Population Structure and Genetic Diversity of the Fusarium graminearum Species Complex
Abstract
:1. Introduction
2. Population Structure and Geographic Distribution of the Fg Complex
3. Chemotype Distribution of the Fg Complex
4. Molecular Markers for Fg Complex Genetic Analyses
4.1. SCAR (Sequence Characterized Amplified Regions) or SSCP (Single Strand Conformational Polymorphism)
4.2. RAPD (Randomly Amplified Polymorphic DNA)
4.3. AFLP (Amplified Fragment Length Polymorphism)
4.4. SRAP (Sequence Related Amplified Polymorphism)
4.5. SNP (Single Nucleotide Polymorphism)
4.6. VNTR (Variable Number of Tandem Repeat)
4.7. RFLP (Restriction Fragment Length Polymorphism)
4.8. GCPSR (Genealogical Concordance Phylogenetic Species Recognition) and MLGT (Multilocus Genotyping Assay)
5. Conclusions
Acknowledgments
Conflict of Interest
References
- O’Donnell, K.; Kistler, H.C.; Tacke, B.K.; Casper, H.H. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 2000, 97, 7905–7910. [Google Scholar]
- O’Donnell, K.; Ward, T.J.; Geiser, D.M.; Kistler, H.C.; Aoki, T. Genealogical concordance between mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet. Biol. 2004, 41, 600–623. [Google Scholar] [CrossRef] [PubMed]
- Starkey, D.E.; Ward, T.J.; Aoki, T.; Gale, L.R.; Kistler, H.C.; Geiser, D.M.; Suga, H.; Tóth, B.; Varga, J.; O’Donnell, K. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 2007, 44, 1191–1204. [Google Scholar] [CrossRef] [PubMed]
- Clear, R.M.; Patrick, S.K. Fusarium head blight pathogens isolated from Fusarium-damaged kernels of wheat in western Canada, 1993 to 1998. Can. J. Plant Pathol. 2000, 22, 51–60. [Google Scholar] [CrossRef]
- Windels, C.E. Economic and social impacts of Fusarium head blight: Changing farms and rural communities in thenorthern great plains. Phytopathology 2000, 90, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Snijders, C.H.A. Fusarium head blight and mycotoxin contamination of wheat, a review. Eur. J.Plant Pathol. 1990, 96, 187–198. [Google Scholar]
- Tuite, J.; Shaner, G.; Everson, R.J. Wheat scab in soft red winter wheat in Indiana in 1986 and its relation to some quality measurements. Plant Dis. 1990, 74, 959–962. [Google Scholar]
- Giraud, T.; Refregier, G.; Gac, I.L.; De Vienne, D.M.; Hood, M.E. Speciation in fungi. Fungal Genet. Biol. 2008, 45, 791–802. [Google Scholar]
- Yli-Mattila, T.; Gagkaeva, T.; Ward, T.J.; Aoki, T.; Kistler, H.C.; O’Donnell, K. A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia 2009, 101, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Chandler, E.A.; Simpson, D.R.; Thomsett, M.A.; Nicholson, P. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisaton of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol. Mol. Plant Pathol. 2003, 62, 355–367. [Google Scholar] [CrossRef]
- O’Donnell, K.; Ward, T.J.; Aberra, D.; Kistler, H.C.; Aoki, T.; Orwig, N.; Kimura, M.; Bjornstad, A.; Klemsdal, S.S. Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genet. Biol. 2008, 45, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.F.; Bai, G.H.; Desjardins, A.E. Recent Advances in Wheat Head Scab Research in China. Proceedings of the International Symposium on Wheat Improvement for Scab Resistance, Suzhou and Nanjing, Jiangsu, China, 2000; pp. 258–273. Available online: http://www.nal.usda.gov/pgdic/WHS/whsindex.html (accessed on 15 August 2011).
- Qu, B.; Li, H.P.; Zhang, J.B.; Xu, Y.B.; Huang, T.; Wu, A.B.; Zhao, C.S.; Carter, J.; Nicholson, P.; Liao, Y.C. Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathol. 2008, 57, 15–24. [Google Scholar]
- Qu, B.; Li, H.P.; Zhang, J.B.; Huang, T.; Carter, J.; Liao, Y.C.; Nicholson, P. Comparison of genetic diversity and pathogenicity of Fusarium head blight pathogens from China and Europe by SSCP and seedling assays on wheat. Plant Pathol. 2008, 57, 642–651. [Google Scholar]
- Nganje, W.E.; Johnson, D.D.; Wilson, W.W.; Leistritz, F.L.; Bangsund, D.A.; Tiapo, N.M. Economic Impacts of Fusarium Head Blight in Wheat and Barley: 1998–2000. Proceedings of Agribusiness and Applied Economics Report, North Dakota State University, Fargo, ND, USA, 2001; pp. 1–41. Available online: http://ageconsearch.umn.edu/bitstream/23515/1/aer464.pdf (accessed on 15 August 2011).
- Nganje, W.E.; Bangsund, D.A.; Leistritz, F.L.; Wilson, W.W.; Tiapo, N.M. Estimating the Economic Impact of a Crop Disease: The Case of Fusarium Head Blight in U.S. Wheat and Barley. National Fusarium Head Blight Forum Proceedings, Okemos, MI, USA, 2002; pp. 275–281. Available online: http://scab.pw.usda.gov/pdfs/forum_02_proc.pdf#page=288 (accessed on 15 August 2011).
- Lee, Y.W.; Jeon, J.J.; Kim, H.; Jang, I.Y.; Kim, H.S.; Yun, S.H.; Kim, J.G. Lineage Composition and Trichothecene Production of Gibberella Zeae Population in Korea. In New Horizons of Mycotoxicology for Assuring Food Safety; Yoshizawa, T., Ed.; Kagawa, Japan, 2004; pp. 117–122. [Google Scholar]
- Monds, R.D.; Cromey, M.G.; Lauren, D.R.; Marshall, J. Fusarium graminearum, F. cortaderiae and F. pseudograminearum in New Zealand: Molecular phylogenetic analysis, mycotoxin chemotypes and co-existence of species. Mycol. Res. 2005, 109, 410–420. [Google Scholar] [CrossRef]
- Roux, J.; Steenkamp, E.T.; Marasas, W.F.O.; Wingfield, M.J.; Wingfield, B.D. Characterization of Fusarium graminearum from Acacia and Eucalyptus using β-tubulin and histone gene sequences. Mycologia 2001, 93, 704–711. [Google Scholar] [CrossRef]
- Ward, T.J.; Clear, R.M.; Rooney, A.P.; O’Donnell, K.; Gaba, D.; Patrick, S.; Starkey, D.E.; Gilbert, J.; Geiser, D.M.; Nowicki, T.W. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 2008, 45, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.B.; Li, H.P.; Dang, F.J.; Qu, B.; Xu, Y.B.; Zhao, C.S.; Liao, Y.C. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycol.Res. 2007, 111, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; van der Lee, T.; Yang, X.; Yu, D.; Waalwijk, C. Fusarium populations on Chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology 2008, 98, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Z.; Van der Lee, T.; Chen, W.Q.; Xu, J.; Xu, J.S.; Yang, L.; Yu, D.; Waalwijk, C.; Feng, J. Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in southern China. Phytopathology 2010, 100, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, H.; Van der Lee, T.; Chen, W.Q.; Arens, P.; Xu, J.; Xu, J.S.; Yang, L.J.; Yu, D.Z.; Waalwijk, C.; Feng, J. Geographic substructure of Fusarium asiaticum isolates collected from barley in China. Eur. J. Plant Pathol. 2010, 127, 239–248. [Google Scholar] [CrossRef]
- Gale, L.R.; Harrison, S.A.; Ward, T.J.; O’Donnell, K.; Milus, E.A.; Gale, S.W.; Kistler, H.C. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 2011, 101, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Bowden, R.L.; Leslie, J.F. Diversity of Gibberella zeae at small spatial scales. Phytopathology 1994, 84, 1140. [Google Scholar]
- Bowden, R.L.; Leslie, J.F. Sexual recombination in Gibberella zeae. Phytopathology 1999, 89, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.P.; Rezanoor, H.N.; Desjardins, A.E.; Nicholson, P. Variation in Fusarium graminearum isolates from Nepal associated with their host of origin. Plant Pathol. 2000, 49, 1–10. [Google Scholar] [CrossRef]
- Carter, J.P.; Rezanoor, H.N.; Holden, D.; Desjardins, A.E.; Plattner, R.D.; Nicholson, P. Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. Eur. J. Plant Pathol. 2002, 108, 573–583. [Google Scholar] [CrossRef]
- Gale, L.R.; Chen, L.F.; Hernick, C.A.; Takamura, K.; Kistler, H.C. Population analysis of Fusarium graminearum from wheat fields in eastern China. Phytopathology 2002, 92, 1315–1322. [Google Scholar] [PubMed]
- Miedaner, T.; Schilling, A.G.; Geiger, H.H. Molecular genetic diversity and variation for aggressiveness in populations of Fusarium graminearum and Fusarium culmorum sampled from wheat fields in different countries. J. Phytopathol. 2001, 149, 641–648. [Google Scholar] [CrossRef]
- Ward, T.J.; Bielawski, J.P.; Kistler, H.C.; Sullivan, E.; O’Donnell, K. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. Natl. Acad. Sci. USA 2002, 99, 9278–9283. [Google Scholar]
- Zeller, K.A.; Bowden, R.L.; Leslie, J.F. Diversity of epidemic populations of Gibberella zeae from small quadrats in Kansas and North Dakota. Phytopathology 2003, 93, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Onyike, N.B.N.; Nelson, P.E. Fusarium species associated with millet grain from Nigeria, Lesotho, and Zimbabwe. Mycologia 1991, 83, 708–712. [Google Scholar] [CrossRef]
- Muthomi, J.W.; Ndung’u, J.K.; Gathumbi, J.K.; Mutitu, E.W.; Wagacha, J.M. The occurrence of Fusarium species and mycotoxins in Kenyan wheat. Crop Prot. 2008, 27, 1215–1219. [Google Scholar] [CrossRef]
- Wagacha, J.M.; Steiner, U.; Dehne, H.-W.; Zuehlke, S.; Spiteller, M.; Muthomi, J.; Oerke, E.-C. Diversity in mycotoxins and fungal species infecting wheat in Nakuru district, Kenya. J. Phytopathol. 2010, 158, 527–535. [Google Scholar]
- Boutigny, A.-L.; Ward, T.J.; Van Coller, G.J.; Flett, B.; Lamprecht, S.C.; O’Donnell, K.; Viljoen, A. Analysis of the Fusarium graminearum species complex from wheat, barley, and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Genet. Biol. 2011, 48, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Zeller, K.A.; Bowden, R.L.; Leslie, J.F. Population differentiation and recombination in wheat scab populations of Gibberella zeae from the United States. Mol. Ecol. 2004, 13, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Geraldo, M.R.F.; Tessmann, D.J.; Kemmelmeier, C. Production of mycotoxins by Fusarium graminearum isolated from small cereals (wheat, triticale and barley) affected with scab disease in Southern Brazil. Braz. J. Microbiol. 2006, 37, 58–63. [Google Scholar]
- Fernando, W.G.D.; Zhang, J.X.; Dusabenyagasani, M.; Guo, X.W.; Ahmed, H.; McCallum, B. Genetic diversity of Gibberella zeae isolates from Manitoba. Plant Dis. 2006, 90, 1327–1342. [Google Scholar]
- Ramirez, M.L.; Reynoso, M.M.; Farnochi, M.C.; Torres, A.M.; Leslie, J.F.; Chulze, S.N. Population genetic structure of Gibberella zeae isolated from wheat in Argentina. Food Addit. Contam. 2007, 24, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Gale, L.R.; Ward, T.J.; Balmas, V.; Kistler, H.C. Population subdivision of Fusarium graminearum sensu stricto in the Upper Midwestern United States. Phytopathology 2007, 97, 1434–1439. [Google Scholar] [CrossRef] [PubMed]
- Scoz, L.B.; Astolfi, P.; Reartes, D.S.; Schmale, D.G., III; Moraes, M.G.; Del Ponte, E.M. Trichothecene mycotoxin genotypes of Fusarium graminearum sensu stricto and Fusarium meridionale in wheat from Southern Brazil. Plant Pathol. 2009, 58, 344–351. [Google Scholar] [CrossRef]
- Alvarez, C.L.; Azcarate, M.P.; Pinto, V.F. Toxigenic potential of Fusarium graminearum sensu stricto isolates from wheat in Argentina. Int. J. Food Microbiol. 2009, 135, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Sampietro, D.A.; Marín, P.; Iglesias, J.; Presello, D.A.; Vatuone, M.A.; Catalan, C.A.N.; Gonzalez Jaen, M.T. A molecular based strategy for rapid diagnosis of toxigenic Fusarium species associated to cereal grains from Argentina. Fungal Biol. 2010, 114, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Sampietro, D.A.; Díaz, C.G.; Gonzalez, V.; Vattuone, M.A.; Ploper, L.D.; Catalan, C.A.; Ward, T.J. Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina. Int. J. Food Microbiol. 2011, 145, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Reynoso, M.M.; Ramirez, M.L.; Torres, A.M.; Chulze, S.N. Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. Int. J. Food Microbiol. 2011, 145, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, P.; Dos Santos, J.; Schneider, L.; Gomes, L.B.; Silva, C.N.; Tessmann, D.J.; Del Ponte, E.M. Molecular survey of trichothecene genotypes of Fusarium graminearum species complex from barley in southern Brazil. Int. J. Food Microbiol. 2011, 148, 197–201. [Google Scholar] [PubMed]
- Astolfi, P.; Reynoso, M.M.; Ramirez, M.L.; Chulze, S.N.; Alves, T.C.A.; Tessmann, D.J.; Del Ponte, E.M. Genetic population structure and trichothecene genotypes of Fusarium graminearum isolated from wheat in southern Brazil. Plant Pathol. 2011. [Google Scholar] [CrossRef]
- Gagkaeva, T.Y.; Yli-Mattila, T. Genetic diversity of Fusarium graminearum in Europe and Asia. Eur. J. Plant Pathol. 2004, 110, 550–562. [Google Scholar]
- Ji, L.; Cao, K.; Wang, S. Determination of deoxynivalenol and nivalenol chemotypes of Fusarium graminearum from China by PCR assay. J. Phytopathol. 2007, 155, 505–512. [Google Scholar] [CrossRef]
- Suga, H.; Karugia, G.W.; Ward, T.; Gale, L.R.; Tomimura, K.; Nakajima, T.; Miyasaka, A.; Koizumi, S.; Kageyama, K.; Hyakumachi, M. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 2008, 98, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Haratian, M.; Sharifnabi, B.; Alizadeh, A.; Safaie, N. PCR analysis of the Tri13 gene to determine the genetic potential of Fusarium graminearum isolates from Iran to produce nivalenol and deoxynivalenol. Mycopathologia 2008, 166, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Chang, I.Y.; Kim, H.; Yun, S.H.; Leslie, J.; Lee, Y.W. Genetic diversity and fitness of Fusarium graiminearum populations from rice in Korea. Appl. Environ. Microbiol. 2009, 75, 3289–3295. [Google Scholar] [CrossRef] [PubMed]
- Karugia, G.W.; Suga, H.; Gale, L.R.; Nakajima, T.; Ueda, A.; Hyakumachi, M. Population structure of Fusarium asiaticum from two Japanese regions and eastern China. J. Gen. PlantPathol. 2009, 75, 110–118. [Google Scholar]
- Karugia, G.W.; Suga, H.; Gale, L.R.; Nakajima, T.; Tomimura, K.; Hyakumachi, M. Population structure of the Fusarium graminearum species complex from a single Japanese wheat field sampled in two consecutive years. Plant Dis. 2009, 93, 170–174. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lee, J.; Nam, Y.J.; Lee, S.; Ryu, J.-G.; Lee, T. Population Structure of Fusarium graminearum from maize and rice in 2009 in Korea. Plant Pathol. 2010, 26, 321–327. [Google Scholar] [CrossRef]
- Waalwijk, C.; Kastelein, P.; de Vries, I.; Kerenyi, Z.; van der Lee, T.; Hesselink, T.; Köhl, J.; Kema, G. Major changes in Fusarium spp. in wheat in the Netherlands. Eur. J. Plant Pathol. 2003, 109, 743–754. [Google Scholar] [CrossRef]
- Láday, M.; Juhász, Á.; Mulè, G.; Moretti, A.; Szécsi, Á.; Logrieco, A. Mitochondria DNA diversity and lineage determination of European isolates of Fusarium graminearum (Gibberella zeae). Eur. J. Plant Pathol. 2004, 110, 545–550. [Google Scholar] [CrossRef]
- Tóth, B.; Mesterházy, Á.; Horváth, Z.; Bartók, T.; Varga, M.; Varga, J. Genetic variability of central European isolates of the Fusarium graminearum species complex. Eur. J. Plant Pathol. 2005, 113, 35–45. [Google Scholar] [CrossRef]
- Sayer, S.T.; Lauren, D.R. Fusarium infection in New Zealand grain. N. Z. J. Crop Hortic. Sci. 1991, 19, 143–148. [Google Scholar]
- Lauren, D.R.; Sayer, S.T.; Di Menna, M.E. Trichothecene production by Fusarium species isolated from grain and pasture throughout New Zealand. Mycopathologia 1992, 120, 167–176. [Google Scholar] [CrossRef]
- Akinsanmi, O.A.; Backhouse, D.; Simpfendorfer, S.; Chakraborty, S. Genetic diversity of Australian Fusarium graminearum and F. pseudograminearum. Plant Pathol. 2006, 55, 494–504. [Google Scholar] [CrossRef]
- Wright, D.G.; Thomas, G.J.; Loughman, R.; Fuso-Nyarko, J.; Bullock, S. Detection of Fusarium graminearum in wheat grains in Western Australia. Australas. Plant Dis. Notes 2010, 5, 82–84. [Google Scholar] [CrossRef]
- Taylor, J.W.; Jacobson, D.J.; Kroken, S.; Kasuga, T.; Geiser, D.M.; Hibbett, D.S.; Fisher, M.C. Phylogenetic species recognition and species concepts in Fungi. Fungal Genet. Biol. 2000, 31, 21–32. [Google Scholar]
- Desjardins, A.E.; Proctor, R.H. Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biol. 2011, 115, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.J.; Kim, H.; Kim, H.S.; Zeller, K.A.; Lee, T.; Yun, S.H.; Bowden, R.L.; Leslie, J.F.; Lee, Y.W. Genetic diversity of Fusarium graminearum from maize in Korea. Fungal Genet. Newsl. 2003, 50, S142. [Google Scholar]
- Miller, J.D.; Greenhalgh, R.; Wang, Y.Z.; Lu, M. Trichothecene chemotypes of three Fusarium species. Mycologia 1991, 83, 121–130. [Google Scholar] [CrossRef]
- Moss, M.O.; Thrane, U. Fusarium taxonomy with relation to trichothecene formation. Toxicol. Lett. 2004, 153, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.S.; Kistler, H.C. Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology 2005, 95, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, A.E.; Busman, M.; Manandhar, G.; Jarosz, A.M.; Manandhar, H.K.; Proctor, R.H. Distribution of the mycotoxins nivalenol and deoxynivalenol in naturally and experimentally infected maize. J. Agric. Food Chem. 2008, 56, 5428–5436. [Google Scholar]
- Jennings, P.; Coates, M.E.; Walsh, K.; Turner, J.A.; Nicholson, P. Determination of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathol. 2004, 53, 643–652. [Google Scholar] [CrossRef]
- Talas, F.; Parzies, H.K.; Miedaner, T. Diversity in genetic structure and chemotype composition of Fusarium graminearum sensu stricto populations causing wheat head blight in individual fields in Germany. Eur. J. Plant Pathol. 2011, 1, 39–48. [Google Scholar]
- Pasquali, M.; Giraud, F.; Brochot, C.; Cocco, E.; Hoffmann, L.; Bohn, T. Genetic Fusarium chemotyping as a useful tool for predicting nivalenol contamination in winter wheat. Int. J. Food Microbiol. 2010, 137, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Abramson, D.; Clear, R.M.; Smith, D.M. Trichothecene production by Fusarium spp. isolated from Manitoba grain. Can. J. Plant Pathol. 1993, 15, 147–152. [Google Scholar] [CrossRef]
- Abramson, D.; Clear, R.M.; Gaba, D.; Smith, D.M.; Patrick, S.K.; Saydak, D. Trichothecene and moniliformin production by Fusarium species from western Canadian wheat. J. Food Prot. 2001, 64, 1220–1225. [Google Scholar] [PubMed]
- Guo, X.W.; Fernando, W.G.D.; Seow-Brock, H.Y. Population structure, chemotype diversity, and potential chemotype shifting of Fusarium graminearum in wheat fields of Manitoba. Plant Dis. 2008, 92, 756–762. [Google Scholar] [CrossRef]
- Schmale, D.G., III; Wood-Jones, A.K.; Cowger, C.; Bergstrom, G.C.; Arellano, C. Trichothecene genotypes of Gibberella zeae from winter wheat fields in the eastern USA. Plant Pathol. 2011. [Google Scholar] [CrossRef]
- Burlakoti, R.R.; Ali, S.; Secor, G.A.; Neate, S.M.; McMullen, M.P.; Adhikari, T.B. Genetic relationships among populations of Gibberella zeae from barley, wheat, potato, and sugar beet in the Upper Midwest of the United States. Phytopathology 2008, 98, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Schmale, D.G., III; Leslie, J.F.; Zeller, K.A.; Saleh, A.A.; Shields, E.J.; Bergstrom, G.C. Genetic structure of atmospheric populations of Gibberella zeae. Phytopathology 2006, 96, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Qu, B. Genetic Diversity of Fusarium Graminearum in China and its Comparison with the Isolates from of Nepal, Europe, and USA.
- Narayanasamy, P. Molecular Biology in Plant Pathogenesis and Disease Management: Microbial Plant Pathogens, 1st ed; Springer: New York, NY, USA, 2008; Volume 1, pp. 175–178. [Google Scholar]
- Dusabenyagasani, M.; Dostaler, D.; Hamelin, R.C. Genetic diversity among Fusarium graminearum strains from Ontario and Quebec. Can. J. Plant Pathol. 1999, 21, 308–314. [Google Scholar]
- Liu, W.-C.; Xi, J.-H.; Li, H.-Y.; Pan, H.-Y.; Hu, H.-Q.; Guo, Y.-L.; Bai, R.-L. RAPD analysis of isolates from Fusarium spp. causing wheat head blight in northeast China. Mycosystema 2002, 21, 63–70. [Google Scholar]
- Quellet, T.; Seifert, K.A. Genetic characterization of Fusarium graminearum strains using RAPD and PCR amplification. Phytopathology 1993, 83, 1003–1007. [Google Scholar] [CrossRef]
- Busso, C.; Kaneshima, E.N.; De Assis Franco, F.; Querol, C.B.; De Castro-Prado, M.A. Vegetative compatibility and molecular characterization of Fusarium graminearum isolates from the State of Paraná, Brazil. Cienc. Rural. 2007, 37, 1813–1816. [Google Scholar] [CrossRef]
- Riedy, M.F.; Hamilton, W.J.; Aquadro, C.F. Excess non-parental bands in offspring from known pedigrees assayed using RAPD PCR. Nucleic Acid Res. 1992, 20, 918. [Google Scholar]
- Williams, J.G.; Kubelik, A.R.; Livak, K.J.; Rafalski, J.A.; Tingey, S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18, 6531–6535. [Google Scholar]
- Blears, M.J.; de Grandis, S.A.; Lee, H.; Trevors, J.T. Amplified fragment length polymorphism (AFLP): A review of the procedure and its applications. J. Ind. Microbiol. Biotechnol. 1998, 21, 99–114. [Google Scholar]
- Leissner, C.E.W.; Niessen, M.L.; Vogel, R.F. Use of the AFLP technique for the identification and discrimination of Fusarium graminearum. Cer. Res. Com. 1997, 25, 555–556. [Google Scholar]
- Abd-Elsalam, K.A.; Schnieder, F.; Verreet, J.A. Population analysis of Fusarium species. Phytomedizin 2002, 3, 18–19. [Google Scholar]
- Kiprop, E.K.; Baudoin, J.P.; Mwangombe, A.W.; Kimani, P.M.; Mergeai, G.; Maquet, A. Characterization of Kenyan isolates of Fusarium udum from Pigeonpea [Cajanus cajan (L.) Millsp.] by cultural characteristics, aggressiveness and AFLP analysis. J. Phytopathol. 2002, 150, 517–527. [Google Scholar] [CrossRef]
- Sivaramakrishnan, S.; Kannan, S.; Singh, S.D. Genetic variability of Fusarium wilt pathogen isolates of chickpea (Cicer arietinum L.) assessed by molecular markers. Mycopathologia 2002, 155, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Bowden, R.L.; Zeller, K.A.; Leslie, J.F. Population structure of Gibberella zeae in the Great Plains of North America. In Proceedings of the International Symposium on Wheat Improvement for Scab Resistance, Suzhou and Nanjing, Jiangsu, China, 2000; pp. 211–213.
- Majer, D.; Lewis, B.G.; Mithen, R. Genetic variation among field isolates of Pyrenopeziza brassicae. Plant Pathol. 1998, 47, 22–28. [Google Scholar] [CrossRef]
- O’Donnell, K.; Sutton, D.A.; Rinaldi, M.G.; Magnon, K.C.; Cox, P.A.; Revankar, S.G.; Sanche, S.; Geiser, D.M.; Juba, J.H.; van Burik, J.-A.H.; Padhye, A.; Anaissie, E.J.; Francesconi, A.; Walsh, T.J.; Robinson, J.S. Genetic diversity of human pathogenic members of the Fusarium oxysporum complex inferred from multilocus DNA sequence data and amplified fragment length polymorphism analyses: Evidence forthe recent dispersion of a geographically widespread clonal lineage and nosocomial origin. J. Clin. Microbiol. 2004, 42, 5109–5120. [Google Scholar] [PubMed]
- Li, G.; Quiros, C.F. Sequence related amplified polymorphism (SRAP), a new system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 2001, 103, 455–461. [Google Scholar] [CrossRef]
- Mishra, P.K.; Tewari, J.P.; Clear, R.M.; Turkington, T.K. Molecular genetic variation and geographical structuring in Fusarium graminearum. Ann. Appl. Biol. 2004, 145, 299–307. [Google Scholar] [CrossRef]
- Cuomo, C.A.; Güldener, U.; Xu, J.R.; Trail, F.; Turgeon, B.G.; Pietro, A.D.; Walton, J.D.; Ma, L.J.; Baker, S.E.; Rep, M.; et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 2007, 317, 1400–1402. [Google Scholar] [PubMed]
- Burlakoti, R.R.; Neate, S.M.; Adhikari, T.B.; Gyawali, S.; Salas, B.; Steffenson, B.J.; Schwarz, P.B. Trichothecene profiling and population genetic analysis of Gibberella zeae from barley in North Dakota and Minnesota. Phytopathology 2011, 101, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Tokai, T.; Takahashi-Ando, N.; Ohsato, S.; Fujimura, M. Molecular and genetic studies of Fusarium trichothechne biosynthesie: Pathways, genes, and evolution. Biosci. Biotechnol. Biochem. 2007, 71, 2105–2123. [Google Scholar] [CrossRef] [PubMed]
- Suga, H.; Gale, L.R.; Kistler, H.C. Development of VNTR markers for two Fusarium graminearum clade species. Mol. Ecol. Notes 2004, 4, 468–470. [Google Scholar] [CrossRef]
- Giraud, T.; Fournier, E.; Vautrin, D.; Solignac, M.; Vercken, E.; Bakan, B.; Brygoo, Y. Isolation of eight polymorphic microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Fusarium culmorum. Mol. Ecol. Notes 2002, 2, 121–123. [Google Scholar] [CrossRef]
- Francis, R.G.; Burgess, L.W. Characteristics of two populations of Fusarium roseum “ Graminearum” in eastern Australia. Trans. Br. Mycol. Soc. 1977, 68, 421–427. [Google Scholar] [CrossRef]
- Benyon, F.H.L.; Burgess, L.W.; Sharp, P.J. Molecular genetic investigations and reclassification of Fusarium species in sections Fusarium and Roseum. Mycol. Res. 2000, 104, 1164–1174. [Google Scholar] [CrossRef]
- Aoki, T.; O’Donnell, K. Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognised as the group 1 population of F. graminearum. Mycologia 1999, 91, 597–609. [Google Scholar] [CrossRef]
- Láday, M.; Bagi, F.; Mesterházy, A.; Szécsi, Á. Isozyme evidence for two groups of Fusarium graminearum. Mycol. Res. 2000, 104, 788–793. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, J.-H.; Ndoye, M.; Zhang, J.-B.; Li, H.-P.; Liao, Y.-C. Population Structure and Genetic Diversity of the Fusarium graminearum Species Complex. Toxins 2011, 3, 1020-1037. https://doi.org/10.3390/toxins3081020
Wang J-H, Ndoye M, Zhang J-B, Li H-P, Liao Y-C. Population Structure and Genetic Diversity of the Fusarium graminearum Species Complex. Toxins. 2011; 3(8):1020-1037. https://doi.org/10.3390/toxins3081020
Chicago/Turabian StyleWang, Jian-Hua, Mbacke Ndoye, Jing-Bo Zhang, He-Ping Li, and Yu-Cai Liao. 2011. "Population Structure and Genetic Diversity of the Fusarium graminearum Species Complex" Toxins 3, no. 8: 1020-1037. https://doi.org/10.3390/toxins3081020
APA StyleWang, J. -H., Ndoye, M., Zhang, J. -B., Li, H. -P., & Liao, Y. -C. (2011). Population Structure and Genetic Diversity of the Fusarium graminearum Species Complex. Toxins, 3(8), 1020-1037. https://doi.org/10.3390/toxins3081020