Detoxification of Ustiloxin A Through Oxidative Deamination and Decarboxylation by Endophytic Fungus Petriella setifera
Abstract
:1. Introduction
2. Results
2.1. HPLC Analysis of the Biotransformed Products of Ustiloxin A
2.2. Structural Identification of Transformed Products 1 and 2
2.3. Cytotoxic Activity of Ustiloxins A, A1 and A2
2.4. Time Course of Ustiloxin A Bioconversion in the CFE of P. setifera Nitaf10
2.5. Effects of Initial pH Values on the Biotransformation of Ustiloxin A
2.6. Effects of Metal Ions on the Biotransformation of Ustiloxin A in the CFE of P. setifera Nitaf10
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. General Experimental Procedures
5.2. Endophytic Fungus Petriella setifera Nitaf10
5.3. Preparation of Cell-Free Extract of P. setifera
5.4. Incubation of Ustiloxin A in Cell-Free Extract of P. setifera
5.5. Isolation and Structural Identification of the Transformed Products of Ustiloxin A
5.6. Cytotoxic Activity Assay
5.7. Time Course of Biotransformation of Ustiloxin A by P. setifera Nitaf10
5.8. Effects of Initial pH Values on Biotransformation of Ustiloxin A by P. setifera Nitaf10
5.9. Effects of Metal Ions on Biotransformation of Ustiloxin A by P. setifera Nitaf10
5.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanaka, E.; Ashizawa, T.; Sonoda, R.; Tanaka, C. Villosiclava virens gen. nov., comb. nov., teleomorph of Ustilaginoidea virens, the causal agent of rice false smut. Mycotaxon 2008, 106, 491–501. [Google Scholar]
- Hu, M.; Luo, L.; Wang, S.; Liu, Y.; Li, J. Infection processes of Ustilaginoidea virens during artificial inoculation of rice panicles. Eur. J. Plant Pathol. 2014, 139, 67–77. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Zhang, Y.; Wu, X.; Li, R.; Li, M. Visualization of the entire process of rice spikelet infection by Ustilaginoidea virens through nondestructive inoculation. Front. Microbiol. 2023, 14, 1228597. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Fan, J.; Fang, A.; Li, Y.; Tariqjaveed, M.; Li, D.; Hu, D.; Wang, W.-M. Ustilaginoidea virens: Insights into an emerging rice pathogen. Annu. Rev. Phytopathol. 2020, 58, 363–385. [Google Scholar] [CrossRef]
- Fan, J.; Yang, J.; Wang, Y.; Li, G.; Li, Y.; Huang, F.; Wang, W. Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease. Mol. Plant Pathol. 2016, 17, 1321–1330. [Google Scholar] [CrossRef]
- Zhou, L.; Mubeen, M.; Iftikhar, Y.; Zheng, H.; Zhang, Z.; Wen, J.; Khan, R.A.A.; Sajid, A.; Solanki, M.K.; Sohail, M.A.; et al. Rice false smut pathogen: Implications for mycotoxin contamination, current status, and future perspectives. Front. Microbiol. 2024, 15, 1344831. [Google Scholar] [CrossRef] [PubMed]
- Koiso, Y.; Li, Y.; Iwasaki, S.; Hanaoka, K.; Kobayashi, T.; Fujita, Y.; Yaegashi, H.; Sato, Z. Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by Ustilaginoidea virens. J. Antibiot. 1994, 47, 765–773. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Lai, D.; Wang, W.; Dai, J.; Zhou, L.; Liu, Y. Ustiloxin G, a new cyclopeptide mycotoxin from rice false smut balls. Toxins 2017, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Koyama, K.; Natori, S. Further characterization of seven bis(naphtho-γ-pyrone) congeners of ustilaginoidins, coloring matters of Claviceps virens (Ustilaginoidea virens). Chem. Pharm. Bull. 1988, 36, 146–152. [Google Scholar] [CrossRef]
- Lu, S.; Sun, W.; Meng, J.; Wang, A.; Wang, X.; Tian, J.; Fu, X.; Dai, J.; Liu, Y.; Lai, D.; et al. Bioactive bis-naphtho-γ-pyrones from rice false smut pathogen Ustilaginoidea virens. J. Agric. Food Chem. 2015, 63, 3501–3508. [Google Scholar] [CrossRef]
- Sun, W.; Xu, D.; Wang, W.; Meng, J.; Dai, J.; Liu, Y.; Lai, D.; Zhou, L. New ustilaginoidins from rice false smut balls caused by Villosiclava virens and their phytotoxic and cytotoxic activities. J. Agric. Food Chem. 2017, 65, 5151–5160. [Google Scholar] [CrossRef]
- Lai, D.; Meng, J.; Zhang, X.; Xu, D.; Dai, J.; Zhou, L. Ustilobisorbicillinol A, a cytotoxic sorbyl-containing aromatic polyketide from Ustilagninoidea virens. Org. Lett. 2019, 21, 1311–1314. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Gu, G.; Dang, P.; Zhang, X.; Wang, W.; Dai, J.; Liu, Y.; Lai, D.; Zhou, L. Sorbicillinoids from the fungus Ustilaginoidea virens and their phytotoxic, cytotoxic, and antimicrobial activities. Front. Chem. 2019, 7, 435. [Google Scholar] [CrossRef]
- Zhou, L.; Lu, S.; Shan, T.; Wang, P.; Sun, W.; Chen, Z.; Wang, S. Chemistry and biology of mycotoxins from rice false smut pathogen. In Mycotoxins: Properties, Applications and Hazards; Melborn, B.J., Greene, J.C., Eds.; Nova Science Publishers: New York, NY, USA, 2012; pp. 109–130. [Google Scholar]
- Hou, X.; Zhang, X.; Xue, M.; Zhao, Z.; Zhang, H.; Xu, D.; Lai, D.; Zhou, L. Recent advances in sorbicillinoids from fungi and their bioactivities (covering 2016-2021). J. Fungi 2022, 8, 62. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Bian, Y.; Mou, R.; Cao, Z.; Cao, Z.; Zhu, Z.; Chen, M. Isolation, identification, and characterization of Ustilaginoidea virens from rice false smut balls with high ustilotoxin production potential. J. Basic Microbiol. 2018, 58, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fu, X.; Lin, F.; Sun, W.; Meng, J.; Wang, A.; Lai, D.; Zhou, L.; Liu, Y. The contents of ustiloxins A and B along with their distribution in rice false smut balls. Toxins 2016, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.-I.; Izumiyama, N.; Ohtsubo, K.-I.; Koiso, Y.; Iwasaki, S.; Sonoda, R.; Fujita, Y.; Yaegashi, H.; Sato, Z. “Lupinosis”-like lesions in mice caused by ustiloxin, produced by Ustilaginoidea virens: A morphological study. Nat. Toxins 1994, 2, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, H.; Liu, S.; Zhou, X.; Lu, M.; Tang, L.; Sun, L. Water extract of rice false smut balls activates Nrf2/HO-1 and apoptosis pathways, causing liver injury. Rice Sci. 2023, 30, 473–485. [Google Scholar]
- Zhang, G.; Zhou, X.; Liu, S.; Ma, Y.; Li, H.; Du, Y.; Cao, Z.; Sun, L. Full-length transcriptomics study of ustiloxins-induced hepatocyte injury. Toxicon 2024, 238, 107604. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Q.; Sun, Q.; Kong, R.; Liu, H.; Yi, X.; Liang, Z.; Letcher, R.J.; Liu, C. Ustiloxin A inhibits proliferation of renal tubular epithelial cells in vitro and induces renal injury in mice by disrupting structure and respiratory function of mitochondria. J. Hazard. Mater. 2023, 448, 130791. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Dang, Y.; Liu, C.; Zhou, L.; Liu, H. Acute exposure to ustiloxin A affects growth and development of early life zebrafish, Danio rerio. Chemosphere 2019, 226, 851–857. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, H.; Zhang, Y.; Kong, R.; Yi, X.; Liu, C. Detection of ustiloxin A in urine by ultra-high-performance liquid chromatography-tandem mass spectrometry coupled with two-step solid-phase extraction. J. Chromatogr. B 2021, 1181, 122916. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Liu, H.; Zhang, Y.; Yi, X.; Kong, R.; Cheng, S.; Man, J.; Zheng, L.; Huang, J.; Su, G.; et al. Global distribution of ustiloxins in rice and their male-biased hepatotoxicity. Environ. Pollut. 2022, 301, 118992. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Qian, Z.; Liu, H.; Zhang, Y.; Yi, X.; Kong, R.; Cheng, S.; Man, J.; Zheng, L.; Huang, J.; et al. Occurrence and translocation of ustiloxins in rice false smut-occurred paddy fields, Hubei, China. Environ. Pollut. 2022, 307, 119460. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Liu, H.; Sun, Q.; Kong, R.; Letcher, R.J.; Liu, C. Occurrence of the fungus mycotoxin, ustiloxin A, in surface waters of paddy fields in Enshi, Hubei, China, and toxicity in Tetrahymena thermophila. Environ. Pollut. 2019, 251, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Koiso, Y.; Natori, M.; Iwasaki, S.; Sato, S.; Sonoda, R.; Fujita, Y.; Yaegashi, H.; Sato, Z. Ustiloxin: A phytotoxin and a mycotoxin from false smuth balls on rice panicles. Tetrahedron Lett. 1992, 33, 4157–4160. [Google Scholar] [CrossRef]
- Abbas, H.K.; Shier, W.T.; Cartwright, R.D.; Sciumbato, G.L. Ustilaginoidea virens infection of rice in Arkansas: Toxicity of false smut galls, their extracts and the ustiloxin fraction. Am. J. Plant Sci. 2014, 5, 3166–3176. [Google Scholar] [CrossRef]
- Fu, R.; Wang, J.; Chen, C.; Gong, X.; Lu, D. Effect of crude toxins of Ustilaginoidea virens on rice seed germination. Afr. J. Microbiol. Res. 2017, 11, 1267–1273. [Google Scholar]
- Fu, X.; Jin, Y.; Paul, M.J.; Yuan, M.; Liang, X.; Cui, R.; Huang, Y.; Peng, W.; Liang, X. Inhibition of rice germination by ustiloxin A involves alteration in carbon metabolism and amino acid utilization. Front. Plant Sci. 2023, 14, 1168985. [Google Scholar] [CrossRef] [PubMed]
- Rustamova, N.; Huang, G.; Isokov, M.; Movlanov, J.; Farid, R.; Buston, I.; Xiang, H.; Davranov, K.; Yili, A. Modification of natural compounds through biotransformation process by microorganisms and their pharmacological properties. Fitoterapia 2024, 79, 106227. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Mao, J.; Ao, C.; Dun, D.; Wang, X.; Hu, Q.; Du, X.; Sheng, F. Facile preparation of wormlike graphitic carbon nitride for photocatalytic degradation of ustiloxin A. Nanomaterials 2020, 10, 2256. [Google Scholar] [CrossRef]
- Loi, M.; Francesca, F.; Liuzzi, V.C.; Logrieco, A.F.; Mule, G. Mycotoxin biotransformation by native and commercial enzymes: Present and future perspectives. Toxins 2017, 9, 111. [Google Scholar] [CrossRef]
- Li, P.; Su, R.; Yin, R.; Lai, D.; Wang, M.; Liu, Y.; Zhou, L. Detoxification of mycotoxins through biotransformation. Toxins 2020, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, T.V.; Yang, B.; Xing, F.; Tian, X.; Wang, G.; Tai, B.; Si, P.; Hussain, S.; Jahn, I. Microbial enzymes involved in the biotransformation of major mycotoxins. J. Agric. Food Chem. 2023, 71, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, Z.; Zhang, Y.; Sun, Z.; Zhu, Q. An amine: Hydroxyacetone aminotransferase from Moraxella lacunata WZ34 for alaninol synthesis. Bioprocess. Biosyst. Eng. 2008, 31, 283–289. [Google Scholar] [CrossRef]
- Cancelliere, R.; Albano, D.; Brugnoli, B.; Buonasera, K.; Leo, G.; Margonelli, A.; Rea, G. Electrochemical and morphological layer-by-layer characterization of electrode interfaces during a label-free impedimetric immunosensor build-up: The case of ochratoxin A. Appl. Surf. Sci. 2021, 567, 150791. [Google Scholar] [CrossRef]
- Cancelliere, R.; Tinno, A.D.; Cataldo, A.; Bellucci, S.; Kumbhat, S.; Micheli, L. Naffon-based label-free immunosensor as a reliable warning system: The case of AFB1 detection in cattle feed. Microchem. J. 2023, 191, 108868. [Google Scholar] [CrossRef]
- Diao, E.; Li, X.; Zhang, Z.; Ma, W.; Ji, N.; Dong, H. Ultraviolet irradiation detoxification of aflatoxins: A review. Trends Food Sci. Technol. 2015, 42, 64–69. [Google Scholar] [CrossRef]
- Freitas-Silva, O.; Venancio, A. Ozone applications to prevent and degrade mycotoxin: A review. Drug Metab. Rev. 2010, 42, 612–620. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.P. Microbial detoxification of mycotoxins. J. Chem. Ecol. 2013, 39, 907–918. [Google Scholar] [CrossRef]
- Hathout, A.S.; Aly, S.E. Biological detoxification of mycotoxins: A review. Ann. Microbiol. 2014, 64, 905–919. [Google Scholar] [CrossRef]
- Ji, C.; Fan, Y.; Zhao, L. Review on biological degradation of mycotoxins. Anim. Nutr. 2016, 2, 127–133. [Google Scholar] [CrossRef]
- Zhu, Y.; Hassan, Y.I.; Lepp, D.; Shao, S.; Zhou, T. Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. Toxins 2017, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhou, T.; Young, J.C.; Boland, G.J.; Scott, P.M. Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: A review. Trends Food Sci. Technol. 2010, 21, 67–76. [Google Scholar] [CrossRef]
- Zhu, Y.; Hassan, Y.I.; Watts, C.; Zhou, T. Innovative technologies for the mitigation of mycotoxins in animal feed and ingredients—A review of recent patents. Anim. Feed Sci. Technol. 2016, 216, 19–29. [Google Scholar] [CrossRef]
- Wang, N.; Wu, W.; Pan, J.; Long, M. Detoxification strategies for zearalenone using microorganism: A review. Microorgansims 2019, 7, 208. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, V.H.P.; Neto, D.M.C.; Lacerda, V.; Borges, W.D.; Silva, E.D. Fungal biotransformation: An efficient approach for stereoselective chemical reactions. Curr. Org. Chem. 2020, 24, 2902–2953. [Google Scholar] [CrossRef]
- Esmaeili, A. Biotransformation of natural compounds to create useful medicinal products. Phytochem. Rev. 2024. [Google Scholar] [CrossRef]
- Guo, F.; Berglund, P. Transaminase biocatalysis: Optimization and application. Green Chem. 2017, 19, 333–360. [Google Scholar] [CrossRef]
- Blackwell, B.A.; Gilliam, J.T.; Savard, M.E.; Miller, D.; Duvick, J.P. Oxidative deamination of hydrolyzed fumonisin B1 (AP1) by cultures of Exophiala spinifera. Nat. Toxins 1999, 7, 31–38. [Google Scholar] [CrossRef]
- Burgess, K.M.N.; Renaud, J.B.; McDowell, T.; Sumarah, M.W. Mechanistic insight into the biosynthesis and detoxification of fumonisin mycotoxins. ACS Chem. Biol. 2016, 11, 2618–2625. [Google Scholar] [CrossRef] [PubMed]
- Garnham, C.P.; Butler, S.G.; Telmer, P.G.; Balck, F.E.; Renaud, J.B.; Sumarah, M.W. Identification and characterization of an Aspergillus niger amine oxidase that detoxifies intact fumonisins. J. Agric. Food Chem. 2020, 68, 13779–13790. [Google Scholar] [CrossRef] [PubMed]
- Palazzolo, M.A.; Mascotti, M.L.; Lewkowicz, E.S.; Kurina-Sanz, M. Self-sufficient redox biotransformation of lignin-related benzoic acids with Aspergillus flavus. J. Ind. Microbiol. Biotechnol. 2015, 42, 1581–1589. [Google Scholar] [CrossRef]
- Schluter, R.; Dallinger, A.; Kabisch, J.; Duldhardt, I.; Schauer, F. Fungal biotransformation of short-chain n-alkylcycloalkanes. Appl. Microbiol. Biotechnol. 2019, 103, 4137–4151. [Google Scholar] [CrossRef]
- Alberty, R.A. Effects of pH in rapid-equilibrium enzyme kinetics. J. Phys. Chem. B 2007, 111, 14064–14068. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chen, X.; Feng, J.; Wu, Q.; Zhu, D. Substrate profile of an ω-transaminase from Burkholderia vietnamiensis and its potential for the production of optically pure amines and unnatural amino acids. J. Mol. Catal. B-Enzym. 2014, 100, 32–39. [Google Scholar] [CrossRef]
- Cerioli, L.; Planchestainer, M.; Cassidy, J.; Tessaro, D.; Paradisi, F. Characterization of a novel amine transaminase from Halomonas elongata. J. Mol. Catal. B-Enzym. 2015, 120, 141–150. [Google Scholar] [CrossRef]
- Mathew, S.; Bea, H.; Nadarajan, S.P.; Chung, T.; Yun, H. Production of chiral β-amino acids using ω-transaminase from Burkholderia graminis. J. Biotechnol. 2015, 196, 1–8. [Google Scholar] [CrossRef]
- Hunter, L.; McLeod, M.D.; Hutton, C.A. Synthesis of the β-hydroxydopa–γ-hydroxy-δ-sulfinylnorvaline component of ustiloxins A and B. Org. Biomol. Chem. 2005, 3, 732–734. [Google Scholar] [CrossRef]
- Meng, X.; Fang, Y.; Ding, M.; Zhang, Y.; Jia, K.; Li, Z.; Collemare, J.; Liu, W. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnol. Adv. 2022, 54, 107866. [Google Scholar] [CrossRef]
- Chang, P.-K. Creating large chromosomal segment deletions in Aspergillus flavus by a dual CRISPR/Cas9 system: Deletion of gene clusters for production of aflatoxin, cyclopiazonic acid, and ustiloxin B. Fungal Genet. Biol. 2024, 170, 103863. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Wang, W.; Peng, Y.; Yu, R.; Yue, Y.; Lai, D.; Zhou, L. Endophytic fungi from Nicotiana tabacum L. and their antibacterial activity. Nat. Prod. Res. Dev. 2015, 27, 1847–1852. [Google Scholar]
Position | 1 (D2O) | 2 (D2O) | Ustiloxin A (D2O) [7] | |||
---|---|---|---|---|---|---|
δC, Type | δH, Mult. (J in Hz) | δC, Type | δH, Mult. (J in Hz) | δC, Type a | δH, Mult. (J in Hz) a | |
2 | 86.7 C | 86.4 C | 87.2 C | |||
3 | 59.1 CH | 4.82 m | 58.7 CH | 4.77 m | 59.6 CH | 4.83 s |
5 | 170.6 C | 170.6 C | 171.0 C | |||
6 | 59.6 CH | 4.12 d (10.0) | 59.6 CH | 4.05 d (10.2) | 60.1 CH | 4.13 d (10.0) |
8 | 165.9 C | 165.5 C | 166.4 C | |||
9 | 66.0 CH | 4.30 d (10.1) | 66.0 CH | 4.24 d (10.0) | 66.7 CH | 4.28 d (10.0) |
10 | 73.4 CH | 4.92 d (10.1) | 73.4 CH | 4.84 d (10.0) | 73.9 CH | 4.96 d (10.0) |
11 | 127.9 C | 127.6 C | 128.0 C | |||
12 | 136.1 C | 136.1 C | 136.4 C | |||
13 | 113.6 CH | 7.60 s | 113.6 CH | 7.54 s | 114.0 CH | 7.61 s |
14 | 151.7 C | 151.8 C | 152.2 C | |||
15 | 145.5 C | 145.4 C | 146.0 C | |||
16 | 123.9 CH | 7.08 s | 124.2 C | 7.01 s | 124.2 CH | 7.11 s |
17 | 169.9 C | 170.6 C | 170.3 C | |||
19 | 43.2 CH2 | 3.78 s | 41.1 CH | 3.93 s | 43.8 CH2 | 3.79 s |
20 | 175.6 C | 172.7 C | 176.3 C | |||
21 | 20.7 CH3 | 1.73 s | 20.8 CH3 | 1.68 s | 21.1 CH3 | 1.77 s |
22 | 31.8 CH2 | 2.22 dq (14.4, 7.2) 1.69 dq (14.4, 7.2) | 31.8 CH2 | 2.16 dq (13.5, 6.5) 1.62 dq (13.5, 7.3) | 32.1 CH2 | 2.24 dd (14.2, 7.2) 1.73 dd (14.2, 7.2) |
23 | 7.3 CH3 | 1.08 t (7.2) | 7.2 CH3 | 1.03 t (7.4) | 7.8 CH3 | 1.09 dd (7.2, 7.2) |
24 | 28.4 CH | 1.87 m | 28.4 CH | 1.80 m | 28.7 CH | 1.92 dd (10.0, 7.0) |
25 | 17.5 CH3 | 0.86 d (6.6) | 17.5 CH3 | 0.80 d (6.6) | 17.9 CH3 | 0.80 d (7.0) |
26 | 17.8 CH3 | 0.77 d (6.6) | 17.8 CH3 | 0.70 d (6.6) | 18.3 CH3 | 0.88 d (7.0) |
28 | 31.6 CH3 | 2.78 s | 31.5 CH3 | 2.72 s | 32.1 CH3 | 2.77 s |
2′ | 63.5 CH2 | 3.34 m 3.02 m | 63.3 CH2 | 3.30 dd (13.3, 8.7) 2.95 dd (13.3, 2.7) | 64.8 CH2 | 3.33 dd (13.6, 10.0) 3.04 dd (13.6, 3.0) |
3′ | 62.0 CH | 4.67 m | 62.7 CH | 4.53 m | 63.8 CH | 4.39 m |
4′ | 38.7 CH2 | 2.74 s | 40.9 CH2 | 2.62 dd (13.3, 6.2) | 36.7 CH2 | 2.22 ddd (15.0, 10.0, 8.0) 2.12 ddd (15.0, 8.0, 3.0) |
5′ | 190.3 C | 174.6 C | 52.7 CH | 4.01 dd (8.0, 8.0) | ||
6′ | 169.0 C | 174.4 C |
Compound | IC50 (μmol/L) | ||||
---|---|---|---|---|---|
HCT-8 | PANC-1 | HGC-27 | HepG2 | PC9 | |
Ustiloxin A | 2.81 | 3.59 | 3.62 | 11.94 | 1.85 |
Ustiloxin A1 | 5.95 | 6.93 | 4.59 | 20.05 | 15.01 |
Ustiloxin A2 | 6.73 | 13.04 | 15.80 | 21.91 | 21.80 |
Taxol (CK+) | 4.18 × 10−3 | 1.53 × 10−3 | 1.76 × 10−3 | 4.50 × 10−3 | 2.51 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Gu, G.; Hou, X.; Xu, D.; Dai, J.; Kuang, Y.; Wang, M.; Lai, D.; Zhou, L. Detoxification of Ustiloxin A Through Oxidative Deamination and Decarboxylation by Endophytic Fungus Petriella setifera. Toxins 2025, 17, 48. https://doi.org/10.3390/toxins17020048
Li P, Gu G, Hou X, Xu D, Dai J, Kuang Y, Wang M, Lai D, Zhou L. Detoxification of Ustiloxin A Through Oxidative Deamination and Decarboxylation by Endophytic Fungus Petriella setifera. Toxins. 2025; 17(2):48. https://doi.org/10.3390/toxins17020048
Chicago/Turabian StyleLi, Peng, Gan Gu, Xuwen Hou, Dan Xu, Jungui Dai, Yu Kuang, Mingan Wang, Daowan Lai, and Ligang Zhou. 2025. "Detoxification of Ustiloxin A Through Oxidative Deamination and Decarboxylation by Endophytic Fungus Petriella setifera" Toxins 17, no. 2: 48. https://doi.org/10.3390/toxins17020048
APA StyleLi, P., Gu, G., Hou, X., Xu, D., Dai, J., Kuang, Y., Wang, M., Lai, D., & Zhou, L. (2025). Detoxification of Ustiloxin A Through Oxidative Deamination and Decarboxylation by Endophytic Fungus Petriella setifera. Toxins, 17(2), 48. https://doi.org/10.3390/toxins17020048