The Effects of Kernel Type (Inshell, Shelled and Split Almonds) on the Growth and Aflatoxin Production of A. flavus Under Different Combinations of Water Activity and Temperature
Abstract
:1. Introduction
2. Results
2.1. Fungal Growth and Total Aflatoxin Production at 0.85 and 0.92 aw
2.2. Fungal Growth and Total Aflatoxin Production at 0.95 aw
2.3. Fungal Growth and Total Aflatoxin Production at 0.98 aw
2.4. Statistical Analysis and Linear Regression Models
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Almond Samples
5.2. Water Activity Adjustment
5.3. Inoculation and Growth Measurement
5.4. Aflatoxin Extraction and Purification
5.5. Aflatoxin Detection and Quantification
5.6. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanik, T.; Kabak, B. Aflatoxins in almonds: Monitoring and exposure assessment. J. Food Saf. 2019, 39, e12646. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Summaries & Evaluations. In Aflatoxins; IARC: Lyon, France, 2002; Volume 82, Available online: https://inchem.org/documents/iarc/vol82/82-04.html (accessed on 1 August 2024).
- European Commission (EC). Commission Regulation (EU) 2023/915 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, 119, 103–157. [Google Scholar]
- National Grain and Feed Association. FDA Mycotoxin Regulatory Guidance. A Guide for Grain Elevators, Feed Manufacturers, Grain Processors and Exporters. Available online: www.ngfa.org (accessed on 3 February 2024).
- Vita, V.; Franchino, C.; Iammarino, M.; De Pace, R. Aflatoxins contamination in nuts for direct human consumption: Analytical findings from three years of official control in Italy. Int. J. Food Sci. Technol. 2022, 57, 7496–7504. [Google Scholar] [CrossRef]
- Almond Board of California (ABC). Market Profile: United States. Available online: https://www.almonds.com/sites/default/files/2024-03/2024GTRA0013_Market%20Profile_USA.pdf (accessed on 11 June 2024).
- Gallo, A.; Solfrizzo, M.; Epifani, F.; Panzarini, G.; Perrone, G. Effect of temperature and water activity on gene expression and aflatoxin biosynthesis in Aspergillus flavus on almond medium. Int. J. Food Microbiol. 2016, 217, 162–169. [Google Scholar] [CrossRef]
- Almond Board of California (ABC). Global Update. Available online: https://www.almonds.com/sites/default/files/2024-02/2024GTRA_February_GlobalUpdate.pdf (accessed on 11 June 2024).
- Donner, M.; Lichtemberg, P.S.F.; Doster, M.; Picot, A.; Cotty, P.J.; Puckett, R.D.; Michailides, T.J. Community Structure of Aspergillus flavus and A. parasiticus in Major Almond-Producing Areas of California, United States. Plant Dis. 2015, 99, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.; Molyneux, R.J.; Schatzki, T.F. Current research on reducing pre- and post-harvest aflatoxin contamination of US almond, pistachio, and walnut. J. Toxicol. Toxin Rev. 2003, 22, 225–266. [Google Scholar] [CrossRef]
- Picot, A.; Ortega-Beltran, A.; Puckett, R.D.; Siegel, J.P.; Michailides, T.J. Period of susceptibility of almonds to aflatoxin contamination during development in the orchard. Eur. J. Plant Pathol. 2017, 148, 521–531. [Google Scholar] [CrossRef]
- Gradziel, T.M.; Wang, D. Susceptibility of California Almond Cultivars to Aflatoxigenic Aspergillus-Flavus. Hortscience 1994, 29, 33–35. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Emadi, A.; Arabameri, M.; Jayedi, A.; Abdolshahi, A.; Yancheshmeh, B.S.; Shariatifar, N. The prevalence of aflatoxins in different nut samples: A global systematic review and probabilistic risk assessment. Aims Agric. Food 2022, 7, 130–148. [Google Scholar] [CrossRef]
- Rane, B.; Lacombe, A.; Guan, J.W.; Lucero, L.; Bridges, D.F.; Sablani, S.; Tang, J.M.; Wu, V.C.H. Reduction of Aspergillus flavus and aflatoxin on almond kernels using gaseous chlorine dioxide fumigation. Food Chem. 2023, 402, 134161. [Google Scholar] [CrossRef]
- Gizachew, D.; Chang, C.H.; Szonyi, B.; De La Torre, S.; Ting, W.T.E. Aflatoxin B1 (AFB1) production by Aspergillus flavus and Aspergillus parasiticus on ground Nyjer seeds: The effect of water activity and temperature. Int. J. Food Microbiol. 2019, 296, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Ting, W.T.E.; Chang, C.H.; Szonyi, B.; Gizachew, D. Growth and Aflatoxin B1, B2, G1, G2 Production by Aspergillus flavus and Aspergillus parasiticus on Ground Flax Seeds (Linum usitatissimum). J. Food Prot. 2020, 83, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Giorni, P.; Magan, N.; Pietri, A.; Battilani, P. Growth and aflatoxin production of an Italian strain of Aspergillus flavus: Influence of ecological factors and nutritional substrates. World Mycotoxin J. 2011, 4, 425–432. [Google Scholar] [CrossRef]
- Lahouar, A.; Marin, S.; Crespo-Sempere, A.; Saïd, S.; Sanchis, V. Effects of temperature, water activity and incubation time on fungal growth and aflatoxin B1 production by toxinogenic Aspergillus flavus isolates on sorghum seeds. Rev. Argent. Microbiol. 2016, 48, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Jin, J.; Wang, P.; Dai, X.F.; Liu, Y.; Zheng, M.M.; Xing, F.G. Interaction of water activity and temperature on the growth, gene expression and aflatoxin production by Aspergillus flavus on paddy and polished rice. Food Chem. 2019, 293, 472–478. [Google Scholar] [CrossRef]
- Peromingo, B.; Rodriguez, A.; Bernaldez, V.; Delgado, J.; Rodriguez, M. Effect of temperature and water activity on growth and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus on cured meat model systems. Meat Sci. 2016, 122, 76–83. [Google Scholar]
- Casquete, R.; Benito, M.J.; Córdoba, M.G.; Ruiz-Moyano, S.; Martín, A. The growth and aflatoxin production of Aspergillus flavus strains on a cheese model system are influenced by physicochemical factors. J. Dairy Sci. 2017, 100, 6987–6996. [Google Scholar] [CrossRef]
- Schmidt-Heydt, M.; Magan, N.; Geisen, R. Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiol. Lett. 2008, 284, 142–149. [Google Scholar] [CrossRef]
- Saleemullah; Iqbal, A.; Khalil, I.A.; Shah, H. Aflatoxin contents of stored and artificially inoculated cereals and nuts. Food Chem. 2006, 98, 699–703. [Google Scholar] [CrossRef]
- Fanelli, C.; Fabbri, A.A. Relationship between lipids and aflatoxin biosynthesis. Mycopathologia 1989, 107, 115–120. [Google Scholar] [CrossRef]
- Almond Board of California (ABC). Almond Composition. Available online: https://www.almonds.com/sites/default/files/content/attachments/aq0100_almond_nutrient_comparison_chart_-_final_-_3_27.pdf (accessed on 27 June 2024).
- Abdelgawad, K.M.; Zohri, A.A. Fungal Flora and Mycotoxins of 6 Kinds of Nut Seeds for Human Consumption in Saudi-Arabia. Mycopathologia 1993, 124, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Abdulkadar, A.H.W.; Al-Ali, A.; Al-Jedah, J. Aflatoxin contamination in edible nuts imported in Qatar. Food Control 2000, 11, 157–160. [Google Scholar] [CrossRef]
- Luttfullah, G.; Hussain, A. Studies on contamination level of aflatoxins in some dried fruits and nuts of Pakistan. Food Control 2011, 22, 426–429. [Google Scholar] [CrossRef]
- Rodrigues, P.; Venancio, A.; Lima, N. Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds. Sci. World J. 2012, 2012, 471926. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Chala, A.; Dejene, M.; Fininsa, C.; Hoisington, D.A.; Sobolev, V.S.; Arias, R.S. Aspergillus and aflatoxin in groundnut (Arachis hypogaea L.) and groundnut cake in Eastern Ethiopia. Food Addit. Contam. B 2016, 9, 290–298. [Google Scholar] [CrossRef]
- Kayode, O.F.; Sulyok, M.; Fapohunda, S.O.; Ezekiel, C.N.; Krska, R.; Oguntona, C.R.B. Mycotoxins and fungal metabolites in groundnut- and maize-based snacks from Nigeria. Food Addit. Contam. B 2013, 6, 294–300. [Google Scholar] [CrossRef]
- Li, X.M.; Liu, Y.N.; Hao, J.X.; Wang, W.H. Study of almond shell characteristics. Materials 2018, 11, 1782. [Google Scholar] [CrossRef]
- Garrido, I.; Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B. Polyphenols and antioxidant properties of almond skins: Influence of industrial processing. J. Food Sci. 2008, 73, C106–C115. [Google Scholar] [CrossRef]
- Almond Board of California (ABC). Guidelines for Validation of Propylene Oxide Pasteurization. Available online: https://www.almonds.com/sites/default/files/content/attachments/ppo-validation-guidelines.pdf (accessed on 1 August 2024).
- USDA. United States Department of Agriculture (USDA) ARS Culture Collection. Fungi Catalog. Available online: https://nrrl.ncaur.usda.gov/ (accessed on 13 September 2024).
- VICAM. A Waters Business Business. In Aflatest Fluorometer Instruction Manual; VICAM: Milford, MA, USA, 2020; pp. 4–58. [Google Scholar]
- Benford, D.; Boyle, C.; Dekant, W.; Fuchs, R.; Gaylor, D.W.; Hard, G.; Walker, R. Ochratoxin A. In Joint FAO/WHO Expert Committee on Food Additives (JECFA); Safety Evaluation of Certain Mycotoxins in Food; Food and Agriculture Organization: Geneva, Switzerland, 2001; pp. 281–415. [Google Scholar]
- Kim, H.J.; Lee, M.J.; Kim, H.J.; Choi, S.K.; Park, H.J.; Jeong, M.H. Analytical method development and monitoring of Aflatoxin B1, B2, G1, G2 and Ochratoxin A in animal feed using HPLC with Fluorescence detector and photochemical reaction device. Cogent Food Agric. 2017, 3, 1419788. [Google Scholar] [CrossRef]
Kernel Type | Days | Water Activity (aw) | ||||||||||||
0.85 | 0.92 | 0.95 | 0.98 | |||||||||||
Temperature (°C) | ||||||||||||||
20 | 27 | 35 | 20 | 27 | 35 | 20 | 27 | 35 | 20 | 27 | 35 | |||
Inshell | 10 | ND | ND | ND | ND | ND | ND | 19 | 20 | ND | 14 | 3 | ND | |
20 | ND | ND | ND | ND | ND | ND | 4 | 164 | 256 | 3 | 372 | 362 | ||
30 | ND | ND | ND | ND | ND | ND | 15 | 295 | 340 | 29 | 258 | 88 | ||
Shelled | 10 | ND | ND | ND | ND | ND | ND | 13 | 321 | 62 | 209 | 344 | 188 | |
20 | ND | ND | ND | ND | ND | ND | 45 | 271 | 257 | 341 | 349 | 338 | ||
30 | ND | ND | ND | ND | ND | ND | 133 | 508 | 463 | 308 | 292 | 402 | ||
Split | 10 | ND | ND | ND | 6 | 6 | 53 | 4 | 339 | 243 | 208 | 327 | 45 | |
20 | ND | ND | ND | 4 | 276 | 26 | 206 | 297 | 283 | 305 | 486 | 349 | ||
30 | ND | ND | ND | 70 | 453 | 470 | 482 | 442 | 279 | 279 | 334 | 317 |
Variable | Coefficient | Lower CI * | Upper CI | p-Value |
---|---|---|---|---|
Temperature (°C) | ||||
20 | Reference | |||
27 | 114.15 | 10.21 | 218.11 | 0.033 |
35 | 106.91 | 2.95 | 210.86 | 0.044 |
Water activity (aw) | ||||
0.92 | Reference | |||
0.95 | 123.67 | 19.71 | 227.62 | 0.022 |
0.98 | 125.20 | 21.24 | 229.15 | 0.021 |
Incubation (days) | 5.37 | 0.18 | 10.57 | 0.043 |
Intercept | −181.26 | −322.02 | −40.51 | 0.014 |
Variable | Coefficient | Lower CI * | Upper CI | p-Value |
---|---|---|---|---|
Temperature (°C) | ||||
20 | Reference | |||
27 | 115.06 | 22.83 | 207.31 | 0.017 |
35 | 73.41 | −18.83 | 165.63 | 0.113 |
Water activity (aw) | ||||
0.92 | Reference | |||
0.95 | 230.28 | 138.04 | 322.51 | <0.001 |
0.98 | 307.86 | 215.61 | 400.09 | <0.001 |
Incubation (days) | 5.39 | 0.78 | 10.01 | 0.024 |
Intercept | −170.66 | −295.55 | −45.77 | 0.010 |
Variable | Coefficient | Lower CI * | Upper CI | p-Value |
---|---|---|---|---|
Temperature (°C) | ||||
20 | Reference | |||
27 | 155.21 | 46.16 | 264.25 | 0.007 |
35 | 55.65 | −53.38 | 164.690 | 0.301 |
Water activity (aw) | ||||
0.92 | Reference | |||
0.95 | 134.72 | 25.68 | 243.76 | 0.018 |
0.98 | 143.01 | 33.96 | 252.05 | 0.013 |
Incubation (days) | 10.53 | 5.08 | 15.98 | 0.001 |
Intercept | −129.64 | −277.28 | 17.99 | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szonyi, B.; Huang, G.; Birmingham, T.; Gizachew, D. The Effects of Kernel Type (Inshell, Shelled and Split Almonds) on the Growth and Aflatoxin Production of A. flavus Under Different Combinations of Water Activity and Temperature. Toxins 2024, 16, 493. https://doi.org/10.3390/toxins16110493
Szonyi B, Huang G, Birmingham T, Gizachew D. The Effects of Kernel Type (Inshell, Shelled and Split Almonds) on the Growth and Aflatoxin Production of A. flavus Under Different Combinations of Water Activity and Temperature. Toxins. 2024; 16(11):493. https://doi.org/10.3390/toxins16110493
Chicago/Turabian StyleSzonyi, Barbara, Guangwei Huang, Tim Birmingham, and Dawit Gizachew. 2024. "The Effects of Kernel Type (Inshell, Shelled and Split Almonds) on the Growth and Aflatoxin Production of A. flavus Under Different Combinations of Water Activity and Temperature" Toxins 16, no. 11: 493. https://doi.org/10.3390/toxins16110493
APA StyleSzonyi, B., Huang, G., Birmingham, T., & Gizachew, D. (2024). The Effects of Kernel Type (Inshell, Shelled and Split Almonds) on the Growth and Aflatoxin Production of A. flavus Under Different Combinations of Water Activity and Temperature. Toxins, 16(11), 493. https://doi.org/10.3390/toxins16110493