Modified Heat-Stable Toxins (hSTa) of Enterotoxigenic Escherichia coli Lose Toxicity but Display Antigenicity after Being Genetically Fused to Heat-Labile Toxoid LT(R192G)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Plasmids
Strains | Relevant properties | Plasmid | Reference |
---|---|---|---|
H10407 | ETEC prototype strain | LT+STa+ | ATCC #35401 |
BL21 | E. coli B F−, ompT, hsdS (rB−, mB−), gal, dcm. | GE Healthcare | |
8964 | LTR192G-STaE8A construct, BL21/pLTR192G-STaE8A | pLTR192G-STaE8A/pET28α | this study |
8968 | LTR192G-STaT16Q construct, BL21/pLTR192G-STaT16Q | pLTR192G-STaT16Q/pET28α | this study |
8971 | LTR192G-STa construct, BL21/pLTR192G-STa | pLTR192G-STa/pET28α | this study |
8975 | LTR192G-STaG17S construct, BL21/pLTR192G-STaG17S | pLTR192G-STaG17S/pET28α | this study |
8836 | STa recombinant, BL21/pSTa | pSTa/pUC19 | this study |
8930 | negative control, BL21 | pUC19 | this study |
2.2. Cloning and Mutation of estA Gene
2.3. STa Competitive ELISA to Detect STa Proteins Expressed by the Recombinant and Mutant Strains
2.4. Intracellular Cyclic GMP ELISA to Detect Toxicity of STa Peptides
2.5. Porcine Ligated Gut Loop Assays to Detect Biological Activity of Expressed STa Proteins
2.6. Construction and Expression of LTR192G-STaE8A, LTR192G-STaT16Q, LTR192G-STaG17S, and LTR192G-STa Fusions
2.7. Extraction and Refolding of Fusion Proteins, and Mouse Immunization
2.8. Statistical Analysis
3. Results
3.1. STa Proteins Expressed from Mutant Strains Showed Structure Alteration
3.2. STa Proteins Expressed from Mutant Strains Showed Toxicity Reduction
3.3. STa(E8A), STa(T16Q) and STa(G17S) Exhibited Differences in Anti-STa Antigenicity When Were Fused to LT(R192G)
4. Discussion
Acknowledgments
Conflict of Interest
Supplementary Files
References
- Black, R.E.; Cousens, S.; Johnson, H.L.; Lawn, J.E.; Rudan, I.; Bassani, D.G.; Jha, P.; Campbell, H.; Walker, C.F.; Cibulskis, R.; et al. Global, regional, and national causes of child mortality in 2008: A systematic analysis. Lancet 2010, 375, 1969–1987. [Google Scholar] [PubMed]
- Wardlaw, T.; Salama, P.; Brocklehurst, C.; Chopra, M.; Mason, E. Diarrhoea: Why children are still dying and what can be done. Lancet 2010, 376, 63–67. [Google Scholar]
- World Health Organization (WHO), Diarrhoeal Diseases; WHO: Geneva, Switzerland, Updated February 2009.
- Black, E. Epidemiology of travelers, diarrhea and relative importance of various pathogens. Rev. Infect. Dis. 1990, 1, S73–S79. [Google Scholar]
- Northey, G.; Evans, M.R.; Sarvotham, T.S.; Thomas, D.R.; Howard, T.J. Sentinel surveillance for travellers’ diarrhoea in primary care. BMC Infect. Dis. 2007, 7, 126. [Google Scholar]
- Alexander, T.J.L. Neonatal Diarrhoea in Pigs. In Escherichia coli in Domestic Animals and Humans; Gyles, C.L., Ed.; CAB International: Oxon, UK, 1994; pp. 151–170. [Google Scholar]
- Moon, H.W. Colonization factor antigens of enterotoxigenic Escherichia coli in animals. Curr. Topics Microbiol. Immunol. 1990, 151, 147–165. [Google Scholar]
- Moon, H.W.; Bunn, T.O. Vaccines for preventing enterotoxigenic Escherichia coli infections in farm animals. Vaccine 1993, 11, 213–220. [Google Scholar]
- Smith, H.W.; Linggood, M.A. Observation on the pathogenic properties of the K88, HIY and ENT plasmids of Escherichia coli with particular reference to porcine diarrhea. J. Med. Microbiol. 1971, 4, 467–485. [Google Scholar]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar]
- Berberov, E.M.; Zhou, Y.; Francis, D.H.; Scott, M.A.; Kachman, S.D.; Moxley, R.A. Relative importance of heat labile enterotoxin in the causation of severe diarrheal disease in the gnotobiotic piglet model by a strain of enterotoxigenic Escherichia coli that produces multiple enterotoxins. Infect. Immun. 2004, 72, 3914–3924. [Google Scholar]
- Zhang, W.; Berberov, E.M.; Freeling, J.; He, D.; Moxley, R.A.; Francis, D.H. Significance of heat-stable and heat-labile enterotoxins in porcine colibacillosis, in an additive model for pathogenicity studies. Infect. Immun. 2006, 76, 3107–3114. [Google Scholar]
- Hughs, J.M.; Murad, F.; Chang, B.; Guerrant, R.L. Role of cyclic GMP in the action of heat- stable enterotoxin of Escherichia coli. Nature 1978, 271, 755–756. [Google Scholar]
- Moon, H.W. Mechanisms in the pathogenesis of diarrhea: A review. J. Am. Vet. Med. Assoc. 1978, 172, 443–448. [Google Scholar]
- Wolf, M.K. Occurrence, distribution, and associations of O and H serogroups, colonization factor antigens, and toxin of enterotoxigenic Escherichia coli. Clin. Microbiol. Rev. 1997, 10, 569–584. [Google Scholar]
- Girard, M.P.; Steele, D.; Chaignat, C.L.; Kieny, M.P. A review of vaccine research and development: Human enteric infections. Vaccine 2006, 24, 2732–2750. [Google Scholar]
- Zhang, W.; Robertson, D.C.; Zhang, C.; Bai, W.; Zhao, M.; Francis, D.H. Escherichia coli constructs expressing human or porcine enterotoxins induce identical diarrheal diseases in a piglet infection model. Appl. Environ. Microbiol. 2008, 74, 5832–5837. [Google Scholar]
- Boedeker, E.C. Vaccines for enterotoxigenic Escherichia coli: Current status. Curr. Opin. Gastroenterol. 2005, 21, 15–19. [Google Scholar]
- Walker, R.I. Considerations for development of whole cell bacterial vaccines to prevent diarrheal diseases in children in developing countries. Vaccine 2005, 23, 3369–3385. [Google Scholar]
- Walker, R.I.; Steele, D.; Aguado, T. The Ad Hoc ETEC Technical Expert Committee. Analysis of strategies to successfully vaccinate infants in developing countries against enterotoxigenic E. coli (ETEC) disease. Vaccine 2007, 25, 2545–2566. [Google Scholar]
- Taxt, A.; Aasland, R.; Sommerfelt, H.; Nataro, J.; Puntervoll, P. Heat-stable enterotoxin of enterotoxigenic Escherichia coli as a vaccine target. Infect. Immun. 2010, 78, 1824–1831. [Google Scholar]
- Franz, J.C.; Mellencamp, M.W. Production and Testing of Escherichia coli (LTb) Toxoid. In Proceedings of Fourth International Symposium on Neonatal Diarrhea, Saskatchewan, S.K., Canada, 3–5 October 1983; Acres, S., Ed.; pp. 500–517.
- Frantz, J.C.; Robertson, D.C. Immunological properties of Escherichia coli heat-stable enterotoxins: development of a radioimmunoassay specific for heat-stable enterotoxins with suckling mouse activity. Infect. Immun. 1981, 33, 193–198. [Google Scholar]
- Clements, J.D. Construction of a nontoxic fusion peptide for immunization against Escherichia coli strains that produce heat-labile and heat-stable enterotoxins. Infect. Immun. 1990, 58, 1159–1166. [Google Scholar]
- Chong, C.; Frigerg, M.; Clements, J.D. LT(R192G), a non-toxic mutant of the heat-labile enterotoxin of Escherichia coli, elicits enhanced humeral and cellular immune responses associated with protection against lethal oral challenge with Salmonella spp. Vaccine 1998, 16, 732–740. [Google Scholar]
- Zhang, W.; Francis, D.H. Genetic fusions of heat-labile toxoid (LT192) and heat-stable toxin b (STb) of porcine enterotoxigenic Escherichia coli elicit protective anti-LT and anti-STb antibodies. Clin. Vaccine Immun. 2010, 17, 1223–1231. [Google Scholar]
- Cardenase-Freytag, L.; Cheng, E.; Mayeux, P.; Domer, J.E.; Clements, J.D. Effectiveness of a vaccine composed of heat-killed Candida albicans and a novel mucosal adjuvant, LT(R192G), against systemic candidiasis. Infect. Immun. 1999, 67, 826–833. [Google Scholar]
- Lemere, C.A.; Spooner, E.T.; Leverone, J.F.; Mori, C.; Clements, J.D. Intranasal immunotherapy for the treatment of Alzheimer’s disease: Escherichia coli LT and LT(R192G) as mucosal adjuvants. Neurobiol. Ageing 2002, 23, 991–1000. [Google Scholar]
- Van Cott, J.L.; Prada, A.E.; McNeal, M.M.; Stone, S.C.; Basu, M.; Huffer, B., Jr.; Smiley, K.L.; Shao, M.; Bean, J.A.; Clements, J.D.; et al. Mice develop effective but delayed protective immune responses when immunized as neonates either intranasally with nonliving VP6/LT(R192G) or orally with live Rhesus rotavirus vaccine candidates. J. Virol. 2006, 80, 4949–4961. [Google Scholar]
- Choi, A.H.; Smiley, C.K.; Basu, M.; McNeal, M.M.; Shao, M.; Bean, J.A.; Clements, J.D.; Stout, R.R.; Ward, R.L. Protection of mice against rotavirus challenge following intradermal DNA immunization by biojector needle-free injection. Vaccine 2007, 25, 3215–3218. [Google Scholar]
- Smiley, K.L.; McNeal, M.M.; Basu, M.; Choi, A.H.; Clements, J.D.; Ward, R.L. Association of Gamma interferon and interleukin-17 production in intestinal CD4 T cells with protection against rotavirus shedding in mice intranasally immunized with VP6 and the adjuvant LT(R192G). J. Virol. 2007, 81, 3740–3748. [Google Scholar]
- McNeal, M.M.; Basu, M.; Bean, J.A.; Clements, J.D.; Lycke, N.Y.; Ramme, A.; Lowenadler, B.; Choi, A.H.; Ward, R.L. Intrarectal immunization of mice with VP6 and either LT(R192G) or CTA1-DD as adjuvant protects against fecal rotavirus shedding after EDIM challenge. Vaccine 2007, 25, 6224–6231. [Google Scholar]
- Yamasaki, S.; Ito, H.; Hirayama, T.; Takeda, Y.; Shimonishi, Y. Effects on the Activity of Amino Acids Replacement at Positions 12, 13, and 14 Heat-Stable Enterotoxin (STh) by Chemical Synthesis. In Proceedings of 24th Joint Conference U.S.-Japan Cooperative Medical Science Program on Cholera and Related Diarrheal Disease Panel, Tokyo, Japan, 1988; p. 42.
- Hirayama, T. Heat-Stable Enterotoxin of Escherichia coli. In Bacterial Toxins and Virulence Factors in Disease; Moss, J., Iglewski, B., Vaughan, M., Tu, A.T., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1995; pp. 281–296. [Google Scholar]
- Zhang, W.; Zhang, C.; Francis, D.H.; Fang, Y.; Knudsen, D.; Nataro, J.P.; Robertson, D.C. Genetic fusions of heat-labile (LT) and heat-stable (ST) toxoids of porcine enterotoxigenic Escherichia coli elicit neutralizing anti-LT and anti-STa antibodies. Infect. Immun. 2010, 78, 316–325. [Google Scholar]
- Zhang, C.; Zhang, W. Escherichia coli K88ac fimbriae expressing heat-labile and heat-stable toxin epitopes elicit antibodies that neutralize cholera toxin and STa toxin and inhibit adherence of K88ac fimbrial E. coli. Clin. Vaccine Immunol. 2010, 17, 1859–1867. [Google Scholar]
- Osaki, H.; Sato, T.; Kubata, H.; Hata, Y.; Katsube, Y.; Shimonishi, Y. Moleuclar structure of the toxin domain of heat-stable enterotoxin produced by a pathogenic strain of Escherichia coli. A putative binding site for a binding protein on rat intestinal epithelial cell membranes. J. Biol. Chem. 1991, 266, 5934–5941. [Google Scholar] [PubMed]
- Ausubel, F.M.; Brent, R.; Kingston, R.K.; Moore, D.D.; Seidman, J.G.; Smith, J.A.; Struhl, K. Short Protocols in Molecular Biology, 4th ed; John Wiley & Sons, Inc.: New York, NY, USA, 1999; pp. 1–29. [Google Scholar]
- Lockwood, D.E.; Robertson, D.C. Development of a competitive enzyme-linked immunosorbent assay (ELISA) for Escherichia coli heat-stable enterotoxin (STa). J. Immunol. Meth. 1984, 75, 293–307. [Google Scholar]
- National Research Council, Guide for the Care and Use of Laboratory Animals; National Academy Press: Washington, DC, USA, 1996.
- Sanchez, J.; Uhlin, B.E.; Grundstrom, T.; Holmgren, J.; Hirst, T.R. Immunoactive chimeric ST-LT enterotoxins of Escherichia coli generated by in vitro gene fusion. FEBS Lett. 1986, 8, 194–198. [Google Scholar]
- Stevens, L.A.; Moss, J.; Vaughan, M.; Pizza, M.; Rappuoli, R. Effects of site-directed mutagenesis of Escherichia coli heat-labile enterotoxin on ADP-ribosyltranferase activity and interaction with ADP-ribosylation factors. Infect. Immun. 1999, 67, 259–265. [Google Scholar]
- Svennerholm, A.M.; Holmgren, J. Immunity to Enterotoxin-Producing Bacteria. In Immunology of Gastrointestinal Disease; MacDonald, T.T., Ed.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 1992; pp. 227–246. [Google Scholar]
- Guidry, J.J.; Cardenas, L.; Cheng, E.; Clements, J.D. Role of receptor binding in toxicity, immunogenicity, and adjuvanticity of Escherichia coli heat-labile enterotoxin. Infect. Immun. 1997, 65, 4943–4950. [Google Scholar]
- Stevens, L.A.; Moss, J.; Vaughan, M.; Pizza, M.; Rappuoli, R. Effects of site-directed mutagenesis of Escherichia coli heat-labile enterotoxin on ADP-ribosyltranferase activity and interaction with ADP-ribosylation factors. Infect. Immun. 1999, 67, 259–265. [Google Scholar]
- Ryan, E.J.; McNeela, E.; Murphy, G.A.; Stewart, H.; O’Hagan, D.; Pizza, M.; Rappuoli, R.; Mills, K.H. Mutants of Escherichia coli heat-labile toxin act as effective mucosal adjuvants for nasal delivery of an cellular pertussis vaccine: Differential effects of the nontoxic AB complex and enzyme activity on Th1 and Th2 cells. Infect. Immun. 1999, 67, 6270–6280. [Google Scholar]
- Sato, T.; Shimonishi, Y. Structural features of Escherichia coli heat-stable enterotoxin that activates membrane-associated guanylyl cyclase. J. Peptide Res. 2004, 63, 200–206. [Google Scholar]
- Okamoto, K.; Okamoto, K.; Yukitake, J.; Kawamoto, Y.; Miyama, A. Substitutions of cycteine residues of Escherichia coli heat-stable enterotoxin by oligonucleotide-directed mutagenesis. Infect. Immun. 1987, 55, 2121–2125. [Google Scholar]
- Svennerholm, A.M.; Lindblad, M.; Svennerholm, B.; Holmgren, J. Synthesis of nontoxic, antibody binding Escherichia coli heat-stable enterotoxin (STa) peptide. FEMS Microbiol. Lett. 1988, 55, 23–28. [Google Scholar]
- Kubota, H.; Hidaka, Y.; Ozaki, H.; Ito, H.; Hirayama, T.; Takeda, Y.L.; Shimonishi, Y. A long acting heat-stable enterotoxin of ETEC with a single D-amino acid. Biochem. Biophys. Res. Commun. 1989, 161, 229–235. [Google Scholar]
- Wolf, H.R.; Waldman, S.A. A comparative molecular field analysis (COMFA) of the structural of heat-stable enterotoxins mediating activation of guanylye cyclase C. J. Med. Chem. 2002, 45, 1731–1734. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, M.; Zhang, C.; Mateo, K.; Nataro, J.P.; Robertson, D.C.; Zhang, W. Modified Heat-Stable Toxins (hSTa) of Enterotoxigenic Escherichia coli Lose Toxicity but Display Antigenicity after Being Genetically Fused to Heat-Labile Toxoid LT(R192G). Toxins 2011, 3, 1146-1162. https://doi.org/10.3390/toxins3091146
Liu M, Zhang C, Mateo K, Nataro JP, Robertson DC, Zhang W. Modified Heat-Stable Toxins (hSTa) of Enterotoxigenic Escherichia coli Lose Toxicity but Display Antigenicity after Being Genetically Fused to Heat-Labile Toxoid LT(R192G). Toxins. 2011; 3(9):1146-1162. https://doi.org/10.3390/toxins3091146
Chicago/Turabian StyleLiu, Mei, Chengxian Zhang, Kristy Mateo, James P. Nataro, Donald C. Robertson, and Weiping Zhang. 2011. "Modified Heat-Stable Toxins (hSTa) of Enterotoxigenic Escherichia coli Lose Toxicity but Display Antigenicity after Being Genetically Fused to Heat-Labile Toxoid LT(R192G)" Toxins 3, no. 9: 1146-1162. https://doi.org/10.3390/toxins3091146
APA StyleLiu, M., Zhang, C., Mateo, K., Nataro, J. P., Robertson, D. C., & Zhang, W. (2011). Modified Heat-Stable Toxins (hSTa) of Enterotoxigenic Escherichia coli Lose Toxicity but Display Antigenicity after Being Genetically Fused to Heat-Labile Toxoid LT(R192G). Toxins, 3(9), 1146-1162. https://doi.org/10.3390/toxins3091146