Enzymatic Hydrolysis of Resorcylic Acid Lactones by an Aeromicrobium sp.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification and Enrichment of ZEN and RAD Hydrolysis Activity
2.2. Recombinant RALH Hydrolyzes ZEN and RAD
2.2.1. RALH Hydrolyzes the Lactone Moiety of ZEN
2.2.2. RALH Hydrolyzes the Lactone Moiety of RAD
2.2.3. NMR Structural Characterization of RAD Degradation Products
2.3. HRAD Does Not Inhibit Hsp90
2.4. RALH Hydrolysis of Resorcylic Acid Lactones from I. mors-panacis Culture Extracts
3. Conclusions
4. Materials and Methods
4.1. Microbial Enrichment and Isolation
4.2. LC-HRMS and LC-HRMS/MS Analysis of RAD and ZEN Hydrolysis Products
4.3. Bacterial Identification and Sequencing
4.4. Biochemical Enrichment of ZEN Hydrolyzing Activity
4.5. Proteomics to Identify Candidate Resorcylic Acid Lactone Hydrolases
4.6. Recombinant Hydrolase Expression and Purification
4.7. Incubation of RALH with ZEN and RAD
4.8. NMR Structural Characterization of HZEN and HRAD
4.9. Expression and Purification of Recombinant Saccharomyces cerevisiae Hsp82 (ScHsp82)
4.10. RALH Incubation with I. mors-panacis Culture Extracts
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winssinger, N.; Barluenga, S. Chemistry and biology of resorcylic acid lactones. Chem. Commun. 2007, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Jana, N.; Nanda, S. Resorcylic acid lactones (RALs) and their structural congeners: Recent advances in their biosynthesis, chemical synthesis and biology. New J. Chem. 2018, 42, 17803–17873. [Google Scholar] [CrossRef]
- Nair, M.S.R.; Carey, S.T. Metabolites of pyrenomycetes XIII: Structure of (+) hypothemycin, an antibiotic macrolide from Hypomyces trichothecoides. Tetrahedron Lett. 1980, 21, 2011–2012. [Google Scholar] [CrossRef]
- Isaka, M.; Suyarnsestakorn, C.; Tanticharoen, M.; Kongsaeree, P.; Thebtaranonth, Y. Aigialomycins A–E, New Resorcylic Macrolides from the Marine Mangrove Fungus Aigialus parvus. J. Org. Chem. 2002, 67, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, V.; Mayer-Bartschmid, A.; Müller, H.; Greif, G.; Kleymann, G.; Zitzmann, W.; Tichy, H.-V.; Stadler, M. Pochonins A–F, New Antiviral and Antiparasitic Resorcylic Acid Lactones from Pochonia chlamydosporia var. catenulata. J. Nat. Prod. 2003, 66, 829–837. [Google Scholar] [CrossRef]
- Stob, M.; Baldwin, R.S.; Tuite, J.; Andrews, F.N.; Gillette, K.G. Isolation of an Anabolic, Uterotrophic Compound from Corn infected with Gibberella zeae. Nature 1962, 196, 1318. [Google Scholar] [CrossRef]
- Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef]
- Maragos, C. Zearalenone occurrence and human exposure. World Mycotoxin J. 2010, 3, 369–383. [Google Scholar] [CrossRef]
- Ropejko, K.; Twarużek, M. Zearalenone and Its Metabolites—General Overview, Occurrence, and Toxicity. Toxins 2021, 13, 35. [Google Scholar] [CrossRef]
- Miksicek, R.J. Interaction of naturally occurring nonsteroidal estrogens with expressed recombinant human estrogen receptor. J. Steroid Biochem. Mol. Biol. 1994, 49, 153–160. [Google Scholar] [CrossRef]
- Ványi, A.; Bata, A.; Glávits, R.; Kovács, F. Perinatal oestrogen syndrome in swine. Acta Vet. Hung. 1994, 42, 433–446. [Google Scholar] [PubMed]
- Etienne, M.; Jemmali, M. Effects of zearalenone (F2) on estrous activity and reproduction in gilts. J. Anim. Sci. 1982, 55, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Ou, W.; Zhang, Z.; Wang, Y.; Xu, Q.; Huang, H. Recent advances in detoxification strategies for zearalenone contamination in food and feed. Chin. J. Chem. Eng. 2021, 30, 168–177. [Google Scholar] [CrossRef]
- Qi, L.; Li, Y.; Luo, X.; Wang, R.; Zheng, R.; Wang, L.; Li, Y.; Yang, D.; Fang, W.; Chen, Z. Detoxification of zearalenone and ochratoxin A by ozone and quality evaluation of ozonised corn. Food Addit. Contam. Part A 2016, 33, 1700–1710. [Google Scholar] [CrossRef]
- Matsuura, Y.; Yoshizawa, T.; Morooka, N. Stability of zearalenone in aqueous solutions of some food additives. Food Hyg. Saf. Sci. (Shokuhin Eiseigaku Zasshi) 1979, 20, 385–390. [Google Scholar] [CrossRef]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef]
- De Mil, T.; Devreese, M.; De Baere, S.; Van Ranst, E.; Eeckhout, M.; De Backer, P.; Croubels, S. Characterization of 27 Mycotoxin Binders and the Relation with in Vitro Zearalenone Adsorption at a Single Concentration. Toxins 2015, 7, 21–33. [Google Scholar] [CrossRef]
- Delmotte, P.; Delmotte-Plaquee, J. A New Antifungal Substance of Fungal Origin. Nature 1953, 171, 344. [Google Scholar] [CrossRef]
- Mirrington, R.N.; Ritchie, E.; Shoppee, C.W.; Taylor, W.C.; Sternhell, S. The constitution of radicicol. Tetrahedron Lett. 1964, 5, 365–370. [Google Scholar] [CrossRef]
- Tanney, J.; Stefano, J.; Miller, J.; McMullin, D. Natural products from the Picea foliar endophytes Niesslia endophytica sp. nov. and Strasseria geniculata. Mycol. Prog. 2023, 22, 17. [Google Scholar] [CrossRef]
- Kamal, A.; Thao, L.; Sensintaffar, J.; Zhang, L.; Boehm, M.F.; Fritz, L.C.; Burrows, F.J. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003, 425, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.S.; Li, Z.Y.; Chen, Y.; Chen, M.; Li, L.C.; Ma, Y.Z. Heat shock protein 90 in plants: Molecular mechanisms and roles in stress responses. Int. J. Mol. Sci. 2012, 13, 15706–15723. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Burch-Smith, T.; Schiff, M.; Feng, S.; Dinesh-Kumar, S.P. Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J. Biol. Chem. 2004, 279, 2101–2108. [Google Scholar] [CrossRef] [PubMed]
- DesRochers, N.; Walsh, J.P.; Renaud, J.B.; Seifert, K.A.; Yeung, K.K.-C.; Sumarah, M.W. Metabolomic profiling of fungal pathogens responsible for root rot in American ginseng. Metabolites 2020, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.P.; DesRochers, N.; Renaud, J.B.; Seifert, K.A.; Yeung, K.K.; Sumarah, M.W. Identification of N,N′,N″-triacetylfusarinine C as a key metabolite for root rot disease virulence in American ginseng. J. Ginseng Res. 2021, 45, 156–162. [Google Scholar] [CrossRef]
- Walsh, J.P.; Garnham, C.P.; Yeung, K.K.-C.; Sumarah, M.W. Ilyonectria Root Rot of Ginseng Is Attenuated via Enzymatic Degradation of the Extracellular Fe3+-Bound Siderophore N,N′,N″-Triacetylfusarinine C. ACS Agric. Sci. Technol. 2022, 2, 402–408. [Google Scholar] [CrossRef]
- Westerveld, S.M.; Shi, F. The history, etiology, and management of ginseng replant disease: A Canadian perspective in review. Can. J. Plant Sci. 2021, 101, 886–901. [Google Scholar] [CrossRef]
- Loi, M.; Fanelli, F.; Liuzzi, V.C.; Logrieco, A.F.; Mulè, G. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. Toxins 2017, 9, 111. [Google Scholar] [CrossRef]
- Takahashi-Ando, N.; Kimura, M.; Kakeya, H.; Osada, H.; Yamaguchi, I. A novel lactonohydrolase responsible for the detoxification of zearalenone: Enzyme purification and gene cloning. Biochem. J. 2002, 365, 1–6. [Google Scholar] [CrossRef]
- Vekiru, E.; Fruhauf, S.; Hametner, C.; Schatzmayr, G.; Krska, R.; Moll, W.D.; Schuhmacher, R. Isolation and characterisation of enzymatic zearalenone hydrolysis reaction products. World Mycotoxin J. 2016, 9, 353–363. [Google Scholar] [CrossRef]
- Fruhauf, S.; Novak, B.; Nagl, V.; Hackl, M.; Hartinger, D.; Rainer, V.; Labudová, S.; Adam, G.; Aleschko, M.; Moll, W.D.; et al. Biotransformation of the Mycotoxin Zearalenone to its Metabolites Hydrolyzed Zearalenone (HZEN) and Decarboxylated Hydrolyzed Zearalenone (DHZEN) Diminishes its Estrogenicity In Vitro and In Vivo. Toxins 2019, 11, 481. [Google Scholar] [CrossRef] [PubMed]
- Torres Acosta, J.A.; Michlmayr, H.; Shams, M.; Schweiger, W.; Wiesenberger, G.; Mitterbauer, R.; Werner, U.; Merz, D.; Hauser, M.T.; Hametner, C.; et al. Zearalenone and ß-Zearalenol But Not Their Glucosides Inhibit Heat Shock Protein 90 ATPase Activity. Front. Pharmacol. 2019, 10, 1160. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, G.; Hou, M.; Du, S.; Han, J.; Yu, Y.; Gao, H.; He, D.; Shi, J.; Lee, Y.-W.; et al. New Hydrolase from Aeromicrobium sp. HA for the Biodegradation of Zearalenone: Identification, Mechanism, and Application. J. Agric. Food Chem. 2023, 71, 2411–2420. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.P.; McMullin, D.R.; Yeung, K.K.-C.; Sumarah, M.W. Resorcylic acid lactones from the ginseng pathogen Ilyonectria mors-panacis. Phytochem. Lett. 2022, 48, 94–99. [Google Scholar] [CrossRef]
- Rowlands, M.G.; Newbatt, Y.M.; Prodromou, C.; Pearl, L.H.; Workman, P.; Aherne, W. High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal. Biochem. 2004, 327, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef]
RAD | HRAD | |||
---|---|---|---|---|
Position | δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) |
1 | 18.7, CH3 | 1.52, d (6.6) | 23.5, CH3 | 1.23, d (6.0) |
2 | 72.1, CH | 5.38, qt (6.7, 3.7) | 66.4, CH | 3.95, m |
3 | 37.7, CH2 | 2.42, dt (14.7, 3.5) | 42.0, CH2 | 1.75, m |
1.71, ddd (14.7, 8.8, 4.0) | 1.62, m | |||
4 | 56.8, CH | 3.06, dt (8.5, 2.8) | 59.2, CH | 3.05, td (5.7, 2.1) |
5 | 56.5, CH | 3.33, o | 55.0, CH | 3.72, m |
6 | 137.0, CH | 5.77, dd (10.8, 4.0) | 138.0, CH | 5.48, m |
7 | 130.9, CH | 6.23, m | 130.4, CH | 6.46, m |
8 | 140.7. CH | 7.59, dd (16.1, 9.8) | 138.0, CH | 7.69, m |
9 | 131.5, CH | 6.09, d (16.1) | 132.9, CH | 6.33, m |
10 | 199.6, C | 200.3, C | ||
11 | 46.5, CH2 | 4.15, d (16.3) | 48.6, CH2 o | 4.27, d 15.5) |
3.92, d (16.3) | 3.82, d (15.5) | |||
12 | 136.1, C | 137.3, C | ||
13 | 115.1, C | 114.5, C | ||
14 | 159.0, C | 163.8, C | ||
15 | 103.8, CH | 6.47, s | 103.4, CH | 6.35, s |
16 | 158.0, C | 156.8, C | ||
17 | 113.5, C | 113.2, C | ||
18 | 168.9, C | 175.1, C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoogstra, S.J.; Hendricks, K.N.; McMullin, D.R.; Renaud, J.B.; Bora, J.; Sumarah, M.W.; Garnham, C.P. Enzymatic Hydrolysis of Resorcylic Acid Lactones by an Aeromicrobium sp. Toxins 2024, 16, 404. https://doi.org/10.3390/toxins16090404
Hoogstra SJ, Hendricks KN, McMullin DR, Renaud JB, Bora J, Sumarah MW, Garnham CP. Enzymatic Hydrolysis of Resorcylic Acid Lactones by an Aeromicrobium sp. Toxins. 2024; 16(9):404. https://doi.org/10.3390/toxins16090404
Chicago/Turabian StyleHoogstra, Shawn J., Kyle N. Hendricks, David R. McMullin, Justin B. Renaud, Juhi Bora, Mark W. Sumarah, and Christopher P. Garnham. 2024. "Enzymatic Hydrolysis of Resorcylic Acid Lactones by an Aeromicrobium sp." Toxins 16, no. 9: 404. https://doi.org/10.3390/toxins16090404
APA StyleHoogstra, S. J., Hendricks, K. N., McMullin, D. R., Renaud, J. B., Bora, J., Sumarah, M. W., & Garnham, C. P. (2024). Enzymatic Hydrolysis of Resorcylic Acid Lactones by an Aeromicrobium sp. Toxins, 16(9), 404. https://doi.org/10.3390/toxins16090404