Bacillus thuringiensis: A Broader View of Its Biocidal Activity
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Unzue, A.; Caballero, C.J.; Villanueva, M.; Fernández, A.B.; Caballero, P. Multifunctional Properties of a Bacillus thuringiensis Strain (BST-122): Beyond the Parasporal Crystal. Toxins 2022, 14, 768. https://doi.org/10.3390/toxins14110768.
- Li, J.; Wang, L.; Kotaka, M.; Lee, M.M.; Chan, M.K. Insights from the Structure of an Active Form of Bacillus thuringiensis Cry5B. Toxins 2022, 14, 823. https://doi.org/10.3390/toxins14120823.
- Best, H.L.; Williamson, L.J.; Lipka-Lloyd, M.; Waller-Evans, H.; Lloyd-Evans, E.; Rizkallah, P.J.; Berry, C. The Crystal Structure of Bacillus thuringiensis Tpp80Aa1 and Its Interaction with Galactose-Containing Glycolipids. Toxins 2022, 14, 863. https://doi.org/10.3390/toxins14120863.
- de Oliveira, J.A.; Negri, B.F.; Hernández-Martínez, P.; Basso, M.F.; Escriche, B. Mpp23Aa/Xpp37Aa Insecticidal Proteins from Bacillus thuringiensis (Bacillales: Bacillaceae) Are Highly Toxic to Anthonomus grandis (Coleoptera: Curculionidae) Larvae. Toxins 2023, 15, 55. https://doi.org/10.3390/toxins15010055.
- Lai, L.; Villanueva, M.; Muruzabal-Galarza, A.; Fernández, A.B.; Unzue, A.; Toledo-Arana, A.; Caballero, P.; Caballero, C.J. Bacillus thuringiensis Cyt Proteins as Enablers of Activity of Cry and Tpp Toxins against Aedes albopictus. Toxins 2023, 15, 211. https://doi.org/10.3390/toxins15030211.
- Yang, Y.; Wu, Z.; He, X.; Xu, H.; Lu, Z. Processing Properties and Potency of Bacillus thuringiensis Cry Toxins in the Rice Leaffolder Cnaphalocrocis medinalis (Guenée). Toxins 2023, 15, 275. https://doi.org/10.3390/toxins15040275.
- Xue, B.; Wang, M.; Wang, Z.; Shu, C.; Geng, L.; Zhang, J. Analysis of Synergism between Extracellular Polysaccharide from Bacillus thuringensis subsp. kurstaki HD270 and Insecticidal Proteins. Toxins 2023, 15, 590. https://doi.org/10.3390/toxins15100590.
- Trisyono, Y.A.; Aryuwandari, V.E.F.; Rahayu, T.; Martinelli, S.; Head, G.P.; Parimi, S.; Camacho, L.R. Baseline Susceptibility of the Field Populations of Ostrinia furnacalis in Indonesia to the Proteins Cry1A.105 and Cry2Ab2 of Bacillus thuringiensis. Toxins 2023, 15, 602. https://doi.org/10.3390/toxins15100602.
- Arthur, B.P.; Suh, C.P.; McKnight, B.M.; Parajulee, M.N.; Yang, F.; Kerns, D.L. Field Evaluation of Cotton Expressing Mpp51Aa2 as a Management Tool for Cotton Fleahoppers, Pseudatomoscelis seriatus (Reuter). Toxins 2023, 15, 644. https://doi.org/10.3390/toxins15110644.
- Sauka, D.H.; Peralta, C.; Pérez, M.P.; Molla, A.; Fernandez-Göbel, T.; Ocampo, F.; Palma, L. Bacillus thuringiensis Bt_UNVM-84, a Novel Strain Showing Insecticidal Activity against Anthonomus grandis Boheman (Coleoptera: Curculionidae). Toxins 2024, 16, 4. https://doi.org/10.3390/toxins16010004.
- Hou, X.; Li, M.; Mao, C.; Jiang, L.; Zhang, W.; Li, M.; Geng, X.; Li, X.; Liu, S.; Yang, G.; et al. Domain III β4–β5 Loop and β14–β15 Loop of Bacillus thuringiensis Vip3Aa Are Involved in Receptor Binding and Toxicity. Toxins 2024, 16, 23. https://doi.org/10.3390/toxins16010023.
- Shao, E.; Huang, H.; Yuan, J.; Yan, Y.; Ou, L.; Chen, X.; Pan, X.; Guan, X.; Sha, L. N-Terminal α-Helices in Domain I of Bacillus thuringiensis Vip3Aa Play Crucial Roles in Disruption of Liposomal Membrane. Toxins 2024, 16, 88. https://doi.org/10.3390/toxins16020088.
References
- Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806. [Google Scholar] [CrossRef]
- Jouzani, G.S.; Valijanian, E.; Sharafi, R. Bacillus thuringiensis: A successful insecticide with new environmental features and tidings. Appl. Microbiol. Biotechnol. 2017, 101, 2691–2711. [Google Scholar] [CrossRef] [PubMed]
- Ohba, M.; Mizuki, E.; Uemori, A. Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Res. 2009, 29, 427–433. [Google Scholar]
- Chakroun, M.; Banyuls, N.; Bel, Y.; Escriche, B.; Ferré, J. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 329–350. [Google Scholar] [CrossRef]
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberon, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 2011, 41, 423–431. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, L.; Sauka, D.H.; Ibarra, J.E. Bacillus thuringiensis: A Broader View of Its Biocidal Activity. Toxins 2024, 16, 162. https://doi.org/10.3390/toxins16030162
Palma L, Sauka DH, Ibarra JE. Bacillus thuringiensis: A Broader View of Its Biocidal Activity. Toxins. 2024; 16(3):162. https://doi.org/10.3390/toxins16030162
Chicago/Turabian StylePalma, Leopoldo, Diego Herman Sauka, and Jorge E. Ibarra. 2024. "Bacillus thuringiensis: A Broader View of Its Biocidal Activity" Toxins 16, no. 3: 162. https://doi.org/10.3390/toxins16030162
APA StylePalma, L., Sauka, D. H., & Ibarra, J. E. (2024). Bacillus thuringiensis: A Broader View of Its Biocidal Activity. Toxins, 16(3), 162. https://doi.org/10.3390/toxins16030162