Exploring the Efficacy of Using Geotrichum fermentans, Rhodotorula rubra, Kluyveromyce marxiamus, Clay Minerals, and Walnut Nutshells for Mycotoxin Remediation
Abstract
:1. Introduction
2. Results
Analysis of Selected Biological Compounds Effect on the Mycotoxin’s Concentrations Reduction
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Biological Materials
5.2. Preparation of Yeast Cell Wall Polysaccharides
5.3. Preparation of the Static Gastrointestinal Model In Vitro
- RRCW—Rhodotorula rubra cell walls.
- RRCWP—Rhodotorula rubra cell wall polysaccharides.
- KMCW—Kluyveromyce marxianus cell walls.
- KMCWP—Kluyveromyce marxianus cell wall polysaccharides.
- GFCW—Geotrichum fermentans cell walls.
- GFCWP—Geotrichum fermentans cell wall polysaccharides.
- RCM—red clay minerals.
- WCM—white clay minerals.
- WN—walnut nutshells.
5.4. Determination of Mycotoxin Concentrations
5.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Orlov, A.V.; Znoyko, S.L.; Malkerov, J.A.; Skirda, A.M.; Novichikhin, D.O.; Rakitina, A.S.; Zaitseva, Z.G.; Nikitin, P.I. Quantitative Rapid Magnetic Immunoassay for Sensitive Toxin Detection in Food: Non-Covalent Functionalization of Nanolabels vs. Covalent Immobilization. Toxins 2024, 16, 5. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, L.; Chen, Y.; Gao, H.; Hua, Y.; Yuan, X.; Yang, H. Mycotoxins in maize silage from China in 2019. Toxins 2022, 14, 241. [Google Scholar] [CrossRef] [PubMed]
- Janik, E.; Niemcewicz, M.; Ceremuga, M.; Stela, M.; Saluk-Bijak, J.; Siadkowski, A. Molecular Aspects of Mycotoxins—A Serious Problem for Human Health. Int. J. Mol. Sci. 2020, 21, 8187. [Google Scholar] [CrossRef] [PubMed]
- Gbashi, S.; Madala, N.E.; De Saeger, S.; De Boevre, M.; Adekoya, I.; Adebo, O.A.; Njobeh, P.B. The Socio-Economic Impact of Mycotoxin Contamination in Africa. In Mycotoxins-Impact and Management, Strategies; Njobeh, P.B., Stepman, F., Eds.; IntechOpen: London, UK, 2018; Available online: https://www.intechopen.com/online-first/the-socio-economic-impact-of-mycotoxin-contamination-in-africa (accessed on 9 April 2024).
- Fink-Gremmels, J. The role of mycotoxins in the health and performance of dairy cows. Vet. J. 2008, 176, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Zachariasova, M.; Dzuman, Z.; Veprikova, Z.; Hajkova, K.; Jiru, M.; Vaclavikova, M.; Zachariasova, A.; Pospichalova, M.; Florian, M.; Hajslova, J. Occurrence of multiple mycotoxins in European feedingstuffs, assessment of dietary intake by farm animals. Anim. Feed Sci. Technol. 2014, 193, 124–140. [Google Scholar] [CrossRef]
- Valgaeren, B.; Théron, L.; Croubels, S.; Devreese, M.; De Baere, S.; Van Pamel, E.; Daeseleire, E.; De Boevre, M.; De Saeger, S.; Vidal, A.; et al. The role of roughage provision on the absorption and disposition of the mycotoxin deoxynivalenol and its acetylated derivatives in calves: From field observations to toxicokinetics. Arch. Toxicol. 2018, 93, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Wambacq, E.; Vanhoutte, I.; Audenaert, K.; Gelder, L.D.; Haesaert, G. Occurrence, prevention and remediation oftoxigenic fungi and mycotoxins in silage: A review. J. Sci. Food Agric. 2016, 96, 2284–2302. [Google Scholar] [CrossRef] [PubMed]
- Tangni, E.K.; Pussemier, L.; Van Hove, F. Mycotoxin contaminating maize and grass silages for dairy cattle feeding: Current state and challenges. J. Anim. Sci. Adv. 2013, 3, 492–511. [Google Scholar]
- Chebutia Kemboi, D.; Antonissen, G.; Ochieng, P.E.; Croubels, S.; Okoth, S.; Kangethe, E.K.; Faas, J.; Lindahl, J.F.; Gathumbi, J.K. A review of the impact of mycotoxins on dairy cattle health: Challenges for food safety and dairy production in sub-saharan sfrica. Toxins 2020, 12, 222. [Google Scholar] [CrossRef]
- Martínez-Alonso, C.; Taroncher, M.; Rodríguez-Carrasco, Y.; Ruiz, M.J. Evaluation of the Bioaccessible Fraction of T-2 Toxin from Cereals and Its Effect on the Viability of Caco-2 Cells Exposed to Tyrosol. Toxins 2023, 15, 493. [Google Scholar] [CrossRef]
- González-Arias, C.A.; Marín, S.; Sanchis, V.; Ramos, A.J. Mycotoxin bioaccessibility/absorption assessment using in vitro digestion models: A review. World Mycotoxin J. 2013, 6, 167–184. [Google Scholar] [CrossRef]
- Whitlow, L.; Hagler, W. Mold and Mycotoxin Issues in Dairy Cattle: Effects, Prevention and Treatment. Adv. Dairy Technol. 2008, 20, 195–209. [Google Scholar]
- Gonçalves, B.; Corassin, C.; Oliveira, C. Mycotoxicoses in Dairy Cattle: A Review. Asian J. Anim. Vet. Adv. 2015, 10, 752–760. [Google Scholar] [CrossRef]
- Reisinger, N.; Schurer-Waldheim, S.; Mayer, E.; Debevere, S.; Antonisse, G.; Sulyok, M.; Nagl, V. Mycotoxin Occurrence in Maize Silage—A Neglected Risk for Bovine Gut Health? Toxins 2020, 11, 577. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Blanco, M.; Ramos, A.J.; Sanchis, V.; Marin, S. Mycotoxins occurrence and fungal populations in different types of silages for dairy cows in Spain. Fungal Biol. 2021, 125, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Upadhaya, S.D.; Sung, H.G.; Lee, C.H.; Lee, S.Y.; Kim, S.W.; Cho, K.J.; Ha, J.K. Comparative Study on the Aflatoxin B1 Degradation Ability of Rumen Fluid from Holstein Steers and Korean Native Goats. J. Vet. Sci. 2009, 10, 29–34. [Google Scholar] [CrossRef]
- Panasiuk, L.; Jedziniak, P.; Pietruszka, K.; Piatkowska, M.; Bocian, L. Frequency and levels of regulated and emerging mycotoxins in silage in Poland. Mycotoxin Res. 2019, 35, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Jard, G.; Liboz, T.; Mathieu, F.; Guyonvarch, A.; Lebrihi, A. Review of mycotoxin reduction in food and feed: From prevention in the field to detoxification by adsorption or transformation. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 1590–1609. [Google Scholar] [CrossRef] [PubMed]
- Kolosova, A.; Stroka, J. Substances for reduction of the contamination of feed by mycotoxins: A review. World Mycotoxin J. 2011, 4, 225–256. [Google Scholar] [CrossRef]
- Nadziakiewicza, M.; Kehoe, S.; Micek, P. Physico-chemical properties of clay minerals and their use as a health promoting feed additive. Animals 2019, 10, 714. [Google Scholar] [CrossRef]
- Papadaki, M.I.; Mendoza-Castillo, D.I.; Reynel-Avila, H.E.; Bonilla-Petriciolet, A.; Georgopoulos, S. Nut shells as adsorbents of pollutants: Research and perspectives. Front. Chem. Sci. Eng. 2021, 3, 640983. [Google Scholar] [CrossRef]
- Nahle, S.; Khoury, A.E.; Savvaidis, I.; Chokr, A.; Louka, N.; Atoui, A. Detoxifcation approaches of mycotoxins by microorganisms, bioflms and enzymes. Int. J. Food Contam. 2022, 9, 3. [Google Scholar] [CrossRef]
- Kim, S.W.; Holanda, D.M.; Gao, X.; Park, I.; Yiannikouris, A. Effect of Naturally Co-Occurring Mycotoxins Contaminating Feed Ingredients Fed to Young Pigs: Impact on Gut Health, Microbiome, and Growth. Food Control 2019, 96, 47–52. [Google Scholar]
- Habschied, K.; Krstanovic, V.; Zdunic, Z.; Babiic, J.; Mastanjević, K.; Šaric, G.K. Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products. J. Fungi 2021, 7, 348. [Google Scholar] [CrossRef] [PubMed]
- Ben Taheur, F.; Kouidhi, B.; Al Qurashi, Y.M.A.; Ben Salah-Abbès, J.; Chaieb, K. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 2019, 160, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.F.; De Boevre, M.; Landschoot, S.; De Saeger, S.; Haesaert, G.; Audenaert, K. Fungal Endophytes Control Fusarium graminearum and Reduce Trichothecenes and Zearalenone in Maize. Toxins 2018, 10, 493. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, M.N.; Oliva, M.; Casero, C.; Dambolena, J.; Luna, A.; Zygadlo, J. Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr. J. 2009, 24, 348–354. [Google Scholar] [CrossRef]
- Boudergue, C.; Burel, C.; Dragacci, S.; Favrot, M.C.; Fremy, J.M.; Massimi, C.; Prigent, P.; Debongnie, P.; Pussemier, L.; Boudra, H.; et al. Review of mycotoxin-detoxifying agents used as feed additives: Mode of action, cacy and feed/food safety. EFSA Support. Publ. 2009, 6, E22. [Google Scholar] [CrossRef]
- Yiannikouris, A.; André, G.; Buléon, A.; Jeminet, G.; Canet, I.; François, J. Comprehensive conformational study of key interactions involved in zearalenone complexation with β-d-Glucans. Biomacromolecules 2004, 5, 2176–2185. [Google Scholar] [CrossRef]
- Yiannikouris, A.; André, G.; Poughon, L.; François, J.; Dussap, C.G.; Jeminet, G. Chemical and conformational study of the interactions involved in mycotoxin Ccmplexation with β-d-Glucans. Biomacromolecules 2006, 7, 1147–1155. [Google Scholar] [CrossRef]
- Aguilar-Uscanga, B.; François, J.M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett. Appl. Microbiol. 2003, 37, 268–274. [Google Scholar] [CrossRef]
- Hsu, P.H.; Chiang, P.C.; Liu, C.H.; Chang, Y.W. Characterization of cell wall proteins in Saccharomyces cerevisiae clinical isolates elucidates Hsp150p in virulence. PLoS ONE 2015, 10, e0135174. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, M.; Masek, A. Saccharomyces cerevisiae cell wall components as tools for ochratoxin a decontamination. Toxins 2015, 7, 1151–1162. [Google Scholar] [CrossRef]
- Kawtharani, K.; Beaufort, S.; Anson, P.; Taillandier, P.; Mathieu, F.; Snini, S.P. Impact of the Inoculation Method of Geotrichum candidum, Used as Biocontrol Agent, on T-2 Toxin Produced by Fusarium sporotrichioides and F. langsethiae during the Malting Process. Toxins 2022, 14, 239. [Google Scholar] [CrossRef]
- Intanoo, M.; Kongkeitkajorn, M.B.; Suriyasathaporn, W.; Phasuk, Y.; Bernard, J.K.; Pattarajinda, V. Effect of Supplemental Kluyveromyces marxianus and Pichia kudriavzevii on Aflatoxin M1 Excretion in Milk of Lactating Dairy Cows. Animals 2020, 10, 709. [Google Scholar] [CrossRef]
- Jakopovic, Ž.; Čiča, K.H.; Mrvčic, J.; Pucic, I.; Čanak, I.; Frece, J. Properties and Fermentation Activity of Industrial Yeasts Saccharomyces cerevisiae, S. uvarum, Candida utilis and Kluyveromyces marxianus Exposed to AFB1, OTA and ZEA. Food Technol. Biotechnol. 2018, 56, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Kiarie, E.G.; Yiannikouris, A.; Sun, L.; Karrow, N.A. Nutritional impact of mycotoxins in food animal production and strategies for mitigation. J. Anim. Sci. Biotechnol. 2022, 13, 69. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, L.; Gong, G.; Zhang, L.; Shi, L.; Dai, J. Invited review: Remediation strategies for mycotoxin control in feed. J. Anim. Sci. Biotechnol. 2022, 13, 19. [Google Scholar] [CrossRef]
- Adamovic, M.; Stojanovic, M.; Grubišic, M.; Ileš, D.; Milojkovic, J. Importance of aluminosilicate minerals in safe food production. Maced. J. Anim. Sci. 2011, 1, 175–180. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, R.; Zicari, S. (Eds.) Integrated Processing Technologies for Food and Agricultural By-Products; Elsevier: Amsterdam, The Netherlands, 2019; pp. 391–411. [Google Scholar]
- Feizi, M.; Jalali, M. Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues. J. Taiwan Inst. Chem. Eng. 2015, 54, 125. [Google Scholar] [CrossRef]
- Keller, L.; Abrunhosa, L.; Keller, K.; Rosa, C.A.; Cavaglieri, L.; Venancio, A. Zearalenone and Its Derivatives α-Zearalenol and β-Zearalenol Decontamination by Saccharomyces cerevisiae Strains Isolated from Bovine Forage. Toxins 2015, 7, 3297–3308. [Google Scholar] [CrossRef] [PubMed]
Effect | AFB1 | ZEA | DON | T-2/HT-2 Toxin | FUM | OTA |
---|---|---|---|---|---|---|
Carcinogenicity | √ | √ | √ | |||
Immunotoxicity | √ | √ | √ | √ | √ | |
Hepatotoxicity | √ | √ | √ | √ | √ | |
Nephrotoxicity | √ | √ | ||||
Neurotoxicity | √ | |||||
Teratogenicity | √ | |||||
Dermal toxicity | √ | |||||
Gastrointestinal system toxicity | √ | |||||
Reproductive system toxicity | √ | √ |
Parameters | Mycotoxins | |||
---|---|---|---|---|
AFB1 | DON | T-2 Toxin | ZEA | |
Column temperature | 30 °C | 30 °C | 40 °C | 30 °C |
Mobile phase | H2O/ACN/MeOH (60:20:30) | H2O/ACN/MeOH (94:3:3) | H2O/ACN (40:60) | H2O/ACN/MeOH (46:46:8) |
Fluorescent detector, wavelength λ (nm) (excitation and emission) | 365 and 435 | - | 381 and 470 | 274 and 418 |
UV detector λ (nm) | - | 218 | - | - |
Flow rate (mL/min) | 1 | 1 | 1 | 1 |
Injection volume (μL) | 100 | 100 | 100 | 100 |
Limit of detection (LOD) (μg/kg) | 0.2 | 20 | 1.4 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaičiulienė, G.; Jovaišienė, J.; Falkauskas, R.; Paškevičius, A.; Sutkevičienė, N.; Rekešiūtė, A.; Sorkytė, Š.; Baliukonienė, V. Exploring the Efficacy of Using Geotrichum fermentans, Rhodotorula rubra, Kluyveromyce marxiamus, Clay Minerals, and Walnut Nutshells for Mycotoxin Remediation. Toxins 2024, 16, 281. https://doi.org/10.3390/toxins16060281
Vaičiulienė G, Jovaišienė J, Falkauskas R, Paškevičius A, Sutkevičienė N, Rekešiūtė A, Sorkytė Š, Baliukonienė V. Exploring the Efficacy of Using Geotrichum fermentans, Rhodotorula rubra, Kluyveromyce marxiamus, Clay Minerals, and Walnut Nutshells for Mycotoxin Remediation. Toxins. 2024; 16(6):281. https://doi.org/10.3390/toxins16060281
Chicago/Turabian StyleVaičiulienė, Gintarė, Jurgita Jovaišienė, Rimvydas Falkauskas, Algimantas Paškevičius, Neringa Sutkevičienė, Audronė Rekešiūtė, Šarūnė Sorkytė, and Violeta Baliukonienė. 2024. "Exploring the Efficacy of Using Geotrichum fermentans, Rhodotorula rubra, Kluyveromyce marxiamus, Clay Minerals, and Walnut Nutshells for Mycotoxin Remediation" Toxins 16, no. 6: 281. https://doi.org/10.3390/toxins16060281
APA StyleVaičiulienė, G., Jovaišienė, J., Falkauskas, R., Paškevičius, A., Sutkevičienė, N., Rekešiūtė, A., Sorkytė, Š., & Baliukonienė, V. (2024). Exploring the Efficacy of Using Geotrichum fermentans, Rhodotorula rubra, Kluyveromyce marxiamus, Clay Minerals, and Walnut Nutshells for Mycotoxin Remediation. Toxins, 16(6), 281. https://doi.org/10.3390/toxins16060281