The Effect of Purified Opharin Isolated from the Venom of King Cobra (Ophiophagus hannah) in Modulating Macrophage Inflammatory Responses and Vascular Integrity
Abstract
:1. Introduction
2. Results
2.1. Isolation and Purification of Opharin from the King Cobra Venom
2.2. Cellular Cytotoxicity and In Vitro Endothelial Permeability in Response to Opharin
2.3. The Production of Inflammatory Cytokines in Opharin-Treated MDM Cells
2.4. In Vivo Vascular Permeability Effects of Opharin
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Purification of Opharin from the Crude King Cobra Venom
5.2. SDS-PAGE and Automated N-Terminal Sequencing
5.3. Cell Lines and Culture Conditions
5.4. Cell Cytotoxicity Assay
5.5. Endothelial Permeability Assay
5.6. Cell Activation Assays
5.7. Quantification of Inflammatory Mediators
5.8. Miles Assay
5.9. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Regional Office for South-East Asia. Guidelines for the Management of Snakebites; WHO Regional Office for South-East Asia: New Delhi, India, 2016; ISBN 978-92-9022-530-0. [Google Scholar]
- Tan, C.H.; Bourges, A.; Tan, K.Y. King Cobra and Snakebite Envenomation: On the Natural History, Human-Snake Relationship and Medical Importance of Ophiophagus hannah. J. Venom. Anim. Toxins Incl. Trop. Dis. 2022, 27, e20210051. [Google Scholar] [CrossRef]
- Danpaiboon, W.; Reamtong, O.; Sookrung, N.; Seesuay, W.; Sakolvaree, Y.; Thanongsaksrikul, J.; Dong-din-on, F.; Srimanote, P.; Thueng-in, K.; Chaicumpa, W. Ophiophagus hannah Venom: Proteome, Components Bound by Naja Kaouthia Antivenin and Neutralization by N. kaouthia Neurotoxin-Specific Human ScFv. Toxins 2014, 6, 1526–1558. [Google Scholar] [CrossRef] [PubMed]
- Petras, D.; Heiss, P.; Süssmuth, R.D.; Calvete, J.J. Venom Proteomics of Indonesian King Cobra, Ophiophagus hannah: Integrating Top-Down and Bottom-Up Approaches. J. Proteome Res. 2015, 14, 2539–2556. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.H.; Tan, K.Y.; Fung, S.Y.; Tan, N.H. Venom-Gland Transcriptome and Venom Proteome of the Malaysian King Cobra (Ophiophagus hannah). BMC Genom. 2015, 16, 687. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.Y.; Lee, B.M.; Kim, Y.S. Characterization and Cytotoxicity of L-Amino Acid Oxidase from the Venom of King Cobra (Ophiophagus hannah). Int. J. Biochem. Cell Biol. 1997, 29, 911–919. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-Y.; Lee, W.-H.; Zhang, Y. Cloning and Purification of α-Neurotoxins from King Cobra (Ophiophagus hannah). Toxicon 2004, 44, 295–303. [Google Scholar] [CrossRef]
- Rajagopalan, N.; Pung, Y.F.; Zhu, Y.Z.; Wong, P.T.H.; Kumar, P.P.; Kini, R.M. Beta-Cardiotoxin: A New Three-Finger Toxin from Ophiophagus hannah (King Cobra) Venom with Beta-Blocker Activity. FASEB J. 2007, 21, 3685–3695. [Google Scholar] [CrossRef]
- Lertwanakarn, T.; Suntravat, M.; Sanchez, E.E.; Boonhoh, W.; Solaro, R.J.; Wolska, B.M.; Martin, J.L.; de Tombe, P.P.; Tachampa, K. Suppression of Cardiomyocyte Functions by β-CTX Isolated from the Thai King Cobra (Ophiophagus hannah) Venom via an Alternative Method. J. Venom. Anim. Toxins Incl. Trop. Dis. 2020, 26, e20200005. [Google Scholar] [CrossRef] [PubMed]
- Lertwanakarn, T.; Suntravat, M.; Sánchez, E.E.; Wolska, B.M.; Solaro, R.J.; de Tombe, P.P.; Tachampa, K. Negative Inotropic Mechanisms of β-Cardiotoxin in Cardiomyocytes by Depression of Myofilament ATPase Activity without Activation of the Classical β-Adrenergic Pathway. Sci. Rep. 2021, 11, 21154. [Google Scholar] [CrossRef]
- Nys, M.; Zarkadas, E.; Brams, M.; Mehregan, A.; Kambara, K.; Kool, J.; Casewell, N.R.; Bertrand, D.; Baenziger, J.E.; Nury, H.; et al. The Molecular Mechanism of Snake Short-Chain α-Neurotoxin Binding to Muscle-Type Nicotinic Acetylcholine Receptors. Nat. Commun. 2022, 13, 4543. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.Z.; Gopalakrishnakone, P.; Kini, R.M. Role of Enzymatic Activity in the Antiplatelet Effects of a Phospholipase A2 from Ophiophagus hannah Snake Venom. Life Sci. 1997, 61, 2211–2217. [Google Scholar] [CrossRef]
- Matsui, T.; Fujimura, Y.; Titani, K. Snake Venom Proteases Affecting Hemostasis and Thrombosis. Biochim. Biophys. Acta 2000, 1477, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Chippaux, J.P.; Goyffon, M. Venoms, Antivenoms and Immunotherapy. Toxicon 1998, 36, 823–846. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.Y.; Tan, C.H.; Fung, S.Y.; Tan, N.H. Venomics, Lethality and Neutralization of Naja kaouthia (Monocled Cobra) Venoms from Three Different Geographical Regions of Southeast Asia. J. Proteom. 2015, 120, 105–125. [Google Scholar] [CrossRef]
- Tadokoro, T.M.; Modahl, C.; Maenaka, K.; Aoki-Shioi, N. Cysteine-Rich Secretory Proteins (CRISPs) from Venomous Snakes: An Overview of the Functional Diversity in a Large and Underappreciated Superfamily. Toxins 2020, 12, 175. [Google Scholar] [CrossRef] [PubMed]
- Mackessy, S. Handbook of Venoms and Toxins of Reptiles; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-0-8493-9165-1. [Google Scholar]
- Yamazaki, Y.; Brown, R.L.; Morita, T. Purification and Cloning of Toxins from Elapid Venoms That Target Cyclic Nucleotide-Gated Ion Channels. Biochemistry 2002, 41, 11331–11337. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Hyodo, F.; Morita, T. Wide Distribution of Cysteine-Rich Secretory Proteins in Snake Venoms: Isolation and Cloning of Novel Snake Venom Cysteine-Rich Secretory Proteins. Arch. Biochem. Biophys. 2003, 412, 133–141. [Google Scholar] [CrossRef]
- Wang, F.; Li, H.; Liu, M.; Song, H.; Han, H.; Wang, Q.; Yin, C.; Zhou, Y.; Qi, Z.; Shu, Y.; et al. Structural and Functional Analysis of Natrin, a Venom Protein That Targets Various Ion Channels. Biochem. Biophys. Res. Commun. 2006, 351, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Lodovicho, M.E.; Costa, T.R.; Bernardes, C.P.; Menaldo, D.L.; Zoccal, K.F.; Carone, S.E.; Rosa, J.C.; Pucca, M.B.; Cerni, F.A.; Arantes, E.C.; et al. Investigating Possible Biological Targets of Bj-CRP, the First Cysteine-Rich Secretory Protein (CRISP) Isolated from Bothrops jararaca Snake Venom. Toxicol. Lett. 2017, 265, 156–169. [Google Scholar] [CrossRef]
- Wang, J.; Shen, B.; Guo, M.; Lou, X.; Duan, Y.; Cheng, X.P.; Teng, M.; Niu, L.; Liu, Q.; Huang, Q.; et al. Blocking Effect and Crystal Structure of Natrin Toxin, a Cysteine-Rich Secretory Protein from Naja Atra Venom That Targets the BKCa Channel. Biochemistry 2005, 44, 10145–10152. [Google Scholar] [CrossRef] [PubMed]
- Suntravat, M.; Cromer, W.E.; Marquez, J.; Galan, J.A.; Zawieja, D.C.; Davies, P.; Salazar, E.; Sánchez, E.E. The Isolation and Characterization of a New Snake Venom Cysteine-Rich Secretory Protein (svCRiSP) from the Venom of the Southern Pacific Rattlesnake and Its Effect on Vascular Permeability. Toxicon 2019, 165, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Salazar, E.; Cirilo, A.; Reyes, A.; Barrientos, M.; Galan, J.; Sánchez, E.E.; Suntravat, M. Snake Venom Cysteine-Rich Secretory Protein from Mojave Rattlesnake Venom (Css-CRiSP) Induces Acute Inflammatory Responses on Different Experimental Models. Toxicon X 2023, 21, 100180. [Google Scholar] [CrossRef] [PubMed]
- Suntravat, M.; Sanchez, O.; Reyes, A.; Cirilo, A.; Ocheltree, J.S.; Galan, J.A.; Salazar, E.; Davies, P.; Sanchez, E.E. Evaluation of Signaling Pathways Profiling in Human Dermal Endothelial Cells Treated by Snake Venom Cysteine-Rich Secretory Proteins (svCRiSPs) from North American Snakes Using Reverse Phase Protein Array (RPPA). Toxins 2021, 13, 613. [Google Scholar] [CrossRef]
- Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and Cancer. Ann. Afr. Med. 2019, 18, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Afjei, R.; Massoud, T.F.; Paulmurugan, R. Comparison of cell-based assays to quantify treatment effects of anticancer drugs identifies a new application for Bodipy-L-cystine to measure apoptosis. Sci. Rep. 2018, 8, 16363. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Albrecht, W.; Edlund, K.; Kappenbert, F.; Rahnenführer, J.; Leist, M.; Moritz, W.; Godoy, P.; Cadenase, C.; Marchan, R.; et al. Relevance of the incubation period in cytotoxicity testing with primary human hepatocytes. Arch. Toxicol. 2018, 92, 3505–3515. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, C.S.; Falcão, C.B.; Fontenelle, R.O.; Andreu, D.; Rádis-Baptista, G. Anti-fungal activity of Ctn[15-34, the C-terminal peptide fragment of crotalicidin, a rattlesnake venom gland cathelicidin. J. Antibiot. 2017, 70, 231–237. [Google Scholar] [CrossRef]
- Warrell, D.A. Bites by the King Cobra (Ophiophagus hannah) in Myanmar: Successful Treatment of Severe Neurotoxic Envenoming. Q. J. Med. 1991, 80, 751–762. [Google Scholar]
- Le, H.Q.; Nguyen, N.T.T.; Vo, T.N.A.; Van Nguyen, T.; Do, K.T.N.; Ho, T.T.C.; Nguyen, S.N.; Phan, X.T.; Nguyen, D.L.M.; Kieu, D.N.; et al. Envenoming by King Cobras (Ophiophagus hannah) in Vietnam with Cardiac Complications and Necrotizing Fasciitis. Toxicon 2021, 200, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, R.; Aoki, Y.; Tan, M.A.; Sarsalijo, M.S.; Sarmiento, M.J.; Paghubasan, J.; Tiglao, P.J.; Yoshimura, K.; Sakai, A.; Agosto, L.C. A Fatal Snakebite Envenomation Due to King Cobra (Ophiophagus hannah) in the Eastern Visayas, Philippines. Toxicon 2024, 244, 107751. [Google Scholar] [CrossRef] [PubMed]
- Veto, T.; Price, R.; Silsby, J.F.; Carter, J.A. Treatment of the First Known Case of King Cobra Envenomation in the United Kingdom, Complicated by Severe Anaphylaxis. Anaesthesia 2007, 62, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Gold, B.S.; Pyle, P. Successful Treatment of Neurotoxic King Cobra Envenomation in Myrtle Beach, South Carolina. Ann. Emerg. Med. 1998, 32, 736–738. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.M.; Silva, A.; Isbister, G.K.; Hodgson, W.C. Isolation and Pharmacological Characterization of α-Elapitoxin-Oh3a, a Long-Chain Post-Synaptic Neurotoxin From King Cobra (Ophiophagus hannah) Venom. Front. Pharmacol. 2022, 13, 815069. [Google Scholar] [CrossRef]
- Shikamoto, Y.; Suto, K.; Yamazaki, Y.; Morita, T.; Mizuno, H. Crystal Structure of a CRISP Family Ca2+-Channel Blocker Derived from Snake Venom. J. Mol. Biol. 2005, 350, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Reece, M.D.; Taylor, R.R.; Song, C.; Gavegnano, C. Targeting Macrophage Dysregulation for Viral Infections: Novel Targets for Immunomodulators. Front. Immunol. 2021, 12, 768695. [Google Scholar] [CrossRef] [PubMed]
- Nikitina, E.; Larionova, I.; Choinzonov, E.; Kzhyshkowska, J. Monocytes and Macrophages as Viral Targets and Reservoirs. Int. J. Mol. Sci. 2018, 19, 2821. [Google Scholar] [CrossRef] [PubMed]
- Dias-Netipanyj, M.F.; Boldrini-Leite, L.M.; Trindade, E.S.; Moreno-Amaral, A.N.; Elifio-Esposito, S. Bjcul, a Snake Venom Lectin, Modulates Monocyte-Derived Macrophages to a pro-Inflammatory Profile in Vitro. Toxicol. Vitr. 2016, 33, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Boda, F.; Banfai, K.; Garai, K.; Curticapean, A.; Berta, L.; Sipos, E.; Kvell, K. Effect of Vipera ammodytes ammodytes Snake Venom on the Human Cytokine Network. Toxins 2018, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.; Cury, Y.; Moreira, V.; Picolo, G.; Chaves, F. Inflammation induced by Bothrops asper venom. Toxicon 2005, 45, 863–871. [Google Scholar] [CrossRef]
- Kamiguti, A.S.; Hay, C.R.; Theakston, R.D. Zince metalloproteinases from snake venoms. Toxicon 1996, 34, 1277–1304. [Google Scholar]
- Escalante, T.; Rucavado, A.; Gutiérrez, J.M. Snake venom metalloproteinases. Biol. Chem. 2011, 392, 387–407. [Google Scholar] [CrossRef]
- Kini, R.M. Excitement ahead: Structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 2003, 42, 827–840. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Escalante, T.; Rucavado, A. Experimental pathophysiology of systemic alterations induced by snake venom hemorrhagic metalloproteinases: A review. Toxicon 2016, 119, 41–48. [Google Scholar] [CrossRef]
- Zuliani, J.P. Alarmins and inflammatory aspects related to snakebite envenomation. Toxicon 2023, 226, 107088. [Google Scholar] [CrossRef] [PubMed]
- Patzelt, J.; Langer, H.F. Platelets in inflammation and immune modulation. Front. Immunol. 2021, 12, 2936. [Google Scholar]
- Baggiolini, M.; Walz, A.; Kunkel, S.L. Neutrophil-Activating Peptide-1/Interleukin 8, a Novel Cytokine That Activates Neutrophils. J. Clin. Investig. 1989, 84, 1045–1049. [Google Scholar] [CrossRef]
- Tracey, K.J.; Cerami, A. Tumor Necrosis Factor: A Pleiotropic Cytokine and Therapeutic Target. Annu. Rev. Med. 1994, 45, 491–503. [Google Scholar] [CrossRef]
- Dinarello, C.A. Interleukin-1 in the Pathogenesis and Treatment of Inflammatory Diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef]
- Hunter, C.A.; Jones, S.A. IL-6 as a Keystone Cytokine in Health and Disease. Nat. Immunol. 2015, 16, 448–457. [Google Scholar] [CrossRef]
- Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the Interleukin-10 Receptor. Annu. Rev. Immunol. 2001, 19, 683–765. [Google Scholar] [CrossRef] [PubMed]
- Deka, A.; Sharma, M.; Mukhopadhyay, R.; Devi, A.; Doley, R. Naja kaouthia Venom Protein, Nk-CRISP, Upregulates Inflammatory Gene Expression in Human Macrophages. Int. J. Biol. Macromol. 2020, 160, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Tsai, T.S.; Tsai, I.H. Functional proteomic approach to discover geographic variations of king cobra venoms from Southeast Asia and China. J. Proteom. 2013, 89, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Kunalan, S.; Othman, I.; Hassan, S.S.; Hodgson, W.C. Proteomic Characterization of Two Medically Important Malaysian Snake Venoms, Calloselasma rhodostoma (Malayan Pit Viper) and Ophiophagus hannah (King Cobra). Toxins 2018, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Fu, Y.; Zhang, Z.; Li, B. Prostaglandin E2 Confers Protection against Diabetic Coronary Atherosclerosis by Stimulating M2 Macrophage Polarization via the Activation of the CREB/BDNF/TrkB Signaling Pathway. FASEB J. 2020, 34, 7360–7371. [Google Scholar] [CrossRef]
- Mezzasoma, L.; Antognelli, C.; Talesa, V.N. A Novel Role for Brain Natriuretic Peptide: Inhibition of IL-1β Secretion via Downregulation of NF-kB/Erk 1/2 and NALP3/ASC/Caspase-1 Activation in Human THP-1 Monocyte. Mediat. Inflamm 2017, 2017, 5858315. [Google Scholar] [CrossRef] [PubMed]
- Tourki, B.; Dumesnil, A.; Belaidi, E.; Ghrir, S.; Godin-Ribuot, D.; Marrakchi, N.; Richard, V.; Mulder, P.; Messadi, E. Lebetin 2, a Snake Venom-Derived B-Type Natriuretic Peptide, Provides Immediate and Prolonged Protection against Myocardial Ischemia-Reperfusion Injury via Modulation of Post-Ischemic Inflammatory Response. Toxins 2019, 11, 524. [Google Scholar] [CrossRef]
- Aghajanian, A.; Wittchen, E.S.; Allingham, M.J.; Garrett, T.A.; Burridge, K. Endothelial Cell Junctions and the Regulation of Vascular Permeability and Leukocyte Transmigration. J. Thromb. Haemost. 2008, 6, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, N. Defenders and Challengers of Endothelial Barrier Function. Front. Immunol. 2017, 8, 1847. [Google Scholar] [CrossRef] [PubMed]
- Claesson-Welsh, L.; Dejana, E.; McDonald, D.M. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol. Med. 2021, 27, 314–331. [Google Scholar] [CrossRef]
- Fahey, E.; Doyle, S.L. IL-1 Family Cytokine Regulation of Vascular Permeability and Angiogenesis. Front. Immunol. 2019, 10, 1426. [Google Scholar] [CrossRef] [PubMed]
- Cromer, W.E.; Zawieja, S.D.; Tharakan, B.; Childs, E.W.; Newell, M.K.; Zawieja, D.C. The Effects of Inflammatory Cytokines on Lymphatic Endothelial Barrier Function. Angiogenesis 2014, 17, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Huang, X.; Ma, Y.; Gao, M.; Wang, O.; Gao, T.; Shen, Y.; Liu, X. Interleukin-8 Regulates Endothelial Permeability by Down-Regulation of Tight Junction but Not Dependent on Integrins Induced Focal Adhesions. Int. J. Biol. Sci. 2013, 9, 966–979. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Han, G.; Zhang, Y.; Zhang, L.; Li, Z.; Wang, Q.; Chen, Z.; Wang, X.; Wu, J. M2 Macrophage-Secreted Exosomes Promote Metastasis and Increase Vascular Permeability in Hepatocellular Carcinoma. Cell Commun. Signal. 2023, 21, 299. [Google Scholar] [CrossRef]
- Petreaca, M.L.; Yao, M.; Liu, Y.; Defea, K.; Martins-Green, M. Transactivation of Vascular Endothelial Growth Factor Receptor-2 by Interleukin-8 (IL-8/CXCL8) Is Required for IL-8/CXCL8-Induced Endothelial Permeability. Mol. Biol. Cell 2007, 18, 5014–5023. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Xu, S.; Zhou, Z.; Wang, F.; Mao, L.; Li, H.; Wu, C.; Wang, J.; Huang, Y.; Li, D.; et al. Fibroblast growth factor-2 alleviates the capillary leakage and inflammation in sepsis. Mol. Med. 2020, 26, 108. [Google Scholar] [CrossRef] [PubMed]
- Holter, J.C.; Chang, C.W.; Avendano, A.; Garg, A.A.; Verma, A.K.; Charan, M.; Ahirwar, D.K.; Ganju, R.K.; Song, J.W. Fibroblast-derived CXCL12 increases vascular permeability in a 3-D microfluidic model independent of extracellular matrix contractility. Front. Bioeng. Biotechnol. 2022, 10, 888431. [Google Scholar] [CrossRef] [PubMed]
- Detmar, M.; Yeo, K.T.; Nagy, J.A.; Van de Water, L.; Brown, L.F.; Berse, B.; Elicker, B.M.; Ledbetter, S.; Dvorak, H.F. Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J. Investig. Dermatol. 1995, 105, 44–50. [Google Scholar] [CrossRef]
- Ushakumari, C.J.; Zhou, Q.L.; Wang, Y.H.; Na, S.; Rigor, M.C.; Zhou, C.Y.; Kroll, M.K.; Lin, B.D.; Jiang, Z.Y. Neutrophil Elastase Increases Vascular Permeability and Leukocyte Transmigration in Cultured Endothelial Cells and Obese Mice. Cells 2022, 11, 2288. [Google Scholar] [CrossRef]
- Minafra, L.; Di Cara, G.; Albanese, N.N.; Cancemi, P. Proteomic differentiation pattern in the U937 cell line. Leuk. Res. 2011, 35, 226–236. [Google Scholar] [CrossRef] [PubMed]
Purification Process | Peak | Apparent Mass (kDa) | Amino Acid Sequences | Identification | Accession No. |
---|---|---|---|---|---|
RP-HPLC | F34 | 28 | GVDFNSEMTRRDKK | Opharin | Q7ZT98.1 |
aIEx | F1 | 28 | NVDFNSETTRRQKK | Opharin | Q7ZT98.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lertwanakarn, T.; Reyes, A.; Salazar, E.; Barrientos, M.; Sanchez, E.E.; Suntravat, M. The Effect of Purified Opharin Isolated from the Venom of King Cobra (Ophiophagus hannah) in Modulating Macrophage Inflammatory Responses and Vascular Integrity. Toxins 2024, 16, 550. https://doi.org/10.3390/toxins16120550
Lertwanakarn T, Reyes A, Salazar E, Barrientos M, Sanchez EE, Suntravat M. The Effect of Purified Opharin Isolated from the Venom of King Cobra (Ophiophagus hannah) in Modulating Macrophage Inflammatory Responses and Vascular Integrity. Toxins. 2024; 16(12):550. https://doi.org/10.3390/toxins16120550
Chicago/Turabian StyleLertwanakarn, Tuchakorn, Armando Reyes, Emelyn Salazar, Martha Barrientos, Elda E. Sanchez, and Montamas Suntravat. 2024. "The Effect of Purified Opharin Isolated from the Venom of King Cobra (Ophiophagus hannah) in Modulating Macrophage Inflammatory Responses and Vascular Integrity" Toxins 16, no. 12: 550. https://doi.org/10.3390/toxins16120550
APA StyleLertwanakarn, T., Reyes, A., Salazar, E., Barrientos, M., Sanchez, E. E., & Suntravat, M. (2024). The Effect of Purified Opharin Isolated from the Venom of King Cobra (Ophiophagus hannah) in Modulating Macrophage Inflammatory Responses and Vascular Integrity. Toxins, 16(12), 550. https://doi.org/10.3390/toxins16120550