Continuous and Intermittent Exposure to the Toxigenic Cyanobacterium Microcystis aeruginosa Differentially Affects the Survival and Reproduction of Daphnia curvirostris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Organisms
2.2. Acute Toxicity Bioassays with D. curvirostris
2.3. Chronic Evaluation of the Effect of M. aeruginosa Cells on D. curvirostris
2.3.1. Continuous Exposure Bioassays
2.3.2. Intermittent Exposure Bioassays (24 h)
2.3.3. Intermittent Exposure Bioassays (4 h)
2.4. Quantification of Microcystins
2.5. Statistical Analysis
3. Results
3.1. Acute Toxic Effects of M. aeruginosa
3.2. Survival Effects of Chronic Exposure to M. aeruginosa
3.2.1. Continuous Exposure
3.2.2. Intermittent Exposure
3.3. Reproductive Effects of Chronic Exposure to M. aeruginosa
3.4. Effects on Body Size of Chronic Exposure to M. aeruginosa
3.5. Microcystin Quantification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Camargo, A.; Alonso, A. Contaminación por nitrógeno inorgánico en los ecosistemas acuáticos: Problemas medioambientales, criterios de calidad del agua, e implicaciones del cambio climático. Rev. Ecosistemas 2007, 16, 98–110. Available online: https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/457 (accessed on 26 July 2024).
- Chorus, I.; Welker, M. (Eds.) Toxic Cyanobacteria in Water, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Beversdorf, L.J.; Rude, K.; Weirich, C.A.; Bartlett, S.L.; Seaman, M.; Kozik, C.; Biese, P.; Gosz, T.; Suha, M.; Stempa, C.; et al. Analysis of cyanobacterial metabolites in surface and raw drinking waters reveals more than microcystin. Water Res. 2018, 140, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Flores, N.M.; Miller, T.R.; Stockwell, J.D. A global analysis of the relationship between concentrations of microcystins in water and fish. Front. Mar. Sci. 2018, 5, 30. [Google Scholar] [CrossRef]
- Pérez, D.S.; Soraci, A.L.; Tapia, M.O. Cianobacterias y cianotoxinas: Rol de las microcistinas en la salud humana y animal y su detección en muestras de agua. Analecta Vet. 2008, 28, 5–13. Available online: http://hdl.handle.net/11336/101072 (accessed on 26 July 2024).
- Martínez-Jerónimo, F.; Antuna-González, P.D.; Hernández-Zamora, M.; Martínez-Jerónimo, L.; Munoz, G.; Simon, D.F.; Sauvé, S. Year-long monitoring of phytoplankton community, toxigenic cyanobacteria, and total microcystins in a eutrophic tropical dam supplying the Mexico megacity. Front. Environ. Sci. 2022, 10, 984365. [Google Scholar] [CrossRef]
- Utkilen, H.; Gjølme, N. Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Appl. Environ. Microbiol. 1992, 58, 1321–1325. [Google Scholar] [CrossRef]
- Kaloudis, T.; Hiskia, A.; Triantis, T.M. Cyanotoxins in bloom: Ever-increasing occurrence and global distribution of freshwater cyanotoxins from planktic and benthic cyanobacteria. Toxins 2022, 14, 264. [Google Scholar] [CrossRef]
- Igwaran, A.; Kayode, A.J.; Moloantoa, K.M.; Khetsha, Z.P.; Unuofin, J.O. Cyanobacteria Harmful Algae Blooms: Causes, Impacts, and Risk Management. Water Air Soil Pollut. 2024, 235, 71. [Google Scholar] [CrossRef]
- DeMott, W.R.; Zhang, Q.-X.; Carmichael, W. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr. 1991, 36, 1346–1357. [Google Scholar] [CrossRef]
- Wang, L.; Zi, J.; Xu, R.; Hilt, S.; Hou, X.; Chang, X. Allelopathic effects of Microcystis aeruginosa on green algae and a diatom: Evidence from exudates addition and co-culturing. Harmful Algae 2017, 61, 56–62. [Google Scholar] [CrossRef]
- Kim, M.; Shin, B.; Lee, J.; Park, H.Y.; Park, W. Culture-independent and culture-dependent analyses of the bacterial community in the phycosphere of cyanobloom-forming Microcystis aeruginosa. Sci Rep. 2019, 9, 20416. [Google Scholar] [CrossRef]
- Oberholster, P.J.; Botha, A.-M.; Grobbelaar, J.U. Microcystis aeruginosa: Source of toxic microcystins in drinking water. Afr. J. Biotech. 2004, 3, 159–168. [Google Scholar] [CrossRef]
- Pineda-Mendoza, R.; Zúñiga-Bermúdez, G.; Martínez-Jerónimo, F. Microcystin production in Microcystis aeruginosa: Effect of type of strain, environmental factors, nutrient concentrations, and N: P ratio on mcyA gene expression. Aquatic. Ecol. 2016, 50, 103–119. [Google Scholar] [CrossRef]
- Zamora-Barrios, C.A.; Nandini, S.; Sarma, S.S.S. Bioaccumulation of microcystins in seston, zooplankton and fish: A case study in Lake Zumpango, Mexico. Environ. Pollut. 2019, 249, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Olvera-Ramírez, R.; Centeno-Ramos, C.; Martínez-Jerónimo, F. Toxic effects of Pseudanabaena tenuis (Cyanobacteria) on the cladocerans Daphnia magna and Ceriodaphnia dubia. Hidrobiológica 2010, 20, 203–212. [Google Scholar]
- Reinikainen, M.; Ketolajvl, A.; Walls, M. Effects of the concentrations of toxic Microcystis aeruginosa and an alternative food on the survival of Daphnia pulex. Limnol. Oceanogr. 1994, 39, 424–432. [Google Scholar] [CrossRef]
- Nandini, S.; Silva-Briano, M.; García, G.G.; Sarma, S.S.S.; Adabache-Ortiz, A.; de la Rosa, R.G. First record of the temperate species Daphnia curvirostris Eylmann, 1887 emend. Johnson, 1952 (Cladocera: Daphniidae) in Mexico and its demographic characteristics in relation to algal food density. Limnology 2009, 10, 87–94. [Google Scholar] [CrossRef]
- Mirco, M.D.; Di Leva, V.; De Liguoro, M. The sensitivity of Daphnia magna and Daphnia curvirostris to 10 veterinary antibacterials and to some of their binary mixtures. Chemosphere 2014, 115, 67–74. [Google Scholar] [CrossRef]
- Sadler, T.; von Elert, E. Physiological interaction of Daphnia and Microcystis with regard to cyanobacterial secondary metabolites. Aquat. Toxicol. 2014, 156, 96–105. [Google Scholar] [CrossRef]
- Bojadzija Savic, G.; Bormans, M.; Edwards, C.; Lawton, L.; Briand, E.; Wiegand, C. Cross talk: Two way allelopathic interactions between toxic Microcystis and Daphnia. Harmful Algae 2020, 94, 101803. [Google Scholar] [CrossRef]
- USEPA. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5th ed.; EPA-821-R-02-012; US Environmental Protection Agency, Office of Water: Washington, DC, USA, 2002; 266p.
- Arzate, M.; Olvera, R.; Martínez, F. Microcystis toxigenic strains in urban lakes: A case of study in Mexico City. Ecotoxicology 2010, 19, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Rippka, R. Isolation and purification of cyanobacteria. Methods Enzymol. 1988, 167, 3–27. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 202: Daphnia sp. Acute Immobilisation Test. In OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2004. [Google Scholar] [CrossRef]
- Liu, L.; Li, K.; Chen, T.; Dai, X.; Jiang, M.; Diana, J.S. Effects of Microcystis aeruginosa on life history of water flea Daphnia magna. Chin. J. Ocean. Limnol. 2011, 29, 892–897. [Google Scholar] [CrossRef]
- Young, F.M.; Thomson, C.; Metcalf, J.S.; Lucocq, J.M.; Codd, G.A. Immunogold localisation of microcystins in cryosectioned cells of Microcystis. J. Struct. Biol. 2005, 151, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Vela, L.; Sevilla, E.; Martín, B.; Pellicer, S.; Bes, M.T.; Fillat, M.; Peleato, M.L. Las microcistinas. Rev. Real Acad. Cienc. Zaragoza 2007, 62, 135–146. [Google Scholar]
- Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baurés, E.; Thomas, O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013, 59, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Walls, J.T.; Wyatt, K.H.; Doll, J.C.; Rubenstein, E.M.; Rober, A.R. Hot and toxic: Temperature regulates microcystin release from cyanobacteria. Sci. Total Environ. 2018, 610–611, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Metcal, J.S.; Codd, G.A. Co-occurrence of cyanobacteria and cyanotoxins with other environmental health hazards: Impacts and implications. Toxins 2021, 12, 629. [Google Scholar] [CrossRef]
- Pineda-Mendoza, R.M.; Olvera-Ramírez, R.; Martínez-Jerónimo, F. Microcystins produced by filamentous cyanobacteria in urban lakes. A case study in Mexico City. Hidrobiológica 2012, 22, 290–298. [Google Scholar]
- Pawlik-Skowrońska, B.; Toporowska, M.; Mazur-Marzec, H. Effects of secondary metabolites produced by different cyanobacterial populations on the freshwater zooplankters Brachionus calyciflorus and Daphnia pulex. Environ. Sci. Pollut. Res. Int. 2019, 26, 11793–11804. [Google Scholar] [CrossRef]
- WHO. Cyanobacterial Toxins: Microcystins. Background Document for Development of WHO Guidelines for drSedinking-Water Quality and Guidelines for Safe Recreational Water Environments; WHO/HEP/ECH/WSH/2020.6; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Zaccaroni, A.; Scaravelli, D. Toxicity of sea algal toxins to humans and animals. In Algal Toxins: Nature, Occurrence, Effect and Detection; Evangelista, V., Barsanti, L., Frassanito, A.M., Passarelli, V., Gualtieri, P., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 45–89. [Google Scholar]
- Bittner, M.; Štern, A.; Smutná, M.; Hilscherová, K.; Žegura, B. Cytotoxic and Genotoxic Effects of Cyanobacterial and Algal Extracts—Microcystin and Retinoic Acid Content. Toxins 2021, 13, 107. [Google Scholar] [CrossRef]
- Chen, F.; Xie, P. The toxicities of single-celled Microcystis aeruginosa PCC7820 and liberated M. aeruginosa to Daphnia carinata in the absence and presence of the green alga Scenedesmus obliquus. J. Freshw. Ecol. 2004, 19, 539–545. [Google Scholar] [CrossRef]
- Rohrlack, T.; Christoffersen, K.; Dittmann, E.; Nogueira, I.; Vasconcelos, V.; Börner, T. Ingestion of microcystins by Daphnia. Limnol. Oceanogr. 2005, 50, 440–448. [Google Scholar] [CrossRef]
- Ghadouani, A.; Pinel-Alloul, B.; Plath, K.; Codd, G.A.; Lampert, W. Effects of Microcystis aeruginosa and purified microcystin-LR on the feeding behavior of Daphnia pulicaria. Limnol. Oceanogr. 2004, 49, 666–679. [Google Scholar] [CrossRef]
- Dao, T.S.; Do-Hong, L.C.; Wiegand, C. Chronic effects of cyanobacterial toxins on Daphnia magna and their offspring. Toxicon 2010, 55, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- Martin-Creuzburg, D.; von Elert, E.; Hoffmann, K.H. Nutritional constraints at the cyanobacteria—Daphnia magna interface: The role of sterols. Limnol. Oceanogr. 2008, 53, 456–468. [Google Scholar] [CrossRef]
- Martin-Creuzburg, D.; Von Elert, E. Good food versus bad food: The role of sterols and polyunsaturated fatty acids in determining growth and reproduction of Daphnia magna. Aquat. Ecol. 2009, 43, 943–950. [Google Scholar] [CrossRef]
- Smirnov, N. Physiology of the Cladocera; Academic Press: Cambridge, MA, USA, 2013; p. 36. [Google Scholar]
- Hiltunen, M.; Vehniäinen, E.R.; Kukkonen, J.V.K. Interacting effects of simulated eutrophication, temperature increase, and microplastic exposure on Daphnia. Environ. Res. 2021, 192, 110304. [Google Scholar] [CrossRef]
- Abrantes, N.; Nogueira, A.; Gonçalves, F. Short-term dynamics of cladocerans in a eutrophic shallow lake during a shift in the phytoplankton dominance. Ann. Limnol. Int. J. Lim. 2009, 45, 237–245. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Jerónimo, F.; Gonzalez-Trujillo, L.; Hernández-Zamora, M. Continuous and Intermittent Exposure to the Toxigenic Cyanobacterium Microcystis aeruginosa Differentially Affects the Survival and Reproduction of Daphnia curvirostris. Toxins 2024, 16, 360. https://doi.org/10.3390/toxins16080360
Martínez-Jerónimo F, Gonzalez-Trujillo L, Hernández-Zamora M. Continuous and Intermittent Exposure to the Toxigenic Cyanobacterium Microcystis aeruginosa Differentially Affects the Survival and Reproduction of Daphnia curvirostris. Toxins. 2024; 16(8):360. https://doi.org/10.3390/toxins16080360
Chicago/Turabian StyleMartínez-Jerónimo, Fernando, Lizabeth Gonzalez-Trujillo, and Miriam Hernández-Zamora. 2024. "Continuous and Intermittent Exposure to the Toxigenic Cyanobacterium Microcystis aeruginosa Differentially Affects the Survival and Reproduction of Daphnia curvirostris" Toxins 16, no. 8: 360. https://doi.org/10.3390/toxins16080360
APA StyleMartínez-Jerónimo, F., Gonzalez-Trujillo, L., & Hernández-Zamora, M. (2024). Continuous and Intermittent Exposure to the Toxigenic Cyanobacterium Microcystis aeruginosa Differentially Affects the Survival and Reproduction of Daphnia curvirostris. Toxins, 16(8), 360. https://doi.org/10.3390/toxins16080360