and limitations. Toxins 2021, 13, 819. [Google Scholar] [CrossRef]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D. Natural Feed Additives and Bioactive Supplements versus Chemical Additives as a Safe and Practical Approach to Combat Foodborne Mycotoxicoses. Front. Nutr. 2024, 11, 1335779. [Google Scholar] [CrossRef]
- Baker, R.; Candresse, T.; Dormannsné Simon, E.; Gilioli, G.; Grégoire, J.-C.; John Jeger, M.; Evtimova Karadjova, O.; Lövei, G.; Makowski, D.; Manceau, C.; et al. Guidance on a Harmonised Framework for Pest Risk Assessment and the Identification and Evaluation of Pest Risk Management Options by EFSA. EFSA J. 2010, 8, 1495. [Google Scholar] [CrossRef]
- Azzouz, A.; Arus, V.A.; Platon, N. Role of Clay Substrate Molecular Interactions in Some Dairy Technology Applications. Int. J. Mol. Sci. 2024, 25, 808. [Google Scholar] [CrossRef]
- Diaz, D.E.; Hagler, W.M.; Blackwelder, J.T.; Eve, J.A.; Hopkins, B.A.; Anderson, K.L.; Jones, F.T.; Whitlow, L.W. Aflatoxin Binders II: Reduction of aflatoxin M1 in milk by sequestering agents of cows consuming aflatoxin in feed. Mycopathologia 2024, 157, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, M.C.; Neeff, D.V.; de Jager, A.V.; Corassin, C.H.; de Pinho Carão, Á.C.; Albuquerque, R.; de Azevedo, A.C.; Oliveira, C.A.F. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 2014, 33, 125–135. [Google Scholar] [CrossRef]
- Avantaggiato, G.; Solfrizzo, M.; Visconti, A. Recent advances on the use of adsorbent materials for detoxification of Fusarium mycotoxins. Food Addit. Contam. 2005, 22, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Miazzo, R.; Peralta, M.F.; Magnoli, C.; Salvano, M.; Ferrero, S.; Chiacchera, S.M.; Carvalho, E.C.Q.; Rosa, C.A.R.; Dalcero, A. Efficacy of sodium bentonite as a detoxifier of broiler feed contaminated with aflatoxin and fumonisin. Poult. Sci. 2005, 84, 1–8. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef]
- Liu, R.; Shen, Y.; Ma, H.; Li, Y.; Lambo, M.T.; Dai, B.; Shen, W.; Qu, Y.; Zhang, Y. Silibinin reduces in vitro methane production by regulating the rumen microbiome and metabolites. Front. Microbiol. 2023, 14, 1225643. [Google Scholar] [CrossRef]
- Jaguezeski, A.M.; Perin, G.; Crecencio, R.B.; Baldissera, M.D.; Stefanil, L.M.; da Silva, A.S. Addition of curcumin to the diet of dairy sheep improves health, performance and milk quality. Anim. Feed. Sci. Technol. 2018, 246, 144–157. [Google Scholar] [CrossRef]
- Li, S.; Liu, R.; Wei, G.; Huo, G.; Yu, H.; Zhang, Y.; Ishfaq, M.; Fazilani, S.A.; Zhang, X. Curcumin protects against Aflatoxin B1-induced liver injury in broilers via the modulation of long non-coding RNA expression. Ecotoxicol. Environ. Saf. 2021, 208, 111725. [Google Scholar] [CrossRef]
- Chen, S.; Yang, S.; Wang, M.; Chen, J.; Huang, S.; Wei, Z.; Cheng, Z.; Wang, H.; Long, M.; Li, P. Curcumin inhibits zearalenone-induced apoptosis and oxidative stress in Leydig cells via modulation of the PTEN/Nrf2/Bip signaling pathway. Food Chem. Toxicol. 2020, 141, 111385. [Google Scholar] [CrossRef]
- Li, X.; Mu, P.; Wen, J.; Deng, Y. Carrier-mediated and energy-dependent uptake and efflux of deoxynivalenol in mammalian cells. Sci. Rep. 2017, 7, 5889. [Google Scholar] [CrossRef]
- Belanche, A.; Arturo-Schaan, M.; Leboeuf, L.; Yanez-Ruiz, D.; Martin-Garcia, I. Early life supplementation with a natural blend containing turmeric, thymol, and yeast cell wall components to optimize rumen anatomical and microbiological development and productivity in dairy goats. J. Dairy Sci. 2023, 106, 4634–4649. [Google Scholar] [CrossRef] [PubMed]
- Aderinboye, R.Y.; Olanipekun, A.O. An in-vitro evaluation of the potentials of turmeric as phytogenic feed additive for rumen modification. Niger. J. Anim. Prod. 2021, 48, 193–203. [Google Scholar] [CrossRef]
- Aung, M.; Ohtsuka, H.; Izumi, K. Effect of yeast cell wall supplementation on production performances and blood biochemical indices of dairy cows in different lactation periods. Vet. World 2019, 12, 796. [Google Scholar] [CrossRef]
- Lesmeister, K.E.; Heinrichs, A.J.; Gabler, M.T. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J. Dairy Sci. 2004, 87, 1832–1839. [Google Scholar] [CrossRef]
- Moschini, M.; Gallo, A.; Piva, G.; Masoero, F. The Effects of Rumen Fluid on the in Vitro Aflatoxin Binding Capacity of Different Sequestering Agents and in Vivo Release of the Sequestered Toxin. Anim. Feed Sci. Technol. 2008, 147, 292–309. [Google Scholar] [CrossRef]
- Diaz, D.E.; Smith, T.K. Mycotoxin sequestering agents: Practical tools for the neutralization of mycotoxins. In The Mycotoxin Blue Book; Nottingham University Press: Thrumpton Nottingham, UK, 2005; Volume 15, p. 323. ISBN 1-904761-19-4. [Google Scholar]
- Puga-Torres, B.; Aragón Vásquez, E.; Ron, L.; Álvarez, V.; Bonilla, S.; Guzmán, A.; Lara, D.; De la Torre, D. Milk Quality Parameters of Raw Milk in Ecuador between 2010 and 2020: A Systematic Literature Review and Meta-Analysis. Foods 2022, 11, 3351. [Google Scholar] [CrossRef]
- Prandini, A.; Tansini, G.; Sigolo, S.; Filippi, L.; Laporta, M.; Piva, G. On the Occurrence of Aflatoxin M1 in Milk and Dairy Products. Food Chem. Toxicol. 2009, 47, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Kemboi, D.C.; Antonissen, G.; Ochieng, P.E.; Croubels, S.; Okoth, S.; Kangethe, E.K.; Faas, J.; Lindahl, J.F.; Gathumbi, J.K. A Review of the Impact of Mycotoxins on Dairy Cattle Health: Challenges for Food Safety and Dairy Production in Sub-Saharan Africa. Toxins 2020, 12, 222. [Google Scholar] [CrossRef]
- Zentai, A.; Jóźwiak, Á.; Süth, M.; Farkas, Z. Carry-Over of Aflatoxin B1 from Feed to Cow Milk—A Review. Toxins 2023, 15, 195. [Google Scholar] [CrossRef]
- Vieira, D.J.C.; Fonseca, M.L.; Poletti, G.; Martins, N.P.; Grigoletto, N.T.S.; Chesini, R.G.; Tonin, F.G.; Cortinhas, C.S.; Acedo, T.S.; Artavia, I.; et al. Anti-mycotoxin feed additives: Effects on metabolism, mycotoxin excretion, performance, and total-tract digestibility of dairy cows fed artificially multi-mycotoxin-contaminated diets. J. Dairy Sci. 2024, 107, 7891–7903. [Google Scholar] [CrossRef]
- Ghadiri, S.; Spalenza, V.; Dellafiora, L.; Badino, P.; Barbarossa, A.; Dall’Asta, C.; Nebbia, C.; Girolami, F. Modulation of Aflatoxin B1 Cytotoxicity and Aflatoxin M1 Synthesis by Natural Antioxidants in a Bovine Mammary Epithelial Cell Line. Toxicol. Vitr. 2019, 57, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Escrivá, L.; Font, G.; Manyes, L. In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food Chem. Toxicol. 2015, 78, 185–206. [Google Scholar] [CrossRef] [PubMed]
- May, H.D.; Wu, Q.; Blake, C.K. Effects of the Fusarium Spp. Mycotoxins Fusaric Acid and Deoxynivalenol on the Growth of Ruminococcus Albus and Methanobrevibacter Ruminantium. Can. J. Microbiol. 2000, 46, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J. Mechanisms of Deoxynivalenol-Induced Gene Expression and Apoptosis. Food Addit. Contam. 2008, 25, 1128–1140. [Google Scholar] [CrossRef] [PubMed]
- Cai, P.; Liu, S.; Tu, Y.; Shan, T. Toxicity, Biodegradation, and Nutritional Intervention Mechanism of Zearalenone. Sci. Total Environ. 2024, 911, 168648. [Google Scholar] [CrossRef]
- Hartinger, T.; Grabher, L.; Pacífico, C.; Angelmayr, B.; Faas, J.; Zebeli, Q. Short-Term Exposure to the Mycotoxins Zearalenone or Fumonisins Affects Rumen Fermentation and Microbiota, and Health Variables in Cattle. Food Chem. Toxicol. 2022, 162, 112900. [Google Scholar] [CrossRef]
- Dänicke, S.; Gädeken, D.; Ueberschär, K.H.; Meyer, U.; Scholz, H. Effects of Fusarium Toxin Contaminated Wheat and of a Detoxifying Agent on Performance of Growing Bulls, on Nutrient Digestibility in Wethers and on the Carry Over of Zearalenone. Arch. Anim. Nutr. 2002, 56, 245–261. [Google Scholar] [CrossRef]
- Pestka, J.J.; Smolinski, A.T. Deoxynivalenol: Toxicology and Potential Effects on Humans. J. Toxicol. Environ. Health Part B 2005, 8, 39–69. [Google Scholar] [CrossRef]
- Grenier, B.; Applegate, T.J. Modulation of Intestinal Functions Following Mycotoxin Ingestion: Meta-Analysis of Published Experiments in Animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef]
- Zinedine, A.; Mañes, J. Occurrence and Legislation of Mycotoxins in Food and Feed from Morocco. Food Control 2009, 20, 334–344. [Google Scholar] [CrossRef]
- McCormick, S.P. Microbial Detoxification of Mycotoxins. J. Chem. Ecol. 2013, 39, 907–918. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Shin, S.Y.; Kim, B.G. Evaluation of Mycotoxin Sequestering Agents for Aflatoxin and Deoxynivalenol: An in Vitro Approach. Springerplus 2014, 3, 346. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.H.; Wang, X.; Yang, W.; Nüssler, A.K.; Xiong, L.Y.; Kuča, K.; Dohnal, V.; Zhang, X.J.; Yuan, Z.H. Oxidative Stress-Mediated Cytotoxicity and Metabolism of T-2 Toxin and Deoxynivalenol in Animals and Humans: An Update. Arch. Toxicol. 2014, 88, 1309–1326. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Mosconi, M.; Trevisi, E.; Santos, R.R. Adverse Effects of Fusarium Toxins in Ruminants: A Review of In Vivo and In Vitro Studies. Dairy 2022, 3, 474–499. [Google Scholar] [CrossRef]
- Rheeder, J.P.; Marasas, W.F.O.; Vismer, H.F. Production of Fumonisin Analogs by Fusarium Species. Appl. Environ. Microbiol. 2002, 68, 2101. [Google Scholar] [CrossRef]
- Smith, J.S.; Thakur, R.A. Occurrence and Fate of Fumonisins in Beef. Adv. Exp. Med. Biol. 1996, 392, 39–55. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Leblanc, J.C.; Nielsen, E.; Ntzani, E.; et al. Assessment of Information as Regards the Toxicity of T-2 and HT-2 Toxin for Ruminants. EFSA J. 2022, 20, e07564. [Google Scholar] [CrossRef]
- Devreese, M.; Girgis, G.N.; Tran, S.T.; De Baere, S.; De Backer, P.; Croubels, S.; Smith, T.K. The effects of feed-borne Fusarium mycotoxins and glucomannan in turkey poults based on specific and non-specific parameters. Food Chem. Toxicol. 2014, 63, 69–75. [Google Scholar] [CrossRef]
- Kim, S.W.; Holanda, D.M.; Gao, X.; Park, I.; Yiannikouris, A. Efficacy of a yeast cell wall extract to mitigate the effect of naturally co-occurring mycotoxins contaminating feed ingredients fed to young pigs: Impact on gut health, microbiome, and growth. Toxins 2019, 11, 633. [Google Scholar] [CrossRef]
- Broadway, P.R.; Carroll, J.A.; Sanchez, N.C. Live yeast and yeast cell wall supplements enhance immune function and performance in food-producing livestock: A review. Microorganisms 2015, 3, 417–427. [Google Scholar] [CrossRef]
- Firmin, S.; Morgai, D.P.; Yiannikouris, A.; Boudra, H. Effectiveness of modified yeast cell wall extracts to reduce aflatoxin B1 absorption in dairy ewes. J. Dairy Sci. 2011, 94, 5611–5619. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.M.; Wood, K.M.; McEwun, P.L.; Smith, T.K.; Mandell, I.B.; Yannikouris, A.; Swason, K.C. Effects of feeding corn naturally contaminated with Fusarium mycotoxins and/or a modified yeast cell wall extract on the performance, immunity and carcass characteristics of grain-fed veal calves. Anim. Feed. Sci. Technol. 2010, 159, 27–34. [Google Scholar] [CrossRef]
- Deng, Z.; Jang, K.B.; Jalukar, S.; Du, X.; Kim, S.W. Efficacy of feed additive containing bentonite and enzymatically hydrolyzed yeast on intestinal health and growth of newly weaned pigs under chronic dietary challenges of fumonisin and aflatoxin. Toxins 2023, 15, 433. [Google Scholar] [CrossRef] [PubMed]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The Estimation of the Digestibility and Metabolizable Energy Content of Ruminant Feedingstuffs from the Gas Production When They Are Incubated with Rumen Liquor in Vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Pirondini, M.; Colombini, S.; Malagutti, L.; Rapetti, L.; Galassi, G.; Zanchi, R.; Crovetto, G.M. Effects of a Selection of Additives on in Vitro Ruminal Methanogenesis and in Situ and in Vivo NDF Digestibility. Anim. Sci. J. 2015, 86, 59–68. [Google Scholar] [CrossRef]
- Serment, A.; Giger-Reverdin, S.; Schmidely, P.; Dhumez, O.; Broudiscou, L.P.; Sauvant, D. In vitro fermentation of total mixed diets differing in concentrate proportion: Relative effects of inocula and substrates. J. Sci. Food Agric. 2015, 96, 160–168. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed. Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Rocchetti, G.; Ghilardelli, F.; Masoero, F.; Gallo, A. Screening of Regulated and Emerging Mycotoxins in Bulk Milk Samples by High-Resolution Mass Spectrometry. Foods 2021, 10, 2025. [Google Scholar] [CrossRef]
Treatments | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CTR | Dose 1 | Dose 2 | |||||||||
Mycotoxin | 1 h | 4 h | 24 h | 1 h | 4 h | 24 h | 1 h | 4 h | 24 h | RMSE | |
ZEN | % Sequestered * | 59.2 | 63.1 | 64.2 | 92.8 | 94.7 | 96.3 | 94.9 | 95.2 | 96.3 | 0.016 |
mean | 62.1 a | 94.6 b | 95.3 b | ||||||||
% Released ** | 67.4 | 71.8 | 50.4 | 82.4 | 77.3 | 27.7 | 76.4 | 60.6 | 24.8 | 0.250 | |
mean | 63.2 a | 62.4 a | 54.0 a | ||||||||
DON | % Sequestered * | 49.0 | 49.4 | 59.8 | 73.7 | 72.5 | 83.9 | 73.3 | 78.7 | 85.4 | 0.072 |
mean | 52.8 a | 76.9 b | 79.2 b | ||||||||
% Released * | 7.1 | 9.9 | 1.3 | 7.1 | 7.8 | 2.6 | 6.2 | 11.9 | 3.8 | 0.048 | |
mean | 5.9 a | 6.0 a | 7.4 a | ||||||||
FBs | % Sequestered * | 44.9 | 44.3 | 43.4 | 60.1 | 62.7 | 63.6 | 63.2 | 59.7 | 53.1 | 0.058 |
mean | 44.2 a | 58.7 b | 62.1 b | ||||||||
% Released ** | 49.1 | 62.8 | 62.2 | 32.7 | 32.2 | 31.9 | 31.0 | 41.5 | 59.1 | 0.127 | |
mean | 58.1 b | 32.3 a | 43.9 a |
VIP Weak Binding | VIP Score | Log2FC Dose 1 vs. CTR | Log2FC Dose 2 vs. CTR |
---|---|---|---|
Alternariol | 1.183 | −0.465 | ns |
Apicidin | 1.318 | ns | −0.324 |
Beauvericin | 1.223 | −4.51 | −1.74 |
Deepoxy-deoxynivalenol | 1.073 | 0.214 | 0.160 |
Fumonisin B1 | 1.166 | −0.347 | 0.343 |
Mycophenolic acid | 1.142 | 0.484 | 0.436 |
Citrinin | 1.039 | 0.361 | −0.864 |
Lycopene | 1.094 | 0.594 | 0.169 |
Silibinin | 1.112 | ns | 0.417 |
Formononetin | 1.125 | 0.202 | 0.276 |
Diosmin | 1.109 | 1.20 | −1.56 |
Quercetin 3,7-dimethyl ether | 1.157 | ns | 0.448 |
2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-6-nitro-4H-chromen-4-one | 1.233 | 0.179 | ns |
Ellagic acid | 1.357 | 0.191 | ns |
Genistin | 1.361 | −0.757 | ns |
VIP strong binding | VIP score | Log2FC Dose 1 Vs. CTR | Log2FC Dose 2 Vs. CTR |
AFB1 | 1.339 | 0.740 | 0.976 |
Deepoxy-deoxynivalenol | 1.395 | 0.612 | 0.653 |
Emodin | 1.088 | 0.381 | 0.409 |
Enniatin B1 | 1.010 | ns | 0.446 |
Fumonisin A1 | 1.003 | −0.577 | −0.306 |
Fumonisin B1 | 1.146 | −0.675 | 0.149 |
Fumonisin B2 | 1.062 | −0.668 | −0.240 |
Fumonisin B3 | 1.154 | −0.354 | −0.192 |
Fumonisin B4 | 1.078 | −0.170 | ns |
HT-2 | 1.211 | −0.608 | −0.365 |
Mycophenolic acid | 1.192 | 0.284 | 0.456 |
Nivalenol | 1.228 | ns | 0.297 |
Zearalenone | 1.133 | −0.872 | −0.953 |
Apigenin | 1.015 | ns | −0.248 |
beta, beta-carotene | 1.023 | −0.342 | ns |
6-methoxy-7-(3-methylbut-2-enoxy)chromen-2-one | 1.036 | −0.391 | −0.462 |
Adenosine-3-monophosphate | 1.052 | −0.954 | −0.206 |
delta-tocopherol | 1.077 | 0.228 | 0.687 |
Quercetin 3,7-dimethyl ether | 1.080 | 0.342 | 0.405 |
Roquefortine A | 1.108 | ns | −0.205 |
Formononetin | 1.126 | 0.179 | ns |
Genistein | 1.144 | −0.297 | −0.285 |
Schisandrin | 1.153 | 1.574 | 1.124 |
Altertoxin I | 1.155 | 1.726 | 1.499 |
(-)-Gallocatechin-3-O-gallate | 1.167 | ns | 0.332 |
Sphinganine 1-phosphate | 1.173 | ns | −0.146 |
PC(16:0/18:1(9Z)) | 1.175 | 0.316 | ns |
Kaempferol | 1.184 | −1.143 | −1.378 |
LPC 18:2 | 1.209 | 1.276 | 1.628 |
Poncirin | 1.223 | 0.335 | −0.314 |
Phosphatidylethanolamine (20:3/16:1) | 1.246 | ns | −0.279 |
Naringenin | 1.259 | −0.496 | 0.394 |
4-methylumbelliferyl acetate | 1.289 | 0.210 | 0.341 |
Neoeriocitrin | 1.309 | 2.354 | 2.515 |
Ellagic acid | 1.355 | ns | 0.293 |
3,7-Dihydroxyflavone | 1.359 | 0.226 | ns |
Sphingosine-1-Phosphate (C17 base) | 1.402 | 0.530 | 0.486 |
Fusidic acid | 1.427 | −0.351 | −0.384 |
Quercetin-3-O-beta-galactoside | 1.482 | −0.764 | −1.598 |
4′-hydroxy-2′,4,6′-trimethoxychalcone | 1.494 | 0.350 | 0.319 |
alpha-Tocopherol | 1.524 | 0.191 | −0.291 |
Naringenin-7-O-glucoside | 1.527 | −0.144 | −0.418 |
Chrysin | 1.533 | 1.148 | 1.023 |
Diosmin | 1.687 | 1.119 | 1.929 |
Mycotoxins | mg/kg DM |
---|---|
Aflatoxins | 0.002 |
Fumonisins | 10 |
Deoxynivalenol | 2 |
Zearalenone | 1 |
T2 and H-T2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorbelli, E.; Lapris, M.; Errico, M.; Della Badia, A.; Riahi, I.; Rocchetti, G.; Gallo, A. Mycotoxin Challenge in Dairy Cows: Assessment of the Efficacy of an Anti-Mycotoxin Agent by Adopting an In Vitro Rumen Simulation Method. Toxins 2024, 16, 490. https://doi.org/10.3390/toxins16110490
Fiorbelli E, Lapris M, Errico M, Della Badia A, Riahi I, Rocchetti G, Gallo A. Mycotoxin Challenge in Dairy Cows: Assessment of the Efficacy of an Anti-Mycotoxin Agent by Adopting an In Vitro Rumen Simulation Method. Toxins. 2024; 16(11):490. https://doi.org/10.3390/toxins16110490
Chicago/Turabian StyleFiorbelli, Erica, Marco Lapris, Michela Errico, Antonella Della Badia, Insaf Riahi, Gabriele Rocchetti, and Antonio Gallo. 2024. "Mycotoxin Challenge in Dairy Cows: Assessment of the Efficacy of an Anti-Mycotoxin Agent by Adopting an In Vitro Rumen Simulation Method" Toxins 16, no. 11: 490. https://doi.org/10.3390/toxins16110490
APA StyleFiorbelli, E., Lapris, M., Errico, M., Della Badia, A., Riahi, I., Rocchetti, G., & Gallo, A. (2024). Mycotoxin Challenge in Dairy Cows: Assessment of the Efficacy of an Anti-Mycotoxin Agent by Adopting an In Vitro Rumen Simulation Method. Toxins, 16(11), 490. https://doi.org/10.3390/toxins16110490