Toxicity of Cry- and Vip3Aa-Class Proteins and Their Interactions against Spodoptera frugiperda (Lepidoptera: Noctuidae)
Abstract
:1. Introduction
2. Results
2.1. Toxicity of Different Bt Proteins against S. frugiperda
2.2. Interactions between Cry-Class Proteins against S. frugiperda
2.3. Interactions between Cry-Class and Vip3Aa-Class Proteins against S. frugiperda
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Insects
5.2. Bt Proteins
5.3. Bioassay
5.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sparks, A.N. A Review of the Biology of the Fall Armyworm. Fla. Entomol. 1979, 62, 82–87. [Google Scholar] [CrossRef]
- Sun, X.X.; Hu, C.X.; Jla, H.R.; Wu, Q.L.; Shen, X.J.; Zhao, S.Y.; Jiang, Y.Y.; Wu, K.M. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. J. Integr. Agric. 2021, 20, 664–672. [Google Scholar] [CrossRef]
- Jing, D.P.; Guo, J.F.; Jiang, Y.Y.; Zhao, J.Z.; Sethi, A.; He, K.L.; Wang, Z.Y. Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Insect Sci. 2019, 27, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.F.; Yang, X.M.; Zhang, H.W.; Zhang, D.D.; He, W.; Wyckhuys, K.A.G.; Wu, K.M. Interference competition and predation between invasive and native herbivores in maize. J. Pest Sci. 2021, 94, 1053–1063. [Google Scholar] [CrossRef]
- Yang, X.M.; Wyckhuys, K.A.G.; Jia, X.P.; Nie, F.Y.; Wu, K.M. Fall armyworm invasion heightens pesticide expenditure among Chinese smallholder farmers. J. Environ. Manag. 2021, 282, 111949. [Google Scholar] [CrossRef]
- Wan, M.; Tai, H.K.; Gu, R.; Wang, G.Q.; Liu, Z.; Mi, Q.Q.; Zhang, J.P.; Li, H.M.; Wang, Z.Y.; Nie, F.Y.; et al. Econoomic loss assessment of maize production caused by the fall armyworm Spodoptera frugiperda and investigation of control strategies in Dehong prefecture of Yunnan province. Plant Prot. 2022, 48, 220–226. [Google Scholar]
- Edgerton, M.D.; Fridgen, J.; Anderson, J.R.J.; Ahlgrim, J.; Criswell, M.; Dhungana, P.; Gocken, T.; Li, Z.; Mariappan, S.; Pilcher, C.D.; et al. Transgenic insect resistance traits increase corn yield and yield stability. Nat. Biotechnol. 2012, 30, 493–496. [Google Scholar] [CrossRef]
- Lu, Y.H.; Wu, K.M.; Jiang, Y.Y.; Guo, Y.Y.; Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 2012, 487, 362–365. [Google Scholar] [CrossRef]
- Elbehri, A.; Macdonald, S. Estimating the impact of transgenic Bt cotton on West and Central Africa: A General Equilibrium Approach. World Dev. 2004, 32, 2049–2064. [Google Scholar] [CrossRef]
- Hutchison, W.D.; Burkness, E.C.; Mitchell, P.D.; Moon, R.D.; Leslie, T.W.; Fleischer, S.J.; Abrahamson, M.; Hamilton, K.L.; Steffey, K.L.; Gray, M.E.; et al. Areawide suppression of European corn borer with Bt maize reaps savings to non–Bt maize growers. Science 2010, 330, 222–225. [Google Scholar] [CrossRef]
- Kiresur, V.R.; Manjunath, I. Socio–economic impact of Bt cotton—A case study of Karnataka. Agric. Econ. Res. Rev. 2011, 24, 67–82. [Google Scholar]
- ISAAA. Global Status of Commercialized Biotech/GM Crops in 2019: Biotech Crops Drive Socio–Economic Development and Sustainable Environment in the New Frontier; ISAAA Brief No. 55; ISAAA: Ithaca, NY, USA, 2019. [Google Scholar]
- Chandrasena, D.I.; Signorini, A.M.; Abratti, G.; Storer, N.P.; Olaciregui, M.L.; Alves, A.P.; Pilcher, C.D. Characterization of field–evolved resistance to Bacillus thuringiensis–derived Cry1F δ–endotoxin in Spodoptera frugiperda populations from Argentina. Pest Manag. Sci. 2018, 74, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Crespo, A.L.; Spencer, T.A.; Alves, A.P.; Hellmich, R.L.; Blankenship, E.E.; Magalhães, L.C.; Siegfried, B.D. On–plant survival and inheritance of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field–derived strain of European corn borer, Ostrinia nubilalis. Pest Manag. Sci. 2009, 65, 1071–1081. [Google Scholar] [CrossRef]
- Farias, J.R.; Andow, D.A.; Horikoshi, R.J.; Sorgatto, R.J.; Fresia, P.; dos Santos, A.C.; Omoto, C. Field–evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 2014, 64, 150–158. [Google Scholar] [CrossRef]
- Dhurua, S.; Gujar, G.T. Field–evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag. Sci. 2011, 67, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Gassmann, A.J.; Petzold–Maxwell, J.L.; Keweshan, R.S.; Dunbar, M.W. Field–evolved resistance to Bt maize by western corn rootworm. PLoS ONE 2011, 6, e22629. [Google Scholar] [CrossRef] [PubMed]
- Janmaat, A.F.; Wang, P.; Kain, W.; Zhao, J.Z.; Myers, J. Inheritance of resistance to Bacillus thuringiensis subsp. kurstaki in Trichoplusia Ni. Appl. Environ. Microbiol. 2004, 70, 5859–5867. [Google Scholar] [CrossRef] [PubMed]
- Monnerat, R.; Martins, E.; Macedo, C.; Queiroz, P.; Praça, L.; Soares, C.M.; Moreira, H.; Grisi, I.; Silva, J.; Soberon, M.; et al. Evidence of field–evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins. PLoS ONE 2015, 10, e0119544. [Google Scholar] [CrossRef] [PubMed]
- Storer, N.P.; Babcock, J.M.; Schlenz, M.; Meade, T.; Thompson, G.D.; Bing, J.W.; Huckaba, R.M. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 2010, 103, 1031–1038. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Cushing, N.L.; Finson, N.; Johnson, M.W. Field development of resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 1990, 83, 1671–1676. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Gassmann, A.J.; Crowder, D.W.; Carriére, Y. Insect resistance to Bt crops: Evidence versus theory. Nat. Biotechnol. 2008, 26, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Huang, F.; Ghimire, M.N.; Leonard, B.R.; Siegfried, B.D.; Rangasamy, M.; Yang, Y.; Wu, Y.; Gahan, L.J.; Heckel, D.G.; et al. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nat. Biotechnol. 2011, 29, 1128–1131. [Google Scholar] [CrossRef] [PubMed]
- Van Rensburg, J.B.J. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt–transgenic maize. S. Afr. J. Plant Soil 2007, 24, 147–151. [Google Scholar] [CrossRef]
- Adamczyk, J.J.J.; Mahaffey, J.S. Efficacy of Vip3A and Cry1Ab transgenic traits in cotton against various lepidopteran pests. Fla. Entomol. 2008, 91, 570–575. [Google Scholar]
- Zhao, J.Z.; Cao, J.; Li, Y.X.; Collins, H.L.; Roush, R.T.; Earle, E.D.; Shelton, A.M. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat. Biotechnol. 2003, 21, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Carrière, Y.; Crickmore, N.; Tabashnik, B.E. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat. Biotechnol. 2015, 33, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.B.; Lu, G.Q.; Cheng, H.M.; Liu, C.X.; Xiao, Y.T.; Xu, C.; Shen, Z.C.; Wu, K.M. Transgenic cotton coexpressing Vip3A and Cry1Ac has a broad insecticidal spectrum against lepidopteran pests. J. Invertebr. Pathol. 2017, 149, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Miles, P.; Chen, J.S. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochem. Biophys. Res. Commun. 2006, 339, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Sena, J.A.D.; Hernández–Rodríguez, C.S.; Ferré, J. Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Appl. Environ. Microbiol. 2009, 75, 2236–2237. [Google Scholar] [CrossRef]
- Abdelkefi–Mesrati, L.; Rouis, S.; Sellami, S.; Jaoua, S. Prays oleae midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3LB differs from that of Cry1Ac toxin. Mol. Biotechnol. 2009, 43, 15–19. [Google Scholar] [CrossRef]
- Chakroun, M.; Ferré, J. In vivo and in vitro binding of Vip3Aa to Spodoptera frugiperda midgut and characterization of binding sites by (125) I radiolabeling. Appl. Environ. Microbiol. 2014, 80, 6258–6265. [Google Scholar] [CrossRef]
- Gouffon, C.; Van Vliet, A.; Van Rie, J.; Jansens, S.; Jurat–Fuentes, J.L. Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Appl. Environ. Microbiol. 2011, 77, 3182–3188. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Sachdev, B.; Sharma, N.; Seth, R.; Bhatnagar, R.K. Interaction of Bacillus thuringiensis vegetative insecticidal protein with ribosomal S2 protein triggers larvicidal activity in Spodoptera frugiperda. Appl. Environ. Microbiol. 2010, 76, 7202–7209. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Quan, Y.D.; Sivaprasath, P.; Shabbir, M.Z.; Wang, Z.Y.; Ferré, J.; He, K.L. Insecticidal activity and synergistic combinations of ten different Bt toxins against Mythimna separata (Walker). Toxins 2018, 10, 454. [Google Scholar] [CrossRef] [PubMed]
- Shwe, S.M.; Wang, Y.Q.; Gao, Z.P.; Li, X.; Liu, S.; Bai, S.X.; Zhang, T.T.; He, K.L.; Wang, Z.Y. Toxicity of Cry1–Class, Cry2Aa, and Vip3Aa19 Bt proteins and their interactions against yellow peach Moth, Conogethes punctiferalis (Guenée) (Lepidoptera: Crambidae). J. Invertebr. Pathol. 2021, 178, 107507. [Google Scholar] [CrossRef] [PubMed]
- Soares Figueiredo, C.; Nunes, A.R.N.; Sebastião, I.; Desidério, J.A. Synergism of the Bacillus thuringiensis Cry1, Cry2, and Vip3 proteins in Spodoptera frugiperda control. Appl. Biochem. Biotechnol. 2019, 188, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Bergamasco, V.B.; Mendes, D.R.; Fernandes, O.A.; Desidério, J.A.; Lemos, M.V. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera). J. Invertebr. Pathol. 2013, 112, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Lemes, A.R.N.; Davolos, C.C.; Legori, P.C.B.C.; Fernandes, O.A.; Ferré, J.; Lemos, M.V.; Desiderio, J.A. Synergism and antagonism between Bacillus thuringiensis Vip3A and Cry1 proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. PLoS ONE 2014, 9, e107196. [Google Scholar] [CrossRef] [PubMed]
- Arsov, A.; Gerginova, M.; Paunova-Krasteva, T.; Petrov, K.; Petrova, P. Multiple cry Genes in Bacillus thuringiensis Strain BTG Suggest a Broad-Spectrum Insecticidal Activity. Int. J. Mol. Sci. 2023, 24, 11137. [Google Scholar] [CrossRef]
- Zhu, L.; Tian, L.J.; Zheng, J.; Gao, Q.L.; Wang, Y.Y.; Peng, D.H.; Ruan, L.F.; Sun, M. Complete genome sequence of Bacillus thuringiensis serovar galleriae strain HD-29, a typical strain of commercial biopesticide. J. Biotechnol. 2015, 195, 108–109. [Google Scholar] [CrossRef]
- Soberón, M.; Gill, S.S.; Bravo, A. Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cell. Mol. Life Sci. 2009, 66, 1337–1349. [Google Scholar] [CrossRef] [PubMed]
- Storer, N.P.; Kubiszak, M.E.; Ed King, J.; Thompson, G.D.; Santos, A.C. Status of resistance to Bt maize in Spodoptera frugiperda: Lessons from Puerto Rico. J. Invertebr. Pathol. 2012, 110, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Omoto, C.; Bernardi, O.; Salmeron, E.; Sorgatto, R.J.; Dourado, P.M.; Crivellari, A.; Carvalho, R.A.; Willse, A.; Martinelli, S.; Head, G.P. Field–evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag. Sci. 2016, 72, 1727–1736. [Google Scholar] [CrossRef] [PubMed]
- Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 2014, 6, 3296–3325. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, A.; Giri, A.; Gupta, V.S. Structural and functional diversities in lepidopteran serine proteases. Cell. Mol. Biol. Lett. 2006, 11, 132–154. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.C.; Weng, J.F.; Li, X.H.; Yin, J.Q.; Song, X.Y. Resistance of transgenic maize CM8101 with Cry1Ab–ma gene against the 1st and 2nd instar larvae of fall armyworm Spodoptera frugiperda. J. Plant Prot. 2020, 47, 815–821. (In Chinese) [Google Scholar]
- Zhang, D.D.; Wu, K.M. The bioassay of Chinese domestic Bt–Cry1Ab and Bt–(Cry1Ab+Vip3Aa) maize against the fall armyworm, Spodoptera frugiperda. Plant Prot. 2019, 45, 54–60. (In Chinese) [Google Scholar]
- Yang, X.M.; Zhao, S.Y.; Liu, B.; Gao, Y.; Hu, C.X.; Li, W.J.; Yang, Y.Z.; Li, G.P.; Wang, L.L.; Yang, X.Q.; et al. Bt maize can provide non–chemical pest control and enhance food safety in China. Plant Biotechnol. J. 2023, 21, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Fatoretto, J.C.; Michel, A.P.; Silva Filho, M.C.; Silva, N. Adaptive Potential of Fall Armyworm (Lepidoptera: Noctuidae) Limits Bt Trait Durability in Brazil. J. Integr. Pest Manag. 2017, 8, 17–27. [Google Scholar] [CrossRef]
- Huang, F.; Qureshi, J.A.; Meagher, R.L.J.; Reisig, D.D.; Head, G.P.; Andow, D.A.; Ni, X.; Kerns, D.; Buntin, G.D.; Niu, Y.; et al. Cry1F resistance in fall armyworm Spodoptera frugiperda: Single gene versus pyramided Bt maize. PLoS ONE 2014, 9, e112958. [Google Scholar] [CrossRef]
- Li, G.P.; Ji, T.J.; Sun, X.X.; Jiang, Y.Y.; Wu, K.M.; Feng, H.Q. Susceptibility evaluation of invaded Spodoptera frugiperda population in Yunnan province to five Bt proteins. Plant Prot. 2019, 45, 15–20. (In Chinese) [Google Scholar]
- Wang, W.H.; Zhang, D.D.; Zhao, S.Y.; Wu, K.M. Susceptibilities of the invasive fall armyworm (Spodoptera frugiperda) to the insecticidal proteins of Bt maize in China. Toxins 2022, 14, 507. [Google Scholar] [CrossRef] [PubMed]
- Burkness, E.C.; Dively, G.; Patton, T.; Morey, A.C.; Hutchison, W.D. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high–dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management. Genet. Modif. Crops 2010, 1, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Hernández–Martínez, P.; Hernández–Rodríguez, C.S.; Rie, J.V.; Escriche, B.; Ferré, J. Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests. J. Invertebr. Pathol. 2013, 113, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Chakroun, M.; Bel, Y.; Caccia, S.; Abdelkefi–Mesrati, L.; Escriche, B.; Ferré, J. Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. J. Invertebr. Pathol. 2012, 110, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Ingber, D.A.; Mason, C.E.; Flexner, L. Cry1 Bt Susceptibilities of fall armyworm (Lepidoptera: Noctuidae) host strains. J. Econ. Entomol. 2018, 111, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Vélez, A.M.; Spencer, T.A.; Alves, A.P.; Moellenbeck, D.; Meagher, R.L.; Chirakkal, H.; Siegfried, B.D. Inheritance of Cry1F resistance, cross–resistance and frequency of resistant alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae). Bull. Entomol. Res. 2013, 103, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Gómez, I.; Ocelotl, J.; Sánchez, J.; Lima, C.; Martins, E.; Rosales–Juárez, A.; Aguilar–Medel, S.; Abad, A.; Dong, H.; Monnerat, R.; et al. Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa toxicity to Spodoptera frugiperda by domain III mutations indicates there are two limiting steps in toxicity as defined by receptor binding and protein stability. Appl. Environ. Microbiol. 2018, 84, e01393-18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.F.; Jin, M.H.; Yang, Y.C.; Liu, L.L.; Yang, Y.B.; Gómez, I.; Bravo, A.; Soberon, M.; Xiao, Y.; Liu, K. The cadherin protein is not involved in susceptibility to Bacillus thuringiensis Cry1Ab or Cry1Fa toxins in Spodoptera frugiperda. Toxins 2020, 12, 375. [Google Scholar] [CrossRef]
- Miranda, R.; Zamudio, F.Z.; Bravo, A. Processing of Cry1Ab –endotoxin from Bacillus thuringiensis by midgut proteases_ role in toxin activation and inactivation. Insect Biochem. Mol. Biol. 2001, 31, 1155–1163. [Google Scholar] [CrossRef]
- Jurat–Fuentes, J.L.; Adang, M.J. The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis Cry1A but not Cry1Fa toxins. Biochemistry 2006, 45, 9688–9695. [Google Scholar] [CrossRef] [PubMed]
- Pardo–López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensis insecticidal three–domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 2013, 37, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Ibargutxi, M.A.; Muñoz, D.; Escudero, I.R.; Caballero, P. Interactions between Cry1Ac, Cry2Ab, and Cry1Fa Bacillus thuringiensis toxins in the cotton pests Helicoverpa armigera (Hübner) and Earias insulana (Boisduval). Biol. Control 2008, 47, 89–96. [Google Scholar] [CrossRef]
- Gahan, L.J.; Ma, Y.T.; Coble, M.L.; Gould, F.; Moar, W.J.; Heckel, D.G. Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). J. Econ. Entomol. 2005, 98, 1357–1368. [Google Scholar] [CrossRef] [PubMed]
- Gould, F.; Martinez–Ramirez, A.; Anderson, A.; Ferre, J.; Silva, F.J.; Moar, W.J. Broad–spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci. USA 1992, 89, 7986–7990. [Google Scholar] [CrossRef] [PubMed]
- Jurat–Fuentes, J.L.; Gould, F.L.; Adang, M.J. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Appl. Environ. Microbiol. 2003, 69, 5898–5906. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Unnithan, G.C.; Masson, L.; Crowder, D.W.; Li, X.; Carrière, Y. Asymmetrical cross–resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. Proc. Natl. Acad. Sci. USA 2009, 106, 11889–11894. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.Z.; Guo, Y.Y.; Liang, G.M.; Wu, K.M.; Zhang, J.; Tabashnik, B.E.; Li, X.C. Cross–resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm. Sci. Rep. 2015, 5, 7714. [Google Scholar] [CrossRef] [PubMed]
- Welch, K.L.; Unnithan, G.C.; Degain, B.A.; Wei, J.; Zhang, J.; Li, X.; Tabashnik, B.E.; Carrière, Y. Cross–resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea. J. Invertebr. Pathol. 2015, 132, 149–156. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Z.Y.; Kerns, D.L. Resistance of Spodoptera frugiperda to Cry1, Cry2, and Vip3Aa Proteins in Bt Corn and Cotton in the Americas: Implications for the Rest of the World. J. Econ. Entomol. 2022, 115, 1752–1760. [Google Scholar] [CrossRef]
- Huang, F.N. Resistance of the fall armyworm, Spodoptera frugiperda, to transgenic Bacillus thuringiensis Cry1F corn in the Americas: Lessons and implications for Bt corn IRM in China. Insect Sci. 2021, 28, 574–589. [Google Scholar] [CrossRef] [PubMed]
- Gomis–Cebolla, J.; Wang, Y.Q.; Quan, Y.D.; He, K.L.; Walsh, T.; James, B.; Downes, S.; Kain, W.; Wang, P.; Leonard, K.; et al. Analysis of cross–resistance to Vip3 proteins in eight insect colonies, from four insect species, selected for resistance to Bacillus thuringiensis insecticidal proteins. J. Invertebr. Pathol. 2018, 155, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.G.; Yang, A.Z.; Shen, X.H.; Hua, B.G.; Shi, G.L. Specific binding of activated Vip3Aa10 to Helicoverpa armigera brush border membrane vesicles results in pore formation. J. Invertebr. Pathol. 2011, 108, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Graser, G.; Walters, F.S.; Burns, A.; Sauve, A.; Raybould, A. A general approach to test for interaction among mixtures of insecticidal proteins which target different orders of insect pests. J. Insect Sci. 2017, 17, 39. [Google Scholar] [CrossRef] [PubMed]
- del Rincon–Castro, M.C.; Barajas–Huerta, J.; Ibarra, J.E. Antagonism between Cry1Ac1 and Cyt1A1 toxins of Bacillus thuringiensis. Appl. Environ. Microbiol. 1999, 65, 2049–2053. [Google Scholar] [CrossRef] [PubMed]
- Herrero, S.; González–Cabrera, J.; Ferré, J.; Bakker, P.L.; de Maagd, R.A. Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. Biochem. J. 2004, 384, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Shi, R.P.; Zhang, S.S.; Zhan, T.; Wu, G.B.; Shen, J.; Liu, Z.D. Fusing the vegetative insecticidal protein Vip3Aa7 and the N terminus of Cry9Ca improves toxicity against Plutella xylostella larvae. Appl. Microbiol. Biotechnol. 2012, 96, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.M.; Liu, T.; Sun, Z.G.; Guan, P.; Zhu, J.; Wang, S.Q.; Li, S.C.; Deng, Q.M.; Wang, L.X.; Zheng, A.P.; et al. Co–expression and synergism analysis of Vip3Aa29 and Cyt2Aa3 insecticidal proteins from Bacillus thuringiensis. Curr. Microbiol. 2012, 64, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Jurat–Fuentes, J.L.; Adang, M.J. Importance of Cry1 delta–endotoxin domain II loops for binding specificity in Heliothis virescens (L.). Appl. Environ. Microbiol. 2001, 67, 323–329. [Google Scholar] [CrossRef]
- Van Rie, J.; Jansens, S.; Höfte, H.; Degheele, D.; Van Mellaert, H. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta–endotoxins. Appl. Environ. Microbiol. 1990, 56, 1378–1385. [Google Scholar] [CrossRef]
- Jackson, R.E.; Marcus, M.A.; Gould, F.; Bradley, J.R.J.; Van Duyn, J.W. Cross–resistance responses of CrylAc–selected Heliothis virescens (Lepidoptera: Noctuidae) to the Bacillus thuringiensis protein vip3A. J. Econ. Entomol. 2007, 100, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Curtiss, A.; Alcantara, E.; Dean, D.H. Synergistic effect of the Bacillus thuringiensis toxins CryIAa and CryIAc on the gypsy moth, Lymantria dispar. Appl. Environ. Microbiol. 1996, 62, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E. Evaluation of synergism among Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 1992, 58, 3343–3346. [Google Scholar] [CrossRef] [PubMed]
- Rivero–Borja, M.; Rodríguez–Maciel, J.C.; Gutiérrez, U.J.A.; Silva–Aguayo, G.; Chandrasena, D.I.; Felix–Bermudez, N.C.; Storer, N.P. Baseline of Susceptibility to the Cry1F Protein in Mexican Populations of Fall Armyworm. J. Econ. Entomol. 2020, 113, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, A.H.; Crickmore, N.; Wright, D.J. Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Appl. Environ. Microbiol. 2001, 67, 5859–5861. [Google Scholar]
- Wang, Z.Y.; Fang, L.F.; Zhou, Z.S.; Pacheco, S.; Gómez, I.; Song, F.P.; Soberón, M.; Zhang, J.; Bravo, A. Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer (Chilo suppressalis). J. Biol. Chem. 2018, 293, 11447–11458. [Google Scholar] [CrossRef]
Bt Proteins | n | LC50 (95% FLs) ng/cm2 A | LC95 (95% FLs) ng/cm2 A | Slope ± SE | χ2 | df |
---|---|---|---|---|---|---|
Cry1Ab | 576 | 271.19 (212.91–346.66) c | 6307.52 (3708.61–13,210.67) a | 1.20 ± 0.11 | 8.15 | 22 |
Cry1Ac | 432 | >9000 | - | 1.21 ± 0.16 | 14.03 | 16 |
Cry1B | 504 | 1750.04 (1373.41–2203.72) a | - | 1.26 ± 0.10 | 18.54 | 19 |
Cry1Ca | 432 | 524.45 (308.03–788.56) b | - | 0.79 ± 0.11 | 10.32 | 16 |
Cry1F | 576 | 19.50 (15.06–24.79) e | 238.91 (170.97–361.11) c | 1.51 ± 0.11 | 12.10 | 22 |
Cry2Aa | 384 | 688.02 (542.58–857.12) b | - | 1.46 ± 0.14 | 11.89 | 17 |
Cry2Ab | 480 | 72.01 (52.18–93.08) d | 943.51 (655.76–1569.23) b | 1.47 ± 0.15 | 15.17 | 18 |
Vip3Aa11 | 408 | 12.93 (10.72–15.15) f | 57.10 (45.19–79.09) e | 2.55 ± 0.26 | 4.54 | 15 |
Vip3Aa19 | 408 | 16.52 (11.89–21.12) ef | 91.91 (66.68–150.88) de | 2.21 ± 0.27 | 15.99 | 15 |
Vip3Aa20 | 504 | 12.62 (10.13–15.19) f | 92.80 (69.70–137.15) d | 1.90 ± 0.18 | 12.17 | 19 |
Bt Proteins | Ratio | N | Observed LC50 (95% FLs) ng/cm2 B | Expected LC50 (95% FLs) ng/cm2 B | SF | Slope ± SE | χ2 | df |
---|---|---|---|---|---|---|---|---|
Cry1Ab + Cry1F | 1:1 | 576 | 22.07 (16.73–28.17) b | 36.38 (28.13–46.27) a | 1.65 | 1.39 ± 0.14 | 14.04 | 22 |
Cry1Ab + Cry2Ab | 1:1 | 576 | 15.78 (12.59–19.36) b | 113.80 (83.82–146.76) a | 7.21 | 1.48 ± 0.12 | 6.04 | 22 |
Cry1F + Cry2Ab | 1:1 | 576 | 8.01 (6.33–9.93) b | 30.69 (23.37–39.15) a | 3.83 | 1.39 ± 0.11 | 8.96 | 22 |
Bt Proteins | Ratio | n | Observed LC50 (95% FLs) ng/cm2 B | Expected LC50 (95% FLs) ng/cm2 B | SF | Slope ± SE | χ2 | df |
---|---|---|---|---|---|---|---|---|
Cry1Ab + Vip3Aa11 | 1:1 | 504 | 8.85 (6.90–10.91) b | 24.68 (20.41–29.03) a | 2.79 | 1.81 ± 0.16 | 8.23 | 19 |
1:2 | 384 | 9.28 (7.37–11.41) b | 18.94 (15.69–22.24) a | 2.04 | 2.67 ± 0.26 | 8.10 | 14 | |
2:1 | 480 | 14.85 (12.57–17.47) b | 35.41 (29.22–41.80) a | 2.38 | 2.06 ± 0.16 | 6.24 | 18 | |
1:5 | 504 | 9.75 (8.29–11.45) b | 15.37 (12.74–18.02) a | 1.58 | 1.96 ± 0.14 | 12.27 | 19 | |
5:1 | 432 | 50.52 (29.17–63.35) a | 62.65 (51.38–74.60) a | 1.24 | 3.13 ± 0.77 | 8.60 | 16 | |
Cry1Ab + Vip3Aa19 | 1:1 | 504 | 10.63 (8.05–13.41) b | 31.14 (22.52–39.81) a | 2.93 | 1.62 ± 0.17 | 15.16 | 19 |
1:2 | 576 | 10.74 (8.77–12.99) b | 24.05 (17.35–30.74) a | 2.24 | 1.63 ± 0.13 | 10.14 | 22 | |
2:1 | 576 | 24.09 (19.82–28.98) b | 44.18 (32.09–56.48) a | 1.83 | 1.69 ± 0.13 | 9.15 | 22 | |
1:5 | 576 | 8.68 (6.98–10.69) b | 19.59 (14.11–25.04) a | 2.26 | 1.67 ± 0.14 | 23.87 | 22 | |
5:1 | 504 | 21.73 (18.15–25.61) b | 75.98 (55.77–97.13) a | 3.50 | 2.17 ± 0.19 | 15.62 | 19 | |
Cry1Ab + Vip3Aa20 | 1:1 | 456 | 10.37 (8.55–12.37) b | 24.12 (19.34–29.10) a | 2.33 | 2.29 ± 0.22 | 9.05 | 17 |
1:2 | 408 | 9.37 (7.90–10.97) b | 18.5 (14.84–22.30) a | 1.97 | 2.57 ± 0.23 | 13.61 | 15 | |
2:1 | 384 | 13.37 (11.27–15.82) b | 34.64 (27.75–41.90) a | 2.59 | 2.16 ± 0.18 | 7.58 | 14 | |
1:5 | 504 | 5.80 (4.88–6.80) b | 15.00 (12.04–18.07) a | 2.59 | 2.25 ± 0.19 | 13.18 | 19 | |
5:1 | 456 | 26.54 (21.92–31.56) b | 61.43 (49.10–74.76) a | 2.31 | 2.63 ± 0.26 | 10.85 | 17 |
Bt Proteins | Ratio | n | Observed LC50 (95% FLs) ng/cm2 B | Expected LC50 (95% FLs) ng/cm2 B | SF | Slope ± SE | χ2 | df |
---|---|---|---|---|---|---|---|---|
Cry1F + Vip3Aa11 | 1:1 | 504 | 14.73 (12.58–17.07) a | 15.55 (12.52–18.81) a | 1.06 | 2.79 ± 0.26 | 11.92 | 19 |
1:2 | 432 | 13.10 (11.03–15.46) a | 14.57 (11.86–17.41) a | 1.11 | 2.22 ± 0.17 | 9.20 | 16 | |
2:1 | 576 | 12.44 (10.70–14.52) b | 16.68 (13.27–20.45) a | 1.34 | 2.11 ± 0.15 | 10.70 | 22 | |
1:5 | 576 | 8.90 (7.51–10.40) b | 13.70 (11.26–16.20) a | 1.54 | 2.37 ± 0.21 | 8.12 | 22 | |
5:1 | 648 | 15.08 (12.91–17.66) a | 17.98 (14.11–22.41) a | 1.19 | 1.98 ± 0.13 | 10.99 | 25 | |
Cry1F + Vip3Aa19 | 1:1 | 528 | 47.36 (41.58–52.96) a | 17.89 (13.29–22.81) b | 0.38 | 5.07 ± 0.68 | 8.39 | 20 |
1:2 | 480 | 19.82 (14.80–25.55) a | 17.41 (12.79–22.22) a | 0.88 | 1.76 ± 0.16 | 25.88 | 18 | |
2:1 | 504 | 30.44 (21.39–44.72) a | 18.39 (13.83–23.43) a | 0.60 | 1.20 ± 0.10 | 35.36 | 19 | |
1:5 | 504 | 14.77 (11.85–18.26) a | 16.95 (12.32–21.65) a | 1.15 | 1.75 ± 0.13 | 21.76 | 19 | |
5:1 | 576 | 12.28 (9.71–15.33) a | 18.93 (14.42–24.09) a | 1.54 | 1.29 ± 0.11 | 11.79 | 22 | |
Cry1F + Vip3Aa20 | 1:1 | 576 | 13.48 (11.55–15.60) a | 15.32 (12.11–18.84) a | 1.14 | 2.64 ± 0.24 | 12.13 | 22 |
1:2 | 648 | 21.31 (18.35–24.34) a | 14.30 (11.37–17.44) b | 0.67 | 3.52 ± 0.39 | 6.70 | 22 | |
2:1 | 552 | 14.46 (12.25–17.06) a | 16.50 (12.96–20.48) a | 1.14 | 1.94 ± 0.13 | 6.06 | 21 | |
1:5 | 552 | 8.90 (7.45–10.48) b | 13.41 (10.71–16.24) a | 1.51 | 2.32 ± 0.20 | 9.17 | 21 | |
5:1 | 624 | 29.36 (23.91–35.71) a | 17.88 (13.93–22.43) b | 0.61 | 1.75 ± 0.16 | 13.47 | 24 |
Bt Proteins | Ratio | n | Observed LC50 (95% FLs) ng/cm2 B | Expected LC50 (95% FLs) ng/cm2 B | SF | Slope ± SE | χ2 | df |
---|---|---|---|---|---|---|---|---|
Cry2Ab + Vip3Aa11 | 1:1 | 504 | 15.02 (11.99–18.12) b | 21.92 (17.79–26.06) a | 1.46 | 2.97 ± 0.35 | 22.55 | 19 |
1:2 | 480 | 10.59 (8.28–12.88) b | 17.80 (14.58–21.01) a | 1.68 | 2.56 ± 0.29 | 15.54 | 18 | |
2:1 | 480 | 11.71 (9.54–13.87) b | 28.54 (22.79–34.29) a | 2.44 | 2.80 ± 0.32 | 11.00 | 18 | |
1:5 | 456 | 10.24 (8.47–12.19) b | 14.98 (12.36–17.61) a | 1.46 | 2.32 ± 0.22 | 7.41 | 17 | |
5:1 | 504 | 13.88 (11.60–16.29) b | 40.88 (31.73–50.12) a | 2.95 | 2.55 ± 0.26 | 8.84 | 19 | |
Cry2Ab + Vip3Aa19 | 1:1 | 648 | 10.95 (8.89–13.24) b | 26.87 (19.37–34.43) a | 2.45 | 1.81 ± 0.15 | 7.91 | 25 |
1:2 | 552 | 6.44 (5.06–8.06) b | 22.23 (16.01–28.45) a | 3.45 | 1.31 ± 0.11 | 14.98 | 21 | |
2:1 | 552 | 7.21 (5.56–9.15) b | 33.97 (24.50–43.58) a | 4.71 | 1.31 ± 0.11 | 14.82 | 21 | |
1:5 | 552 | 7.63 (6.03–9.60) b | 18.95 (13.65–24.24) a | 2.48 | 1.41 ± 0.11 | 8.56 | 21 | |
5:1 | 348 | 5.97 (4.22–8.07) b | 46.17 (33.35–59.37) a | 7.73 | 1.36 ± 0.15 | 13.41 | 14 | |
Cry2Ab + Vip3Aa20 | 1:1 | 384 | 6.57 (4.97–8.33) b | 21.48 (16.97–26.12) a | 3.27 | 1.95 ± 0.19 | 8.65 | 14 |
1:2 | 408 | 7.45 (5.33–9.43) b | 17.40 (13.85–21.07) a | 2.34 | 2.59 ± 0.38 | 7.57 | 15 | |
2:1 | 552 | 9.04 (7.47–10.78) b | 28.03 (21.89–34.36) a | 3.10 | 2.05 ± 0.18 | 9.09 | 21 | |
1:5 | 432 | 4.60 (3.54–5.65) b | 14.63 (11.70–17.65) a | 3.18 | 2.51 ± 0.31 | 7.10 | 16 | |
5:1 | 384 | 9.41 (7.61–11.33) b | 40.36 (30.84–50.19) a | 4.29 | 2.30 ± 0.22 | 8.59 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liu, S.; Bai, S.; He, K.; Zhang, Y.; Dong, H.; Zhang, T.; Wang, Z. Toxicity of Cry- and Vip3Aa-Class Proteins and Their Interactions against Spodoptera frugiperda (Lepidoptera: Noctuidae). Toxins 2024, 16, 193. https://doi.org/10.3390/toxins16040193
Liu X, Liu S, Bai S, He K, Zhang Y, Dong H, Zhang T, Wang Z. Toxicity of Cry- and Vip3Aa-Class Proteins and Their Interactions against Spodoptera frugiperda (Lepidoptera: Noctuidae). Toxins. 2024; 16(4):193. https://doi.org/10.3390/toxins16040193
Chicago/Turabian StyleLiu, Xiaobei, Shen Liu, Shuxiong Bai, Kanglai He, Yongjun Zhang, Hui Dong, Tiantao Zhang, and Zhenying Wang. 2024. "Toxicity of Cry- and Vip3Aa-Class Proteins and Their Interactions against Spodoptera frugiperda (Lepidoptera: Noctuidae)" Toxins 16, no. 4: 193. https://doi.org/10.3390/toxins16040193
APA StyleLiu, X., Liu, S., Bai, S., He, K., Zhang, Y., Dong, H., Zhang, T., & Wang, Z. (2024). Toxicity of Cry- and Vip3Aa-Class Proteins and Their Interactions against Spodoptera frugiperda (Lepidoptera: Noctuidae). Toxins, 16(4), 193. https://doi.org/10.3390/toxins16040193