Towards New Uses of Botulinum Toxin as a Novel Therapeutic Tool
Abstract
:1. Introduction
2. Genetic Organization of BoNT
3. Membrane Binding Initiates BoNT Mechanism of Action
Serotype | Cellular binding receptors | Catalytic target | |
---|---|---|---|
Carbohydrate | Protein | ||
A | GD1a, GD1b, GT1b, GQ1b | SV2A, B and C | SNAP-25 |
B | GD1a, GD1b, GT1b | Syn I and II | VAMP |
C1 | GD1a, GD1b ,GT1b | SNAP-25 and syntaxin | |
D | GT1b, GD2 | VAMP | |
E | GD1a, GT1b, GQ1b | Glycosylated SV2A and B | SNAP-25 |
F | GD1a, GD1b, GT1b | SV2 | VAMP |
G | GT1b | Syn I and II | VAMP |
TeNT | GT1b, GD1b GM1a GD3 | ThyI | VAMP |
4. Modifying the Binding Domain of BoNT to Retarget the Native Catalytic Domain
Modification to Binding Domain | Effect | Therapeutic Potential | Reference |
---|---|---|---|
BoNT-A/E chimera | SNAP-25 cleavage similar to BoNT-A | Similar to that of BoNT-A | [54,55] |
BoNT-E/A chimera | Rapid uptake similar to BoNT-E | More persistent muscle weakening, targeted pain mediation | [54,55] |
C2IN-streptavidin | Delivery of biotinylated molecules | Drug delivery | [61] |
S6 peptide | Delivery of small molecules | Drug delivery | [60] |
Fluorescent proteins e.g., GFP | Tracer molecules | Analysing neuronal circuit plasticity | [64,65] |
Drug activating enzyme | Drug activation | Chemotherapy | [67] |
Poly-lysine | DNA delivery | Gene therapy | [68,70] |
Lectin | Binds nociceptive afferents | Targeted pain medication | [49] |
Wheatgerm agglutinin | Targeted light chain to neuronal cells | Inhibited refractory neurotransmitter release | [50] |
Nerve growth factor | Targeted LHN neuronal cells | Inhibited refractory neurotransmitter release | [51] |
Epidermal growth factor | Targeted epithelial cells | Inhibited mucus secretion | [58] |
Addition of PEP-1 peptide | Penetrated skin | Novel administration technique | [88] |
5. Employing the BoNT-Binding Domain to Deliver Non-Native Proteins
6. Modifying the BoNT Active Site to Target Non-Native Substrates
Invention | Author(s) | Patent No. | Reference |
---|---|---|---|
Application via transdermal patches | Donovan | US20017758871 | [90] |
Application via skin disruption | Donovan | US20017758871 | [90] |
Application in polymeric microsphere-containing implant | Donovan | US20080028216 | [91] |
Application in phospholipid micelles | Modi | US20080220021 | [92] |
Application in non-polar solvent | Petrou and Vedra | US20090304747 | [93] |
PEGylated mutated BoNT | Frevert and Specht | EP1834962 | [107] |
Formulations for oral administration | Donovan | US20040086532 | [108] |
Biodegradable neurotoxin implants | Hughes and Orest | US20050232966 | [109] |
Leucine-based motif and Clostridia neurotoxins | Steward et al. | US20080177041 | [110] |
7. Modifications to BoNT Duration of Action
8. Alternative Methods of Modifying BoNT
9. Summary and Conclusion
Acknowledgements
References
- Apostolidis, A.; Fowler, C.J. The use of botulinum neurotoxin type A (BoNTA) in urology. J. Neural Transm. 2008, 115, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Cordivari, C.; Misra, V.P.; Catania, S.; Lees, A.J. New therapeutic indications for botulinum toxins. Mov. Disord. 2004, 19, S157–S161. [Google Scholar] [CrossRef] [PubMed]
- Uyesugi, B.; Lippincott, B.; Dave, S. Treatment of a painful keloid with botulinum toxin type A. Am. J. Phys. Med. Rehabil. 2010, 89, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Torgovnick, J.; Arsura, E.; Sethi, N.K.; Hu, C.J.; Yuan, R.Y.; Sheu, J.J.; Apfel, S.C. Botulinum toxin for diabetic neuropathic pain: A randomized double-blind crossover trial: Botulinum toxin for neuropathic pain? Neurology 2010, 74, 92–93. [Google Scholar] [PubMed]
- Singer, B.J.; Silbert, P.L.; Song, S.; Dunne, J.W.; Singer, K.P. Treatment of refractory anterior knee pain using botulinum toxin type A (Dysport) injection to the distal vastus lateralis muscle: A randomised placebo controlled crossover trial. Br. J. Sports Med. 2010. [Google Scholar] [CrossRef]
- Ngeow, W.C.; Nair, R. Injection of botulinum toxin type A (BOTOX) into trigger zone of trigeminal neuralgia as a means to control pain. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, e47–e50. [Google Scholar] [CrossRef]
- Liu, R.K.; Li, C.H.; Zou, S.J. Reducing scar formation after lip repair by injecting botulinum toxin. Plast. Reconstr. Surg. 2010, 125, 1573–1574. [Google Scholar] [PubMed]
- Ansiaux, R.; Gallez, B. Use of botulinum toxins in cancer therapy. ExpertOpin. Investig. Drugs 2007, 16, 209–218. [Google Scholar] [CrossRef]
- Beer, K. Cost effectiveness of botulinum toxins for the treatment of depression: Preliminary observations. J. Drugs Dermatol. 2010, 9, 27–30. [Google Scholar] [PubMed]
- Montal, M. Botulinum neurotoxin: A marvel of protein design. Annu. Rev. Biochem. 2010, 79, 591–617. [Google Scholar] [CrossRef] [PubMed]
- Pickett, A.; Perrow, K. Formulation composition of botulinum toxins in clinical use. J. Drugs Dermatol. 2010, 9, 1085–1091. [Google Scholar] [PubMed]
- Fujinaga, Y.; Inoue, K.; Nomura, T.; Sasaki, J.; Marvaud, J.C.; Popoff, M.R.; Kozaki, S.; Oguma, K. Identification and characterization of functional subunits of Clostridium botulinum type A progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS Lett. 2000, 467, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.N.; Sharma, S.K.; Singh, B.R. A protease-resistant novel hemagglutinin purified from type A Clostridium botulinum. J. Protein Chem. 1998, 17, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Fujinaga, Y.; Inoue, K.; Watanabe, S.; Yokota, K.; Hirai, Y.; Nagamachi, E.; Oguma, K. The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin. Microbiology 1997, 143, 3841–3847. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.J.; Lin, G.; Raphael, B.; Andreadis, J.; Johnson, E.A. Analysis of neurotoxin cluster genes in Clostridium botulinum strains producing botulinum neurotoxin serotype A subtypes. Appl. Environ. Microbiol. 2008, 74, 2778–2786. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, Y.; Hayashi, T.; Yamamoto, Y.; Nakayama, K.; Zhang, K.; Ma, S.; Arimitsu, H.; Oguma, K. Molecular analysis of an extrachromosomal element containing the C2 toxin gene discovered in Clostridium botulinum type C. J. Bacteriol. 2009, 191, 3282–3291. [Google Scholar] [CrossRef] [PubMed]
- Dover, N.; Barash, J.R.; Arnon, S.S. Novel Clostridium botulinum Toxin Gene Arrangement with Subtype A5 and Partial Subtype B3 Botulinum Neurotoxin Genes. J. Clin. Microbiol. 2009, 47, 2349–2350. [Google Scholar] [CrossRef] [PubMed]
- Luquez, C.; Raphael, B.H.; Maslanka, S.E. Neurotoxin gene clusters in Clostridium botulinum type Ab strains. Appl. Environ. Microbiol. 2009, 75, 6094–6101. [Google Scholar] [PubMed]
- Chaddock, J.A.; Marks, P.M. Clostridial neurotoxins: Structure-function led design of new therapeutics. Cell Mol. Life Sci. 2006, 63, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Sebaihia, M.; Peck, M.W.; Minton, N.P.; Thomson, N.R.; Holden, M.T.; Mitchell, W.J.; Carter, A.T.; Bentley, S.D.; Mason, D.R.; Crossman, L.; Paul, C.J.; Ivens, A.; Wells-Bennik, M.H.; Davis, I.J.; Cerdeno-Tarraga, A.M.; Churcher, C.; Quail, M.A.; Chillingworth, T.; Feltwell, T.; Fraser, A.; Goodhead, I.; Hance, Z.; Jagels, K.; Larke, N.; Maddison, M.; Moule, S.; Mungall, K.; Norbertczak, H.; Rabbinowitsch, E.; Sanders, M.; Simmonds, M.; White, B.; Whithead, S.; Parkhill, J. Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res. 2007, 17, 1082–1092. [Google Scholar] [PubMed]
- Hill, K.K.; Smith, T.J.; Helma, C.H.; Ticknor, L.O.; Foley, B.T.; Svensson, R.T.; Brown, J.L.; Johnson, E.A.; Smith, L.A.; Okinaka, R.T.; Jackson, P.J.; Marks, J.D. Genetic diversity among Botulinum Neurotoxin-producing clostridial strains. J. Bacteriol. 2007, 189, 818–832. [Google Scholar] [PubMed]
- Henkel, J.S.; Jacobson, M.; Tepp, W.; Pier, C.; Johnson, E.A.; Barbieri, J.T. Catalytic Properties of Botulinum Neurotoxin Subtypes A3 and A4 (dagger). Biochemistry 2009, 48, 2522–2528. [Google Scholar] [PubMed]
- Smith, T.J.; Hill, K.K.; Foley, B.T.; Detter, J.C.; Munk, A.C.; Bruce, D.C.; Doggett, N.A.; Smith, L.A.; Marks, J.D.; Xie, G.; Brettin, T.S. Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS One 2007, 2, e1271. [Google Scholar] [PubMed]
- Marshall, K.M.; Bradshaw, M.; Pellett, S.; Johnson, E.A. Plasmid encoded neurotoxin genes in Clostridium botulinum serotype A subtypes. Biochem. Biophys. Res. Commun. 2007, 361, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Franciosa, G.; Maugliani, A.; Scalfaro, C.; Aureli, P. Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains. PLoS One 2009, 4, e4829. [Google Scholar] [PubMed]
- Hill, K.K.; Xie, G.; Foley, B.T.; Smith, T.J.; Munk, A.C.; Bruce, D.; Smith, L.A.; Brettin, T.S.; Detter, J.C. Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strain. BMC Biol. 2009, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Brussow, H.; Canchaya, C.; Hardt, W.D. Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 2004, 68, 560–602. [Google Scholar] [CrossRef] [PubMed]
- Binz, T.; Rummel, A. Cell entry strategy of clostridial neurotoxins. J. Neurochem. 2009, 109, 1584–1595. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.E.; Cai, F.; Neale, E.A. Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 2004, 43, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, M.R.; Barbieri, J.T. Association of botulinum neurotoxins with synaptic vesicle protein complexes. Toxicon 2009, 54, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, M.R.; Kim, J.J.; Barbieri, J.T. Botulinum neurotoxin B-host receptor recognition: It takes two receptors to tango. Nat. Struct. Mol. Biol. 2007, 14, 9–10. [Google Scholar] [CrossRef] [PubMed]
- van Heyningen, W.E.; Miller, P.A. The fixation of tetanus toxin by ganglioside. J. Gen. Microbiol. 1961, 24, 107–119. [Google Scholar] [PubMed]
- Brunger, A.T.; Rummel, A. Receptor and substrate interactions of clostridial neurotoxins. Toxicon 2009, 54, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Kozaki, S.; Miyazaki, S.; Sakaguchi, G. Development of antitoxin with each of two complementary fragments of Clostridium botulinum type B derivative toxin. Infect. Immun. 1977, 18, 761–766. [Google Scholar] [PubMed]
- Verderio, C.; Rossetto, O.; Grumelli, C.; Frassoni, C.; Montecucco, C.; Matteoli, M. Entering neurons: Botulinum toxins and synaptic vesicle recycling. EMBO Rep. 2006, 7, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Chen, C.; Barbieri, J.T.; Kim, J.J.; Baldwin, M.R. Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. Biochemistry 2009, 48, 5631–5641. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.; Karalewitz, A.; Benefield, D.A.; Mushrush, D.J.; Pruitt, R.N.; Spiller, B.W.; Barbieri, J.T.; Lacy, D.B. Structural analysis of botulinum neurotoxin type G receptor binding. Biochemistry 2010, 49, 5200–5205. [Google Scholar] [PubMed]
- Rummel, A.; Hafner, K.; Mahrhold, S.; Darashchonak, N.; Holt, M.; Jahn, R.; Beermann, S.; Karnath, T.; Bigalke, H.; Binz, T. Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J. Neurochem. 2009, 110, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- Rummel, A.; Mahrhold, S.; Bigalke, H.; Binz, T. The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol. Microbiol. 2004, 51, 631–643. [Google Scholar] [PubMed]
- Rummel, A.; Eichner, T.; Weil, T.; Karnath, T.; Gutcaits, A.; Mahrhold, S.; Sandhoff, K.; Proia, R.L.; Acharya, K.R.; Bigalke, H.; Binz, T. Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc. Natl. Acad. Sci. USA 2007, 104, 359–364. [Google Scholar]
- Strotmeier, J.; Lee, K.; Volker, A.K.; Mahrhold, S.; Zong, Y.; Zeiser, J.; Zhou, J.; Pich, A.; Bigalke, H.; Binz, T.; Rummel, A.; Jin, R. Botulinum neurotoxin serotype D attacks neurons via two carbohydrate binding sites in a ganglioside dependent manner. Biochem. J. 2010, 431, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Yowler, B.C.; Schengrund, C.L. Glycosphingolipids-sweets for botulinum neurotoxin. Glycoconj. J. 2004, 21, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Rummel, A. Transport Protein Which Is Used To Introduce Chemical Compounds into Nerve Cells. US Patent 0299008, 27 12 2007. [Google Scholar]
- Foster, K.A. Engineered toxins: New therapeutics. Toxicon 2009, 54, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.S.; Duggan, M.J.; Shone, C.C.; Foster, K.A. The effect of botulinum neurotoxins on the release of insulin from the insulinoma cell lines HIT-15 and RINm5F. J. Biol. Chem. 1995, 270, 18216–18218. [Google Scholar]
- Lawrence, G.W.; Foran, P.; Mohammed, N.; DasGupta, B.R.; Dolly, J.O. Importance of two adjacent C-terminal sequences of SNAP-25 in exocytosis from intact and permeabilized chromaffin cells revealed by inhibition with botulinum neurotoxins A and E. Biochemistry 1997, 36, 3061–3067. [Google Scholar] [CrossRef] [PubMed]
- Penner, R.; Neher, E.; Dreyer, F. Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature 1986, 324, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Aguado, F.; Gombau, L.; Majo, G.; Marsal, J.; Blanco, J.; Blasi, J. Regulated secretion is impaired in AtT-20 endocrine cells stably transfected with botulinum neurotoxin type A light chain. J. Biol. Chem. 1997, 272, 26005–26008. [Google Scholar] [PubMed]
- Duggan, M.J.; Quinn, C.P.; Chaddock, J.A.; Purkiss, J.R.; Alexander, F.C.; Doward, S.; Fooks, S.J.; Friis, L.M.; Hall, Y.H.; Kirby, E.R.; Leeds, N.; Moulsdale, H.J.; Dickenson, A.; Green, G.M.; Rahman, W.; Suzuki, R.; Shone, C.C.; Foster, K.A. Inhibition of release of neurotransmitters from rat dorsal root ganglia by a novel conjugate of a Clostridium botulinum toxin A endopeptidase fragment and Erythrina cristagalli lectin. J. Biol. Chem. 2002, 277, 34846–34852. [Google Scholar] [PubMed]
- Chaddock, J.A.; Purkiss, J.R.; Friis, L.M.; Broadbridge, J.D.; Duggan, M.J.; Fooks, S.J.; Shone, C.C.; Quinn, C.P.; Foster, K.A. Inhibition of vesicular secretion in both neuronal and nonneuronal cells by a retargeted endopeptidase derivative of Clostridium botulinum neurotoxin type A. Infect. Immun. 2000, 68, 2587–2593. [Google Scholar] [PubMed]
- Chaddock, J.A.; Purkiss, J.R.; Duggan, M.J.; Quinn, C.P.; Shone, C.C.; Foster, K.A. A conjugate composed of nerve growth factor coupled to a non-toxic derivative of Clostridium botulinum neurotoxin type A can inhibit neurotransmitter release in vitro. Growth Factors 2000, 18, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.L.; Oyler, G.; Shoemaker, C.B. Lipid and cationic polymer based transduction of botulinum holotoxin, or toxin protease alone, extends the target cell range and improves the efficiency of intoxication. Toxicon 2010, 55, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Barbieri, J.T. Engineering botulinum neurotoxin to extend therapeutic intervention. Proc. Natl. Acad. Sci. USA 2009, 106, 9180–9184. [Google Scholar]
- Wang, J.; Meng, J.; Lawrence, G.W.; Zurawski, T.H.; Sasse, A.; Bodeker, M.O.; Gilmore, M.A.; Fernandez-Salas, E.; Francis, J.; Steward, L.E.; Aoki, K.R.; Dolly, J.O. Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristic. J. Biol. Chem. 2008, 283, 16993–17002. [Google Scholar]
- Meng, J.; Ovsepian, S.V.; Wang, J.; Pickering, M.; Sasse, A.; Aoki, K.R.; Lawrence, G.W.; Dolly, J.O. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J. Neurosci. 2009, 29, 4981–4992. [Google Scholar]
- Shone, C.C.; Hambleton, P.; Melling, J. Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments. Proteolytic action near the COOH-terminus of the heavy subunit destroys toxin-binding activity. Eur. J. Biochem. 1985, 151, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Sutton, J.M.; Wayne, J.; Scott-Tucker, A.; O'Brien, S.M.; Marks, P.M.; Alexander, F.C.; Shone, C.C.; Chaddock, J.A. Preparation of specifically activatable endopeptidase derivatives of Clostridium botulinum toxins type A, B, and C and their application. Protein Expr. Purif. 2005, 40, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.A.; Adams, E.J.; Durose, L.; Cruttwell, C.J.; Marks, E.; Shone, C.C.; Chaddock, J.A.; Cox, C.L.; Heaton, C.; Sutton, J.M.; Wayne, J.; Alexander, F.C.; Rogers, D.F. Re-engineering the target specificity of Clostridial neurotoxins-A route to novel therapeutics. Neurotox. Res. 2006, 9, 101–107. [Google Scholar] [PubMed]
- Lim, E.C.; Ong, B.K.; Oh, V.M.; Seet, R.C. Botulinum toxin: A novel therapeutic option for bronchial asthma? Med. Hypotheses 2006, 66, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Band, P.A.; Blais, S.; Neubert, T.A.; Cardozo, T.J.; Ichtchenko, K. Recombinant derivatives of botulinum neurotoxin A engineered for trafficking studies and neuronal delivery. Protein Expr. Purif. 2010, 71, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Fahrer, J.; Plunien, R.; Binder, U.; Langer, T.; Seliger, H.; Barth, H. Genetically engineered clostridial C2 toxin as a novel delivery system for living mammalian cells. Bioconjug. Chem. 2010, 21, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Bade, S.; Rummel, A.; Reisinger, C.; Karnath, T.; Ahnert-Hilger, G.; Bigalke, H.; Binz, T. Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. J. Neurochem. 2004, 91, 1461–1472. [Google Scholar] [CrossRef] [PubMed]
- Coen, L.; Osta, R.; Maury, M.; Brulet, P. Construction of hybrid proteins that migrate retrogradely and transynaptically into the central nervous system. Proc. Natl. Acad. Sci. USA 1997, 94, 9400–9405. [Google Scholar]
- Kissa, K.; Mordelet, E.; Soudais, C.; Kremer, E.J.; Demeneix, B.A.; Brulet, P.; Coen, L. In vivo neuronal tracing with GFP-TTC gene delivery. Mol. Cell Neurosci. 2002, 20, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Maskos, U.; Kissa, K.; St. Cloment, C.; Brulet, P. Retrograde trans-synaptic transfer of green fluorescent protein allows the genetic mapping of neuronal circuits in transgenic mice. Proc. Natl. Acad. Sci. USA 2002, 99, 10120–10125. [Google Scholar]
- Huh, Y.; Oh, M.S.; Leblanc, P.; Kim, K.S. Gene transfer in the nervous system and implications for transsynaptic neuronal tracing. Expert Opin. Biol. Ther. 2010, 10, 763–772. [Google Scholar] [PubMed]
- van Mellaert, L.; Barbe, S.; Anne, J. Clostridium spores as anti-tumour agents. Trends Microbiol. 2006, 14, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Knight, A.; Carvajal, J.; Schneider, H.; Coutelle, C.; Chamberlain, S.; Fairweather, N. Non-viral neuronal gene delivery mediated by the HC fragment of tetanus toxin. Eur. J. Biochem. 1999, 259, 762–769. [Google Scholar] [PubMed]
- Box, M.; Parks, D.A.; Knight, A.; Hale, C.; Fishman, P.S.; Fairweather, N.F. A multi-domain protein system based on the HC fragment of tetanus toxin for targeting DNA to neuronal cells. J. Drug Target 2003, 11, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.; Groves, M.; Muhle, C.; Reynolds, P.N.; Knight, A.; Themis, M.; Carvajal, J.; Scaravilli, F.; Curiel, D.T.; Fairweather, N.F.; Coutelle, C. Retargeting of adenoviral vectors to neurons using the Hc fragment of tetanus toxin. Gene Ther. 2000, 7, 1584–1592. [Google Scholar] [CrossRef] [PubMed]
- Andreu, A.; Fairweather, N.; Miller, A.D. Clostridium neurotoxin fragments as potential targeting moieties for liposomal gene delivery to the CNS. Chem. Biochem. 2008, 9, 219–231. [Google Scholar]
- Darios, F.; Niranjan, D.; Ferrari, E.; Zhang, F.; Soloviev, M.; Rummel, A.; Bigalke, H.; Suckling, J.; Ushkaryov, Y.; Naumenko, N.; Shakirzyanova, A.; Giniatullin, R.; Maywood, E.; Hastings, M.; Binz, T.; Davletov, B. SNARE tagging allows stepwise assembly of a multimodular medicinal toxin. Proc. Natl. Acad. Sci. USA 2010, 107, 18197–18201. [Google Scholar]
- Ambache, N. A further survey of the action of Clostridium botulinum toxin upon different types of autonomic nerve fibre. J. Physiol. 1951, 113, 1–17. [Google Scholar] [PubMed]
- Chaddock, J.A.; Purkiss, J.R.; Alexander, F.C.; Doward, S.; Fooks, S.J.; Friis, L.M.; Hall, Y.H.; Kirby, E.R.; Leeds, N.; Moulsdale, H.J.; Dickenson, A.; Green, G.M.; Rahman, W.; Suzuki, R.; Duggan, M.J.; Quinn, C.P.; Shone, C.C.; Foster, K.A. Retargeted clostridial endopeptidases: Inhibition of nociceptive neurotransmitter release in vitro, and antinociceptive activity in in vivo models of pain. Mov. Disord. 2004, 19, S42–S47. [Google Scholar] [PubMed]
- Sudhof, T.C.; Rothman, J.E. Membrane fusion: Grappling with SNARE and SM proteins. Science 2009, 323, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Hong, W. SNAREs and traffic. Biochim. Biophys. Acta 1744, 120–144. [Google Scholar]
- Chen, F.; Foran, P.; Shone, C.C.; Foster, K.A.; Melling, J.; Dolly, J.O. Botulinum neurotoxin B inhibits insulin-stimulated glucose uptake into 3T3-L1 adipocytes and cleaves cellubrevin unlike type A toxin which failed to proteolyze the SNAP-23 present. Biochemistry 1997, 36, 5719–5728. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, M.R.; Bradshaw, M.; Johnson, E.A.; Barbieri, J.T. The C-terminus of botulinum neurotoxin type A light chain contributes to solubility, catalysis, and stability. Protein Expr. Purif. 2004, 37, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Kim, J.J.; Barbieri, J.T. Mechanism of substrate recognition by botulinum neurotoxin serotype A. J. Biol. Chem. 2007, 282, 9621–9627. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Chen, S.; Baldwin, M.R.; Boldt, G.E.; Crawford, A.; Janda, K.D.; Barbieri, J.T.; Kim, J.J. Light chain of botulinum neurotoxin serotype A: Structural resolution of a catalytic intermediate. Biochemistry 2006, 45, 8903–8911. [Google Scholar] [PubMed]
- Fang, H.; Luo, W.; Henkel, J.; Barbieri, J.; Green, N. A yeast assay probes the interaction between botulinum neurotoxin serotype B and its SNARE substrate. Proc. Natl. Acad. Sci. USA 2006, 103, 6958–6963. [Google Scholar]
- Ahmed, S.A.; Olson, M.A.; Ludivico, M.L.; Gilsdorf, J.; Smith, L.A. Identification of residues surrounding the active site of type A botulinum neurotoxin important for substrate recognition and catalytic activity. Protein J. 2008, 27, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Barbieri, J.T. Unique substrate recognition by botulinum neurotoxins serotypes A and E. J. Biol. Chem. 2006, 281, 10906–10911. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, V.V.; Yoshino, K.; Jahnz, M.; Dorries, C.; Bade, S.; Nauenburg, S.; Niemann, H.; Binz, T. Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: Domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J. Neurochem. 1999, 72, 327–337. [Google Scholar] [PubMed]
- Breidenbach, M.A.; Brunger, A.T. Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 2004, 432, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, G.M.; Oh, C.; Shams, K. BOTOX delivery by iontophoresis. Br. J. Dermatol. 2004, 151, 1093–1095. [Google Scholar] [CrossRef] [PubMed]
- Taysse, L.; Daulon, S.; Calvet, J.; Delamanche, S.; Hilaire, D.; Bellier, B.; Breton, P. Induction of acute lung injury after intranasal administration of toxin botulinum a complex. Toxicol. Pathol. 2005, 33, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Kim, S.Y.; An, J.J.; Lee, S.H.; Jang, S.H.; Won, M.H.; Kang, T.C.; Chung, K.H.; Jung, H.H.; Cho, S.W.; Choi, J.H.; Park, J.; Eum, W.S.; Choi, S.Y. Expression, purification and transduction of PEP-1-botulinum neurotoxin type A (PEP-1-BoNT/A) into skin. J. Biochem. Mol. Biol. 2006, 39, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Nochi, T.; Yuki, Y.; Takahashi, H.; Sawada, S.; Mejima, M.; Kohda, T.; Harada, N.; Kong, I.G.; Sato, A.; Kataoka, N.; Tokuhara, D.; Kurokawa, S.; Takahashi, Y.; Tsukada, H.; Kozaki, S.; Akiyoshi, K.; Kiyono, H. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat. Mater. 2010, 9, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Donovan, S. Transdermal botulinum toxin administration. US Patent 20017758871, 20 07 2010. [Google Scholar]
- Donovan, S. Botulinum Toxin Implant. US Patent 20,080,028,216, 6 11 2001. [Google Scholar]
- Modi, P. Topical botulinum toxin compositions for the treatment of hyperhidrosis. US Patent 20080220021, 23 05 2008. [Google Scholar]
- Petrou, S. Use of DMSO and botulinum toxin therapy for urinary incontinence and related disorders. US Patent 20090304747, 10 12 2009. [Google Scholar]
- Poulain, B.; Popoff, M.; Molgo, J. How do the botulinum neurotoxins block neurotransmitter release: From botulism to the molecular mechanism of action. Botulinum J. 2008, 1, 14–87. [Google Scholar] [CrossRef]
- Bambrick, L.L.; Gordon, T. Comparison of the effects of botulinum toxin in adult and neonatal rats: Neuromuscular blockade and toxicity. Can. J. Physiol. Pharmacol. 1989, 67, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Meunier, F.A.; Lisk, G.; Sesardic, D.; Dolly, J.O. Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: The extent and duration are dictated by the sites of SNAP-25 truncation. Mol. Cell Neurosci. 2003, 22, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.E.; Neale, E.A.; Oyler, G.; Adler, M. Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett. 1999, 456, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Salas, E.; Steward, L.E.; Ho, H.; Garay, P.E.; Sun, S.W.; Gilmore, M.A.; Ordas, J.V.; Wang, J.; Francis, J.; Aoki, K.R. Plasma membrane localization signals in the light chain of botulinum neurotoxin. Proc. Natl. Acad. Sci. USA 2004, 101, 3208–3213. [Google Scholar]
- Fernandez-Salas, E.; Ho, H.; Garay, P.; Steward, L.E.; Aoki, K.R. Is the light chain subcellular localization an important factor in botulinum toxin duration of action? Mov. Disord. 2004, 19, S23–S34. [Google Scholar] [CrossRef]
- Zhang, P.; Ray, R.; Singh, B.R.; Li, D.; Adler, M.; Ray, P. An efficient drug delivery vehicle for botulism countermeasure. BMC Pharmacol. 2009, 9, 12. [Google Scholar] [PubMed]
- Singh, B.R.; Thirunavukkarasu, N.; Ghosal, K.; Ravichandran, E.; Kukreja, R.; Cai, S.; Zhang, P.; Ray, R.; Ray, P. Clostridial neurotoxins as a drug delivery vehicle targeting nervous system. Biochimie 2010, 92, 1252–1259. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Ba-Thein, W.; Tamaki, M.; Hayashi, H. The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfring. J. Bacteriol. 1994, 176, 1616–1623. [Google Scholar] [PubMed]
- Heap, J.T.; Pennington, O.J.; Cartman, S.T.; Carter, G.P.; Minton, N.P. The ClosTron: A universal gene knock-out system for the genus Clostridium. J. Microbiol. Methods 2007, 70, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Heap, J.T.; Kuehne, S.A.; Ehsaan, M.; Cartman, S.T.; Cooksley, C.M.; Scott, J.C.; Minton, N.P. The ClosTron: Mutagenesis in Clostridium refined and streamlined. J. Microbiol. Methods 2010, 80, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, M.; Marshall, K.M.; Heap, J.T.; Tepp, W.H.; Minton, N.P.; Johnson, E.A. Construction of a nontoxigenic Clostridium botulinum strain for food challenge studies. Appl. Environ. Microbiol. 2010, 76, 387–393. [Google Scholar] [PubMed]
- Dong, H.; Zhang, Y.; Dai, Z.; Li, Y. Engineering clostridium strain to accept unmethylated DNA. PLoS One 2010, 5, e9038. [Google Scholar] [PubMed]
- Frevert, J.; Specht, V. PEGylated mutated BoNT. US Patent 1834962, 15 05 2006. [Google Scholar]
- Donovan, S. Botulinum toxin formulations for oral administration. US Patent 20040086532, 22 11 2007. [Google Scholar]
- Hughes, P.; Orest, O. Stabilzed biodegradeable neurotoxin implants. US Patent 20050232966, 20 10 2005. [Google Scholar]
- Steward, L. Leucine-based motif and Closridia neurotoxins. US Patent 20080177041, 24 07 2008. [Google Scholar]
- Chen, Y.; Korkeala, H.; Aarnikunnas, J.; Lindstrom, M. Sequencing the botulinum neurotoxin gene and related genes in Clostridium botulinum type E strains reveals orfx3 and a novel type E neurotoxin subtype. J. Bacteriol. 2007, 189, 8643–8650. [Google Scholar] [CrossRef] [PubMed]
- Franciosa, G.; Maugliani, A.; Floridi, F.; Aureli, P. A novel type A2 neurotoxin gene cluster in Clostridium botulinum strain Mascarpone. FEMS Microbiol. Lett. 2006, 261, 88–94. [Google Scholar] [CrossRef] [PubMed]
© 2011 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pickett, A.; Perrow, K. Towards New Uses of Botulinum Toxin as a Novel Therapeutic Tool. Toxins 2011, 3, 63-81. https://doi.org/10.3390/toxins3010063
Pickett A, Perrow K. Towards New Uses of Botulinum Toxin as a Novel Therapeutic Tool. Toxins. 2011; 3(1):63-81. https://doi.org/10.3390/toxins3010063
Chicago/Turabian StylePickett, Andy, and Karen Perrow. 2011. "Towards New Uses of Botulinum Toxin as a Novel Therapeutic Tool" Toxins 3, no. 1: 63-81. https://doi.org/10.3390/toxins3010063
APA StylePickett, A., & Perrow, K. (2011). Towards New Uses of Botulinum Toxin as a Novel Therapeutic Tool. Toxins, 3(1), 63-81. https://doi.org/10.3390/toxins3010063