High-Performance Liquid Chromatography–Fluorescence Detection Method for Ochratoxin A Quantification in Small Mice Sample Volumes: Versatile Application across Diverse Matrices Relevant for Neurodegeneration Research
Abstract
:1. Introduction
2. Results
2.1. Method Validation
2.1.1. Selectivity
2.1.2. Linearity
2.1.3. Precision and Accuracy
2.1.4. Recovery
2.1.5. Dilution Integrity
2.1.6. Carry-Over Effect
2.1.7. Stability
2.1.8. Robustness
2.2. Application to In Vivo Study
3. Discussion
4. Conclusions
5. Material and Methods
5.1. Reagents
5.2. Application of the Method: Animals and Samples Collection
5.2.1. Animals and Experimental Design
5.2.2. Plasma and Samples Collection
5.3. Apparatus and Chromatographic Conditions
5.4. Preparation of Stock and Working Solutions
5.5. Preparation of Calibration and Quality Control (QC) Samples
5.6. Sample Treatment
5.6.1. Homogenization of Solid Tissues
5.6.2. OTA Extraction
5.7. Validation of the Method
5.7.1. Selectivity
5.7.2. Linearity (Calibration Curves) and LLOQ
5.7.3. Precision and Accuracy
5.7.4. Recovery
5.7.5. Dilution Integrity
5.7.6. Carry-Over Effect
5.7.7. Stability
5.7.8. Robustness
5.8. Acceptance Criteria of an Analytical Run
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACN | Acetonitrile |
CV | Coefficient of variation |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
HPLC-FLD | High-performance liquid chromatography-fluorescence detection |
IARC | International Agency for Research on Cancer |
ILO | International Labour Organization |
LLOQ | Lower limit of quantification |
LOD | Limit of detection |
NIH | National Institute of Health |
OTA | Ochratoxin A |
PD | Parkinson’s disease |
QC | Quality control |
RE | Relative error |
TCA | Trichloroacetic acid |
TLV | Threshold Limit Value |
ULOQ | Upper limit of quantification |
References
- Schrenk, D.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; Nielsen, E.; et al. Risk Assessment of Ochratoxin A in Food. EFSA J. 2020, 18, e06113. [Google Scholar] [CrossRef] [PubMed]
- Arce-López, B.; Lizarraga, E.; Vettorazzi, A.; González-Peñas, E. Human Biomonitoring of Mycotoxins in Blood, Plasma and Serum in Recent Years: A Review. Toxins 2020, 12, 147. [Google Scholar] [CrossRef] [PubMed]
- Rached, E.; Hard, G.C.; Blumbach, K.; Weber, K.; Draheim, R.; Lutz, W.K.; Özden, S.; Steger, U.; Dekant, W.; Mally, A. Ochratoxin A: 13-Week Oral Toxicity and Cell Proliferation in Male F344/ N Rats. Toxicol. Sci. 2007, 97, 288–298. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. NTP Toxicology and Carcinogenesis Studies of Ochratoxin A (CAS No. 303-47-9) in F344/N Rats (Gavage Studies). Natl. Toxicol. Program. Tech. Rep. Ser. 1989, 358, 1–142. [Google Scholar]
- Pfohl-Leszkowicz, A.; Pinelli, E.; Bartsch, H.; Mohr, U.; Castegnaro, M. Sex- and Strain-Specific Expression of Cytochrome P450s in Ochratoxin A- Induced Genotoxicity and Carcinogenicity in Rats. Mol. Carcinog. 1998, 23, 76–85. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins; International Agency for Research on Cancer: Lyon, France, 1992. [Google Scholar] [CrossRef]
- Sava, V.; Reunova, O.; Velasquez, A.; Harbison, R.; Sánchez-Ramos, J. Acute Neurotoxic Effects of the Fungal Metabolite Ochratoxin-A. Neurotoxicology 2006, 27, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mahato, D.K.; Sharma, B.; Borah, R.; Haque, S.; Mahmud, M.M.C.; Shah, A.K.; Rawal, D.; Bora, H.; Bui, S. Ochratoxins in Food and Feed: Occurrence and Its Impact on Human Health and Management Strategies. Toxicon 2020, 187, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Haq, M.; Gonzalez, N.; Mintz, K.; Jaja-Chimedza, A.; De Jesus, C.L.; Lydon, C.; Welch, A.; Berry, J.P. Teratogenicity of Ochratoxin a and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio Rerio) Embryo Model of Vertebrate Development. Toxins 2016, 8, 40. [Google Scholar] [CrossRef]
- Qi, X.; Yang, X.; Chen, S.; He, X.; Dweep, H.; Guo, M.; Cheng, W.H.; Xu, W.; Luo, Y.; Gretz, N.; et al. Ochratoxin A Induced Early Hepatotoxicity: New Mechanistic Insights from MicroRNA, MRNA and Proteomic Profiling Studies. Sci. Rep. 2014, 4, 5163. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, K.; Long, M.; Yang, S.; Zhang, Y. An Update on Immunotoxicity and Mechanisms of Action of Six Environmental Mycotoxins. Food Chem. Toxicol. 2022, 163, 112895. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, A.; Khan, M.Z.; Khan, A.; Saleemi, M.K.; Javed, I. Amelioration of Ochratoxin A-Induced Immunotoxic Effects by Silymarin and Vitamin e in White Leghorn Cockerels. J. Immunotoxicol. 2013, 10, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Tamaru, M.; Hirata, Y.; Matsutani, T. Neurochemical Effects of Prenatal Treatment with Ochratoxin A on Fetal and Adult Mouse Brain. Neurochem. Res. 1988, 13, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Paradells, S.; Rocamonde, B.; Llinares, C.; Herranz-Pérez, V.; Jimenez, M.; Garcia-Verdugo, J.M.; Zipancic, I.; Soria, J.M.; Garcia-Esparza, M.A. Neurotoxic Effects of Ochratoxin A on the Subventricular Zone of Adult Mouse Brain. J. Appl. Toxicol. 2015, 35, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Mateo, E.; Tonino, R.P.B.; Canto, A.; Monroy Noyola, A.; Miranda, M.; Soria, J.M.; Garcia Esparza, M.A. The Neurotoxic Effect of Ochratoxin-A on the Hippocampal Neurogenic Niche of Adult Mouse Brain. Toxins 2022, 14, 624. [Google Scholar] [CrossRef] [PubMed]
- Sava, V.; Reunova, O.; Velasquez, A.; Sanchez-Ramos, J. Can Low Level Exposure to Ochratoxin-A Cause Parkinsonism? J. Neurol. Sci. 2006, 249, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Bhat, P.V.; Anand, T.; Mohan Manu, T.; Khanum, F. Restorative Effect of L-Dopa Treatment against Ochratoxin A Induced Neurotoxicity. Neurochem. Int. 2018, 118, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Izco, M.; Vettorazzi, A.; Forcen, R.; Blesa, J.; de Toro, M.; Alvarez-Herrera, N.; Cooper, J.M.; Gonzalez-Peñas, E.; Lopez de Cerain, A.; Alvarez-Erviti, L. Oral Subchronic Exposure to the Mycotoxin Ochratoxin A Induces Key Pathological Features of Parkinson’s Disease in Mice Six Months after the End of the Treatment. Food Chem. Toxicol. 2021, 152, 112164. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K.; Rüb, U.; De Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Vettorazzi, A.; González-Peñas, E.; de Cerain, A.L. Ochratoxin A Kinetics: A Review of Analytical Methods and Studies in Rat Model. Food Chem. Toxicol. 2014, 72, 273–288. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Bionalytical Method Validation; FDA: Silver Spring, MD, USA, 2018; Volume 1043. [Google Scholar]
- EMA Committee for Medicinal Products for Human Use. Guideline on Bioanalytical Method Validation; EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2**; European Medicines Agency: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Szőke, Z.; Babarczi, B.; Mézes, M.; Lakatos, I.; Poór, M.; Fliszár-Nyúl, E.; Oldal, M. Analysis and Comparison of Rapid Methods for the Determination of Ochratoxin a Levels in Organs and Body Fluids Obtained from Exposed Mice. Toxins 2022, 14, 634. [Google Scholar] [CrossRef] [PubMed]
- Fukui, Y.; Hoshino, K.; Kameyama, Y.; Yasui, T.; Toda, C.; Nagano, H. Placental Transfer of Ochratoxin A and Its Cytotoxic Effect on the Mouse Embryonic Brain. Food Chem. Toxicol. 1987, 25, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gan, C.; Qi, X.; Lebre, M.C.; Schinkel, A.H. Human Organic Anion Transporting Polypeptide (OATP) 1B3 and Mouse OATP1A/1B Affect Liver Accumulation of Ochratoxin A in Mice. Toxicol. Appl. Pharmacol. 2020, 401, 115072. [Google Scholar] [CrossRef] [PubMed]
- Appelgren, L.-E.; Arora, R.G. Distribution of 14C-Labelled Ochratoxin A in Pregnant Mice. Food Chem. Toxicol. 1983, 21, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Meulenberg, E.P. Immunochemical Methods for Ochratoxin A Detection: A Review. Toxins 2012, 4, 244–266. [Google Scholar] [CrossRef] [PubMed]
- Gentaur. BeadBugTM 3 Position Bead Homogenizer. Available online: https://biodas.org/beadbug-3-position-bead-homogenizer/ (accessed on 1 March 2024).
- Li, P.; Bartlett, M.G. A Review of Sample Preparation Methods for Quantitation of Small-Molecule Analytes in Brain Tissue by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). Anal. Methods 2014, 6, 6183–6207. [Google Scholar] [CrossRef]
- Mohos, V.; Faisal, Z.; Fliszár-Nyúl, E.; Szente, L.; Poór, M. Testing the Extraction of 12 Mycotoxins from Aqueous Solutions by Insoluble Beta-Cyclodextrin Bead Polymer. Environ. Sci. Pollut. Res. 2022, 29, 210–221. [Google Scholar] [CrossRef]
- Arce-López, B.; Lizarraga, E.; Flores-Flores, M.; Irigoyen, Á.; González-Peñas, E. Development and Validation of a Methodology Based on Captiva EMR-Lipid Clean-up and LC-MS/MS Analysis for the Simultaneous Determination of Mycotoxins in Human Plasma. Talanta 2020, 206, 120193. [Google Scholar] [CrossRef]
- International Labour Organization (United Nations) International Chemical Safety Cards (ICSCs). Available online: https://www.ilo.org/dyn/icsc/showcard.listCards3 (accessed on 12 March 2024).
- Kane, A.; Creppy, E.E.; Roth, A.; Riischenthaler, R.; Dirheimer, G. Original Investigations Archives of Distribution of the [3HI-Label from Low Doses of Radioactive Ochratoxin A Ingested by Rats, and Evidence for DNA Single-Strand Breaks Caused in Liver and Kidneys. Arch. Toxicol. 1986, 58, 219–224. [Google Scholar]
- Han, Z.; Zhao, Z.; Shi, J.; Liao, Y.; Zhao, Z.; Zhang, D.; Wu, Y.; De Saeger, S.; Wu, A. Combinatorial Approach of LC-MS/MS and LC-TOF-MS for Uncovering in Vivo Kinetics and Biotransformation of Ochratoxin A in Rat. J. Chromatogr. B 2013, 925, 46–53. [Google Scholar] [CrossRef]
- Aoudia, N.; Tangni, E.K.; Larondelle, Y. Distribution of Ochratoxin A in Plasma and Tissues of Rats Fed a Naturally Contaminated Diet Amended with Micronized Wheat Fibres: Effectiveness of Mycotoxin Sequestering Activity. Food Chem. Toxicol. 2008, 46, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Arbillaga, L.; Vettorazzi, A.; Gil, A.G.; van Delft, J.H.; García-Jalón, J.A.; López de Cerain, A. Gene Expression Changes Induced by Ochratoxin A in Renal and Hepatic Tissues of Male F344 Rat after Oral Repeated Administration. Toxicol. Appl. Pharmacol. 2008, 230, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Mally, A.; Völkel, W.; Amberg, A.; Kurz, M.; Wanek, P.; Eder, E.; Hard, G.; Dekant, W. Functional, Biochemical, and Pathological Effects of Repeated Oral Administration of Ochratoxin A to Rats. Chem. Res. Toxicol. 2005, 18, 1242–1252. [Google Scholar] [CrossRef] [PubMed]
- Vettorazzi, A.; De Trocóniz, I.F.; González-Peñas, E.; Arbillaga, L.; Corcuera, L.A.; Gil, A.G.; de Cerain, A.L. Kidney and Liver Distribution of Ochratoxin A in Male and Female F344 Rats. Food Chem. Toxicol. 2011, 49, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, Y.; Zhai, N.; Chen, X.; Gan, F.; Li, H.; Huang, K. Ochratoxin A-Induced Apoptosis of IPEC-J2 Cells through ROS-Mediated Mitochondrial Permeability Transition Pore Opening Pathway. J. Agric. Food. Chem. 2017, 65, 10630–10637. [Google Scholar] [CrossRef] [PubMed]
- Vettorazzi, A.; Gonzalez-Peñas, E.; Arbillaga, L.; Corcuera, L.A.; López de Cerain, A. Simple High-Performance Liquid Chromatography-Fluorescence Detection Method for Plasma, Kidney and Liver of Rat as a Tool for Toxicology Studies. J. Chromatogr. A 2008, 1215, 100–106. [Google Scholar] [CrossRef]
- Valenta, H. Chromatographic Methods for the Determination of Ochratoxin A in Animal and Human Tissues and Fluids. J. Chromatogr. A 1998, 815, 75–92. [Google Scholar] [CrossRef]
Range 2.35–22.83 ng/mL | Range 22.83–228.33 ng/mL | |
---|---|---|
Curve equation a | y = 9.19x + 0.533 | y = 8.50x + 15.33 |
r2 | 0.997 | 0.999 |
Slope limits (p = 95%) | 8.55; 9.83 | 8.19; 8.81 |
Intercept limits (p = 95%) | −6.96; 8.03 | −20.61; 51.27 |
CV b of response factors (%) | 3.72 | 3.47 |
Back-calculated RE c (%) | <5.5 | <5.2 |
Within-Day Variability (n = 3) | Between-Day Variability (n = 9) | |||||
---|---|---|---|---|---|---|
Cnominal (ng/mL) | Cmeasured (ng/mL) | CV a | A b | Cmeasured (ng/mL) | CV a | A b |
Range 2.35–22.83 ng/mL c,d | ||||||
2.35 | 2.21 | 4.08 | 2.09 | 2.29 | 3.55 | 2.55 |
22.83 | 21.77 | 2.09 | 4.64 | 21.63 | 4.95 | 5.25 |
Range 22.83–228.33 ng/mL e,f | ||||||
22.83 | 22.43 | 2.13 | 1.77 | 22.28 | 4.95 | 2.42 |
228.33 | 235.82 | 0.49 | 3.28 | 226.25 | 4.99 | 0.91 |
Global Recovery (%) | CV a (%) | ||
---|---|---|---|
Plasma | Within-day | 75.2 (n = 9) | 6.8 (n = 9) |
Between day | 74.8 (n = 27) | 7.5 (n = 27) | |
Brain | Within-day | 76.9 (n = 9) | 12.8 (n = 9) |
Between day | 79.7 (n = 27) | 11.2 (n = 27) | |
Kidney | Within-day | 88.8 (n = 9) | 2.9 (n = 9) |
Between day | 87.6 (n = 27) | 4.5 (n = 27) | |
Intestine | Within-day | 80.4 (n = 9) | 11.8 (n = 9) |
Between day | 80.2 (n = 27) | 11.6 (n = 27) | |
Liver | Within-day | 78.9 (n = 9) | 5.5 (n = 9) |
Between day | 76.2 (n = 27) | 5.8 (n = 27) |
Plasma | Brain | Kidney | Intestine | Liver | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Time (h) | Cmeasured (ng/mL) | A a (%) | Cmeasured (ng/g) | A a (%) | Cmeasured (ng/g) | A a (%) | Cmeasured (ng/g) | A a (%) | Cmeasured (ng/g) | A a (%) |
Cnominal 2.35 ng/mL | ||||||||||
0 | 2.44 | 3.99 | 2.14 | 9.10 | 2.43 | 3.44 | 2.24 | 4.74 | 2.61 | 10.92 |
2 | 2.36 | 0.52 | 2.46 | 4.88 | 2.25 | 4.06 | 2.30 | 2.26 | 2.41 | 2.59 |
6 | 2.52 | 7.28 | 2.61 | 11.05 | 2.56 | 9.11 | 2.60 | 10.66 | 2.12 | 9.99 |
12 | 5.70 | 142.64 | 3.48 | 48.17 | 3.17 | 34.81 | 1.62 | 30.92 | 2.05 | 12.77 |
Cnominal 228.33 ng/mL | ||||||||||
0 | 237.81 | 4.15 | 208.54 | 8.67 | 202.43 | 11.34 | 213.38 | 6.55 | 213.77 | 6.38 |
2 | 230.46 | 0.93 | 229.75 | 0.62 | 197.13 | 13.67 | 206.65 | 9.50 | 216.87 | 5.02 |
6 | 247.86 | 8.55 | 256.83 | 12.48 | 228.21 | 0.05 | 227.34 | 0.43 | 195.83 | 14.23 |
12 | 462.34 | 102.49 | 357.30 | 56.48 | 279.62 | 22.46 | 232.49 | 1.82 | 202.84 | 11.16 |
Areas from Column A Extrapolated with Calibration Curves Obtained in Column B | Areas from Column B Extrapolated with Calibration Curves Obtained in Column A | |||||
---|---|---|---|---|---|---|
Cnominal (ng/mL) | Cmeasured (ng/mL) | CV a (%) | A b (%) | Cmeasured (ng/mL) | CV a (%) | A b (%) |
Range 2.35–22.83 ng/mL c,d | ||||||
2.35 | 2.35 | 3.55 | 0.20 | 2.37 | 8.25 | 0.90 |
22.83 | 20.37 | 4.95 | 10.76 | 22.00 | 5.94 | 3.65 |
Range 22.83–228.33 ng/mL e,f | ||||||
22.83 | 22.26 | 4.95 | 2.50 | 24.01 | 5.94 | 5.16 |
228.33 | 216.82 | 4.99 | 5.04 | 231.80 | 5.55 | 1.52 |
OTA Concentration (ng/mL or ng/g) | |||||
---|---|---|---|---|---|
Plasma | Brain | Kidney | Intestine | Liver | |
Control animals | |||||
1 | <LLOQ a | <LLOQ | <LLOQ | <LLOQ | <LLOQ |
2 | <LLOQ | <LLOQ | <LLOQ | <LLOQ | <LLOQ |
3 | <LLOQ | <LLOQ | <LLOQ | <LLOQ | <LLOQ |
4 | <LLOQ | <LLOQ | <LLOQ | <LLOQ | <LLOQ |
5 | <LLOQ | <LLOQ | <LLOQ | <LLOQ | <LLOQ |
Mean | <LLOQ | <LLOQ | <LLOQ | <LLOQ | <LLOQ |
Treated animals (0.21 mg/kg bw) | |||||
1 | 835.66 | 3.05 | 47.51 | 39.20 | 58.99 |
2 | 1093.83 | 4.28 | 56.58 | 56.78 | 69.65 |
3 | 836.21 | 1.94 | 55.41 | 52.84 | 78.98 |
4 | 787.23 | 3.00 | 48.18 | 35.80 | 69.35 |
5 | 849.31 | 3.69 | 78.81 | 54.15 | 60.96 |
Mean | 880.45 ± 121.61 | 3.19 ± 0.87 | 51.14 ± 12.70 | 47.82 ± 9.47 | 67.59 ± 7.98 |
Treated animals (0.5 mg/kg bw) | |||||
1 | 3858.11 | 13.19 | 163.70 | 296.86 | 244.00 |
2 | 1785.37 | 5.72 | 107.15 | 115.02 | 183.08 |
3 | 2312.75 | 7.27 | 106.93 | 149.33 | 163.17 |
4 | 3247.83 | 10.28 | 140.32 | 164.76 | 251.95 |
5 | 3061.26 | 9.90 | 172.70 | 104.34 | 173.59 |
Mean | 2853.06 ± 812.59 | 9.27 ± 2.89 | 138.16 ± 30.77 | 166.06 ± 77.14 | 203.16 ± 41.61 |
Parameters | Criteria of Acceptance Based on EMA and FDA Criteria |
---|---|
Selectivity | Absence of interfering components is accepted where the response is not more than 20% of the analyte response at the LLOQ a for the analyte. |
Linearity/calibration curve | At least 6 concentration levels. Back-calculated concentrations of the calibration standards should be within 15% of the nominal value (20% at LLOQ) for at least 75%. |
Accuracy and precision | RE% b and CV% c (within runs and between runs): ±15% of nominal concentrations, except ± 20% at LLOQ. |
Dilution integrity | RE% and CV%: ±15%. |
Carry-over effect | Blank response after a calibrator at ULOQ d should not exceed 20% of the analyte response at LLOQ. |
Stability | RE% at each level (LLOQ and ULOQ): ± 15%. |
Robustness | Column batches (2). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beraza, E.; Serrano-Civantos, M.; Izco, M.; Alvarez-Erviti, L.; Gonzalez-Peñas, E.; Vettorazzi, A. High-Performance Liquid Chromatography–Fluorescence Detection Method for Ochratoxin A Quantification in Small Mice Sample Volumes: Versatile Application across Diverse Matrices Relevant for Neurodegeneration Research. Toxins 2024, 16, 213. https://doi.org/10.3390/toxins16050213
Beraza E, Serrano-Civantos M, Izco M, Alvarez-Erviti L, Gonzalez-Peñas E, Vettorazzi A. High-Performance Liquid Chromatography–Fluorescence Detection Method for Ochratoxin A Quantification in Small Mice Sample Volumes: Versatile Application across Diverse Matrices Relevant for Neurodegeneration Research. Toxins. 2024; 16(5):213. https://doi.org/10.3390/toxins16050213
Chicago/Turabian StyleBeraza, Elba, Maria Serrano-Civantos, Maria Izco, Lydia Alvarez-Erviti, Elena Gonzalez-Peñas, and Ariane Vettorazzi. 2024. "High-Performance Liquid Chromatography–Fluorescence Detection Method for Ochratoxin A Quantification in Small Mice Sample Volumes: Versatile Application across Diverse Matrices Relevant for Neurodegeneration Research" Toxins 16, no. 5: 213. https://doi.org/10.3390/toxins16050213
APA StyleBeraza, E., Serrano-Civantos, M., Izco, M., Alvarez-Erviti, L., Gonzalez-Peñas, E., & Vettorazzi, A. (2024). High-Performance Liquid Chromatography–Fluorescence Detection Method for Ochratoxin A Quantification in Small Mice Sample Volumes: Versatile Application across Diverse Matrices Relevant for Neurodegeneration Research. Toxins, 16(5), 213. https://doi.org/10.3390/toxins16050213