Effects of Different Shelling Methods on Data Variability during Field Screening for Reduced Aflatoxin Contamination in Maize
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Shelling Method on Aflatoxin Measurement Variability
2.2. Observations from Shelled Kernel Mass, Ear Length, and Ear Fill Percentage
2.3. Comparison to Other Sampling Methods and Mycotoxin-Related Studies
3. Conclusions
4. Materials and Methods
4.1. Plant Cultivation and Design
4.2. Isolate Culturing and Inoculum Preparation
4.3. Inoculation and Harvesting
4.4. Shelling and Sample Preparation
4.5. Aflatoxin Quantification
4.6. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Womack, E.D.; Williams, W.P.; Windham, G.L.; Xu, W. Mapping Quantitative Trait Loci Associated with Resistance to Aflatoxin Accumulation in Maize Inbred Mp719. Front. Microbiol. 2020, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Dövényi-Nagy, T.; Rácz, C.; Molnár, K.; Bakó, K.; Szláma, Z.; Jóźwiak, Á.; Farkas, Z.; Pócsi, I.; Dobos, A.C. Pre-Harvest Modelling and Mitigation of Aflatoxins in Maize in a Changing Climatic Environment—A Review. Toxins 2020, 12, 768. [Google Scholar] [CrossRef]
- Whitaker, T.; Horwitz, W.; Albert, R.; Nesheim, S. Variability Associated with Analytical Methods Used to Measure Aflatoxin in Agricultural Commodities. J. AOAC Int. 1996, 79, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Okoth, S.; Rose, L.J.; Ouko, A.; Netshifhefhe, N.E.I.; Sila, H.; Viljoen, A. Assessing Genotype-By-Environment Interactions in Aspergillus Ear Rot and Pre-Harvest Aflatoxin Accumulation in Maize Inbred Lines. Agronomy 2017, 7, 86. [Google Scholar] [CrossRef]
- Paul, C.; Naidoo, G.; Forbes, A.; Mikkilineni, V.; White, D.; Rocheford, T. Quantitative trait loci for low aflatoxin production in two related maize populations. Theor. Appl. Genet. 2003, 107, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Gaikpa, D.S.; Miedaner, T. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: Methods, advances, and prospects. Theor. Appl. Genet. 2019, 132, 2721–2739. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, K.L.; Murray, S.C.; Rooney, W.L.; Isakeit, T.; Odvody, G.A. Confirmation of QTL Reducing Aflatoxin in Maize Testcrosses. Crop Sci. 2011, 51, 2489–2498. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, M.; Zhang, J.; Zhang, L.; Li, C.; Kan, X.; Sun, Q.; Deng, D.; Yin, Z. Confirmation and fine mapping of a major QTL for aflatoxin resistance in maize using a combination of linkage and association mapping. Toxins 2016, 8, 258. [Google Scholar] [CrossRef] [PubMed]
- Fountain, J.C.; Abbas, H.K.; Scully, B.T.; Li, H.; Lee, R.D.; Kemerait, R.C.; Guo, B. Evaluation of maize inbred lines and topcross progeny for resistance to pre-harvest aflatoxin contamination. Crop J. 2019, 7, 118–125. [Google Scholar] [CrossRef]
- Guo, B.; Ji, X.; Ni, X.; Fountain, J.C.; Li, H.; Abbas, H.K.; Lee, R.D.; Scully, B.T. Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field. Crop J. 2017, 5, 259–264. [Google Scholar] [CrossRef]
- Okoth, S.; Rose, L.J.; Ouko, A.; Beukes, I.; Sila, H.; Mouton, M.; Flett, B.C.; Makumbi, D.; Viljoen, A. Field evaluation of resistance to aflatoxin accumulation in maize inbred lines in Kenya and South Africa. J. Crop Improv. 2017, 31, 862–878. [Google Scholar] [CrossRef]
- Henry, W.B.; Windham, G.L.; Blanco, M.H. Evaluation of Maize Germplasm for Resistance to Aflatoxin Accumulation. Agronomy 2012, 2, 28–39. [Google Scholar] [CrossRef]
- Abbas, H.K.; Mascagni, H.J., Jr.; Bruns, H.A.; Shier, W.T. Effect of planting density, irrigation regimes, and maize hybrids with varying ear size on yield, and aflatoxin and fumonisin contamination levels. Am. J. Plant Sci. 2012, 3, 1341–1354. [Google Scholar] [CrossRef]
- Herrera, M.; Cavero, J.; Franco-Luesma, S.; Álvaro-Fuentes, J.; Ariño, A.; Lorán, S. Mycotoxins and Crop Yield in Maize as Affected by Irrigation Management and Tillage Practices. Agronomy 2023, 13, 798. [Google Scholar] [CrossRef]
- SÉTamou, M.; Cardwell, K.F.; Schulthess, F.; Hell, F. Effect of Insect Damage to Maize Ears, with Special Reference to Mussidia nigrivenella (Lepidoptera: Pyralidae), on Aspergillus flavus (Deuteromycetes: Monoliales) Infection and Aflatoxin Production in Maize Before Harvest in the Republic of Benin. J. Econ. Entomol. 1998, 91, 433–438. [Google Scholar] [CrossRef]
- Larson, E. MSU Corn Hybrid Suggestions. Mississippi State University Extension Service. 2022. Available online: https://extension.msstate.edu/publications/2022-msu-corn-hybrid-suggestions (accessed on 1 January 2024).
- Wu, F.; Guclu, H. Aflatoxin regulations in a network of global maize trade. PLoS ONE 2012, 7, e45151. [Google Scholar] [CrossRef] [PubMed]
- Pekar, J.J.; Murray, S.C.; Isakeit, T.S.; Scully, B.T.; Guo, B.; Knoll, J.E.; Ni, X.; Abbas, H.K.; Williams, W.P.; Xu, W. Evaluation of Elite Maize Inbred Lines for Reduced Aspergillus flavus Infection, Aflatoxin Accumulation, and Agronomic Traits. Crop Sci. 2019, 59, 2562–2571. [Google Scholar] [CrossRef]
- Ortez, O.A.; McMechan, A.J.; Hoegemeyer, T.; Ciampitti, I.A.; Nielsen, R.; Thomison, P.R.; Elmore, R.W. Abnormal ear development in corn: A review. Agron. J. 2022, 114, 1168–1183. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Lee, M. Improved tests for the equality of normal coefficients of variation. Comput. Stat. 2014, 29, 215–232. [Google Scholar] [CrossRef]
- Betrán, F.J.; Isakeit, T. Aflatoxin Accumulation in Maize Hybrids of Different Maturities. Agron. J. 2004, 96, 565–570. [Google Scholar] [CrossRef]
- Amare, D.; Endalew, W.; Yayu, N.; Endeblihatu, A.; Biweta, W.; Tefera, A.; Tekeste, S. Evaluation and demonstration of maize shellers for small-scale farmers. MOJ Appl. Bionics Biomech. 2017, 1, 93–98. [Google Scholar] [CrossRef]
- Pacheco, A.M.; Martins, M. Brazil nut sorting for aflatoxin prevention: A comparison between automatic and manual shelling methods. Food Sci. Technol. 2013, 33, 369–375. [Google Scholar] [CrossRef]
- Stafstrom, W.; Wushensky, J.; Fuchs, J.; Xu, W.; Ezera, N.; Nelson, R.J. Validation and Application of a Low-Cost Sorting Device for Fumonisin Reduction in Maize. Toxins 2021, 13, 652. [Google Scholar] [CrossRef] [PubMed]
- Amézqueta, S.; González-Peñas, E.; Murillo, M.; López de Cerain, A. Occurrence of ochratoxin A in cocoa beans: Effect of shelling. Food Addit. Contam. 2005, 22, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Windham, G.L.; Williams, W.P.; Buckley, P.M.; Abbas, H.K. Inoculation Techniques Used to Quantify Aflatoxin Resistance in Corn. J. Toxicol. Toxin Rev. 2003, 22, 313–325. [Google Scholar] [CrossRef]
- Campbell, K.W.; White, D.G. Evaluation of corn genotypes for resistance to Aspergillus ear rot, kernel infection, and aflatoxin production. Plant Dis. 1995, 79, 1039–1045. [Google Scholar] [CrossRef]
- Chalivendra, S.C.; DeRobertis, C.; Chang, P.K.; Damann, K.E. Cyclopiazonic Acid Is a Pathogenicity Factor for Aspergillus flavus and a Promising Target for Screening Germplasm for Ear Rot Resistance. MPMI 2017, 30, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Johansson, A.S.; Whitaker, T.B.; Hagler, W.M.; Giesbrecht, F.G.; Young, J.H.; Bowman, D.T. Testing Shelled Corn for Aflatoxin, Part I: Estimation of Variance Components. J. AOAC Int. 2000, 83, 1264–1269. [Google Scholar] [CrossRef]
- Donnelly, R.; Elliott, C.; Zhang, G.; Baker, B.; Meneely, J. Understanding Current Methods for Sampling of Aflatoxins in Corn and to Generate a Best Practice Framework. Toxins 2022, 14, 819. [Google Scholar] [CrossRef]
- Johansson, A.S.; Whitaker, T.B.; Giesbrecht, F.G.; Hagler, W.M.; Young, J.H. Testing Shelled Corn for Aflatoxin, Part II: Modeling the Observed Distribution of Aflatoxin Test Results. J. AOAC Int. 2000, 83, 1270–1278. [Google Scholar]
- Williams, W.P.; Windham, G.L. Registration of Mp718 and Mp719 Germplasm Lines of Maize. J. Plant Regist. 2012, 6, 200–202. [Google Scholar] [CrossRef]
- Fountain, J.C.; Clevenger, J.P.; Nadon, B.; Youngblood, R.C.; Korani, W.; Chang, P.K.; Starr, D.; Wang, H.; Isett, B.; Johnston, H.R.; et al. Two New Aspergillus flavus Reference Genomes Reveal a Large Insertion Potentially Contributing to Isolate Stress Tolerance and Aflatoxin Production. G3 Genes Genomes Genet. 2020, 10, 3515–3531. [Google Scholar] [CrossRef] [PubMed]
- King, S.B.; Scott, G.E. Field inoculation techniques to evaluate maize for reaction to kernel infection by Aspergillus flavus. Phytopathology 1982, 72, 782–785. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. JASA 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple comparisons among means. JASA 1961, 56, 52–64. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple comparisons using rank sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Ogle, D.H.; Doll, J.C.; Wheeler, A.P.; Dinno, A. FSA: Simple Fisheries Stock Assessment Methods; R Package Version 0.9.5. 2023. Available online: https://CRAN.R-project.org/package=FSA (accessed on 1 January 2024).
Factor | Df | Sums of Squares | Mean Sums of Squares | F-Value | p-Value | |
---|---|---|---|---|---|---|
Line | 4 | 391.3 | 97.82 | 120.7 | <2.00 × 10−16 | *** |
Treatment | 2 | 3.1 | 1.57 | 1.94 | 0.15 | |
Rep | 4 | 1.6 | 0.41 | 0.51 | 0.73 | |
Line:Treatment | 8 | 66 | 8.25 | 10.2 | 6.71 × 10−16 | *** |
Line:Treatment:Rep | 55 | 41.7 | 0.76 | 0.94 | 0.6 | |
Residuals | 61 | 49.4 | 0.81 |
Method 1—Whole Ear (WE) Shelling | ||||||
---|---|---|---|---|---|---|
Line | Trait | HSD | CV | Q1 | Q3 | IQR |
Inbreds | ||||||
B73 | 12,000 ± 2062 | a | 17.2 | 11,100 | 12,000 | 900 |
SynAM1 P43 | 774 ± 733 | e | 94.6 | 308 | 670 | 362 |
Mp719 | 84 ± 50 | f | 59.6 | 39 | 110 | 71 |
Hybrids | ||||||
SynAM1 P43 × B73 | 1448 ± 1100 | bcde | 75.9 | 730 | 2090 | 1360 |
DKC 67-44 | 2112 ± 1300 | bc | 61.6 | 1260 | 2900 | 1640 |
Method 2—Ear End Removal (EER) Shelling | ||||||
Line | Trait | HSD | CV | Q1 | Q3 | IQR |
Inbreds | ||||||
B73 | 12,064 ± 6414 | a | 53.2 | 7200 | 16,400 | 9200 |
SynAM1 P43 | 840 ± 675 | de | 80.4 | 480 | 1100 | 620 |
Mp719 | 199 ± 122 | f | 61.5 | 110 | 310 | 200 |
Hybrids | ||||||
SynAM1 P43 × B73 | 1400 ± 746 | bcde | 53.3 | 860 | 1890 | 1030 |
DKC 67-44 | 1658 ± 585 | bcd | 35.3 | 1120 | 1960 | 840 |
Method 3—Inoculation Site-Surrounding (ISS) Shelling | ||||||
Line | Trait | HSD | CV | Q1 | Q3 | IQR |
Inbreds | ||||||
B73 | 3440 ± 2322 | b | 67.5 | 1840 | 4400 | 2560 |
SynAM1 P43 | 1188 ± 267 | bcde | 22.5 | 1065 | 1350 | 285 |
Mp719 | 559 ± 269 | e | 48.2 | 328 | 780 | 453 |
Hybrids | ||||||
SynAM1 P43 × B73 | 928 ± 258 | cde | 27.8 | 790 | 945 | 155 |
DKC 67-44 | 2194 ± 930 | bc | 42.4 | 1520 | 2800 | 1280 |
Methods Combined | ||||||
Line | Trait | HSD | CV | Q1 | Q3 | IQR |
Inbreds | ||||||
B73 | 9170 ± 5839 | a | 63.7 | 4400 | 12,000 | 7600 |
SynAM1 P43 | 924 ± 609 | c | 65.9 | 493 | 1310 | 818 |
Mp719 | 291 ± 270 | d | 93 | 92.5 | 380 | 288 |
Hybrids | ||||||
SynAM1 P43 × B73 | 1282 ± 811 | bc | 63.3 | 760 | 1610 | 850 |
DKC 67-44 | 1977 ± 991 | b | 50.1 | 1260 | 2300 | 1040 |
Test Statistic | p-Value 2 | |||
---|---|---|---|---|
Raw | Transformed 1 | Raw | Transformed 1 | |
Overall Data Level | ||||
Line Effect | 18.45 | 37.84 | 0.001 ** | 1.2 × 10−7 *** |
Shelling Effect | 1.12 | 24.07 | 0.6 | 5. × 10−6 *** |
Line × Shelling Effect | 29.28 | 53.14 | 0.010 ** | 1.8 × 10−6 *** |
Shelling Effect by Line | ||||
B73 | 6.49 | 15.03 | 0.04 * | 0.0005 *** |
SynAM1 P43 | 3.52 | 9.91 | 0.2 | 0.007 ** |
Mp719 | 6.21 | 3.07 | 0.045 * | 0.22 |
SynAM1 P43 × B73 | 1.13 | 9.42 | 0.57 | 0.009 ** |
DKC 67-44 | 1.47 | 1.54 | 0.48 | 0.46 |
Pairwise Comparisons 3 | ||||
B73 WE v. ERR | 2.99 | 12.69 | 0.084 | 0.0004 *** |
B73 WE v. ISS | 6.41 | 15.25 | 0.01 * | 9.4 × 10−5 *** |
B73 EER v. ISS | 0.82 | 0.37 | 0.37 | 0.54 |
P43 WE v. EER | 0.09 | 0.03 | 0.77 | 0.85 |
P43 WE v. ISS | 8.21 | 9.26 | 0.004 ** | 0.002 ** |
P43 EER v. ISS | 6.63 | 8.56 | 0.01 * | 0.003 ** |
Mp719 WE v. ERR | 1.97 | 0.14 | 0.16 | 0.71 |
Mp719 WE v. ISS | 1.24 | 2.99 | 0.27 | 0.084 |
Mp719 EER v. ISS | 5.81 | 1.88 | 0.02 * | 0.17 |
P43 × B73 WE v. EER | 0.62 | 2.44 | 0.43 | 0.12 |
P43 × B73 WE v. ISS | 4.60 | 8.46 | 0.03 * | 0.004 ** |
P43 × B73 EER v. ISS | 2.32 | 3.12 | 0.13 | 0.08 |
DKC 67-44 WE v. EER | 1.72 | 1.46 | 0.19 | 0.23 |
DKC 67-44 WE v. ISS | 0.69 | 0.49 | 0.41 | 0.48 |
DKC 67-44 EER v. ISS | 0.12 | 0.15 | 0.72 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, A.; Jeffers, D.; Lu, S.; Guo, B.; Williams, W.P.; Fountain, J.C. Effects of Different Shelling Methods on Data Variability during Field Screening for Reduced Aflatoxin Contamination in Maize. Toxins 2024, 16, 324. https://doi.org/10.3390/toxins16070324
Adams A, Jeffers D, Lu S, Guo B, Williams WP, Fountain JC. Effects of Different Shelling Methods on Data Variability during Field Screening for Reduced Aflatoxin Contamination in Maize. Toxins. 2024; 16(7):324. https://doi.org/10.3390/toxins16070324
Chicago/Turabian StyleAdams, Alison, Daniel Jeffers, Shien Lu, Baozhu Guo, W. Paul Williams, and Jake C. Fountain. 2024. "Effects of Different Shelling Methods on Data Variability during Field Screening for Reduced Aflatoxin Contamination in Maize" Toxins 16, no. 7: 324. https://doi.org/10.3390/toxins16070324
APA StyleAdams, A., Jeffers, D., Lu, S., Guo, B., Williams, W. P., & Fountain, J. C. (2024). Effects of Different Shelling Methods on Data Variability during Field Screening for Reduced Aflatoxin Contamination in Maize. Toxins, 16(7), 324. https://doi.org/10.3390/toxins16070324