Occurrence of Deoxynivalenol and Zearalenone in Commercial Fish Feed: An Initial Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Occurrence of DON
2.2. Occurrence of ZEN
Feed | Pellet size (mm) | Dry matter (%) | Crude protein 1 (%) | Crude fat 1 (%) | DON (μg kg−1) | ZEN (μg kg−1) |
---|---|---|---|---|---|---|
#1 | 2.0 | 90.9 | 20.0 | 4.8 | 768 | 80 |
#2 | 4.5 | 86.9 | 42.2 | 23.8 | 81 | 10 |
#3 | 1.6 | 90.7 | 48.6 | 13.1 | 284 | 15 |
#4 | 4.5 | 92.0 | 48.6 | 13.1 | 117 | 27 |
#5 | 2.8 | 91.0 | 48.6 | 13.1 | 66 | 9 |
#6 | 3.0 | 92.2 | 33.0 | 6.0 | 825 | 511 |
#7 | 3.0 | 94.5 | 30.0 | 5.0 | 150 | 8 |
#8 | 3.0 | 92.3 | 34.0 | 15.0 | 0 | 6 |
#9 | 3.0 | 92.5 | 45.0 | 12.0 | 0 | 3 |
#10 | 2.5 | 91.9 | 41.0 | 12.0 | 176 | 12 |
#11 | 3.0 | 91.6 | 35.0 | 6.0 | 131 | 21 |
2.3. Possible Consequences of DON and ZEN Contamination in Fish Feed
2.4. Possible Strategies to Prevent DON and ZEN Contamination in Fish Feed
Feed | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 |
---|---|---|---|---|---|---|---|---|---|---|
#1 | W | WB | MS | CGF | SFEM | SEM | B | SBM | VO | M |
#2 | FM | FO | BM | SEM | WDB | W | M | Y | WB | VO |
#3 | FM | BM | W | SM | FO | M | - | - | - | - |
#4 | FM | BM | W | SM | FO | M | - | - | - | - |
#5 | FM | BM | W | SM | FO | M | - | - | - | - |
#6 | SEM | W | FM | WB | C | CGF | SFEM | FO | WGF | - |
#7 | SEM | WB | W | SFEM | FO | FM | - | - | - | - |
#8 | FM | W | SEM | FO | BM | VO | - | - | - | - |
#9 | FM | W | SEM | WGF | FO | VO | - | - | - | - |
#10 | W (31%) | SEM (27%) | FM (19%) | BM (6%) | FO (3%) | VO (3%) | - | - | - | - |
#11 | SEM | W | SM | FM | FO | M | - | - | - | - |
3. Experimental Section
3.1. Fish Feed Samples
3.2. Mycotoxin Analyses
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Yazar, S.; Omurtag, G.Z. Fumonisins, trichothecenes and zearalenone in cereals. Int. J. Mol. Sci. 2008, 9, 2062–2090. [Google Scholar] [CrossRef]
- Bucheli, T.D.; Wettstein, F.E.; Hartmann, N.; Erbs, M.; Vogelsang, S.; Forrer, H.-R.; Schwarzenbach, R.P. Fusarium mycotoxins: Overlooked aquatic micropollutants. J. Agric. Food Chem. 2008, 56, 1029–1034. [Google Scholar]
- Kolpin, D.W.; Hoerger, C.C.; Meyer, M.T.; Wettstein, F.E.; Hubbard, L.E.; Bucheli, T.D. Phytoestrogens and mycotoxins in Iowa streams: An examination of underinvestigated compounds in agricultural basins. J. Environ. Qual. 2010, 39, 2089–2099. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- FAO, The State of World Fisheries and Aquaculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012.
- Rodrigues, I.; Naehrer, K. Prevalence of mycotoxins in feedstuffs and feed surveyed worldwide in 2009 and 2010. Phytopathol. Mediterr. 2012, 51, 175–192. [Google Scholar]
- Måge, A.; Julshamn, K.; Lunestad, B.T. Overvåkningsprogram for Fôrvarer til Fisk og Andre Akvatiske dyr—Årsrapport 2008 og 2009; NIFES: Bergen, Norway, 2009. [Google Scholar]
- Fegan, D.F.; Spring, P. Recognizing the Reality of the Aquaculture Mycotoxin Problem: Searching for a Common and Effective Solution. In Nutritional Biotechnology in the Feed and Food Industries, Proceedings of Alltech’s 23rd Annual Symposium. The New Energy Crisis: Food, Feed or Fuel? Lexington, KY, USA, 20–23 May 2007; pp. 343–354.
- Placinta, C.M.; D’Mello, J.P.F.; Macdonald, A.M.C. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 1999, 78, 21–37. [Google Scholar] [CrossRef]
- Schollenberger, M.; Müller, H.M.; Drochner, W. Fusarium toxins in different food samples. Mycotox. Res. 2002, 18, 39–42. [Google Scholar] [CrossRef]
- Matz, S.A. The Chemistry and Technology of Cereals as Food and Feed; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1991; p. 319. [Google Scholar]
- Berntssen, M.H.G.; Julshamn, K.; Lundebye, A.K. Chemical contaminants in aquafeeds and Atlantic salmon (Salmo salar) following the use of traditional versus alternative feed ingredients. Chemosphere 2010, 78, 637–646. [Google Scholar] [CrossRef]
- Urbanek, M.; Hartvich, P.; Vacha, F.; Rost, M. Investigation of fat content in market common carp (Cyprinus carpio) flesh during the growing season. Aquac. Nutr. 2010, 16, 511–519. [Google Scholar] [CrossRef]
- Maaroufi, K.; Chekir, L.; Creppy, E.E.; Ellouz, F.; Bacha, H. Zearalenone induces modifications of haematological and biochemical parameters in rats. Toxicon 1996, 34, 535–540. [Google Scholar] [CrossRef]
- Conková, E.; Laciaková, A.; Pástorová, B.; Seidel, H.; Kovác, G. The effect of zearalenone on some enzymatic parameters in rabbits. Toxicol. Lett. 2001, 121, 145–149. [Google Scholar] [CrossRef]
- Marin, L.; Murtha, J.; Dong, W.; Pestka, J.J. Effects of mycotoxins on cytokine production and proliferation in EL-4 thymoma cells. J. Toxicol. Environ. Health 1996, 48, 379–396. [Google Scholar] [CrossRef]
- Berek, L.; Petri, I.B.; Mesterhazy, A.; Teren, J.; Molnar, J. Effects of mycotoxins on human immune functions in vitro. Toxicol. in Vitro 2001, 15, 25–30. [Google Scholar] [CrossRef]
- Abid-Essefi, S.; Ouanes, Z.; Hassen, W.; Baudrimont, I.; Creppy, E.E.; Bacha, H. Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicol. in Vitro 2004, 18, 467–474. [Google Scholar] [CrossRef]
- Gutleb, A.C.; Morrison, E.; Murk, A.J. Cytotoxicity assays for mycotoxins produced by Fusarium strains: A review. Environ. Toxicol. Pharmacol. 2002, 11, 309–320. [Google Scholar] [CrossRef]
- Bensassi, F.; el Golli-Bennour, E.; Abid-Essefi, S.; Bouaziz, C.; Hajlaoui, M.R.; Bacha, H. Pathway of deoxynivalenol-induced apoptosis in human colon carcinoma cells. Toxicology 2009, 264, 104–109. [Google Scholar] [CrossRef]
- Pietsch, C.; Bucheli, T.; Wettstein, F.; Burkhardt-Holm, P. Frequent biphasic cellular responses of permanent fish cell cultures to deoxynivalenol (DON). Toxicol. Appl. Pharmacol. 2011, 256, 24–34. [Google Scholar] [CrossRef]
- Pietsch, C.; Crivelli, G.; Noser, J.; Wettstein, F.E.; Burkhardt-Holm, P. The role of oxidative stress in zearalenone-mediated toxicity in permanent fish cell cultures. Toxic. Sci. 2013. submitted for publication. [Google Scholar]
- Döll, S.; Valenta, H.; Baardsen, G.; Möller, P.; Koppe, W.; Stubhaug, I.; Dänicke, S. Effects of Increasing Concentrations of Deoxynivalenol, Zearalenone and Ochratoxin A in Diets for Atlantic Salmon (Salmo salar) on Performance, Health and Toxin Residues. In Proceedings of 33rd Mycotoxin Workshop, Freising, Germany, 30 May–1 June 2011.
- Hooft, J.M.; Elmor, A.E.H.I.; Encarnação, P.; Bureau, D.P. Rainbow trout (Oncorhynchus mykiss) is extremely sensitive to the feed-borne Fusarium mycotoxin deoxynivalenol (DON). Aquaculture 2011, 311, 224–232. [Google Scholar] [CrossRef]
- Sanden, M.; Jorgensen, S.; Hemre, G.-I.; Ornrud, R.; Sissener, N.H. Zebrafish (Danio rerio) as a model for investigating dietary toxic effects of deoxynivalenol contamination in aquaculture feeds. Food Chem. Toxicol. 2012, 50, 4441–4448. [Google Scholar] [CrossRef]
- Bucheli, T.D.; Erbs, M.; Hartmann, N.; Vogelsang, S.; Wettstein, F.E.; Forrer, H.R. Estrogenic mycotoxins in the environment. Mitt. Lebensm. Hyg. 2005, 96, 386–403. [Google Scholar]
- Cosnefroy, A.; Brion, F.; Maillot-Marechal, E.; Porcher, J.M.; Pakdel, F.; Balaguer, P.; Ait-Aissa, S. Selective activation of zebrafish estrogen receptor subtypes by chemicals by using stable reporter gene assay developed in a zebrafish liver cell line. Toxicol. Sci. 2012, 125, 439–449. [Google Scholar] [CrossRef]
- Johns, S.M.; Denslow, N.D.; Kane, M.D.; Watanabe, K.H.; Orlando, E.F.; Sepulveda, M.S. Effects of estrogens and antiestrogens on gene expression of fathead minnow (Pimephales promelas) early life stages. Environ. Toxicol. 2009, 26, 195–206. [Google Scholar]
- Schwartz, P.; Thorpe, K.L.; Bucheli, T.D.; Wettstein, F.E.; Burkhardt-Holm, P. Short-term exposure to the environmentally relevant estrogenic mycotoxin zearalenone impairs reproduction in fish. Sci. Total Environ. 2010, 409, 326–333. [Google Scholar] [CrossRef]
- Eriksen, G.; Pettersson, H. Toxicological evaluation of trichothecenes in animal feed. Anim. Feed Sci. Technol. 2004, 114, 205–239. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation (EC) of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Un. 2006, L229/7–L229/9.
- Santos, G.A.; Rodrigues, I.; Naehrer, K.; Encarnacao, P. Mycotoxins in aquaculture: Occurrence in feed components and impact on animal performance. Aquac. Eur. 2010, 35, 6–10. [Google Scholar]
- Yildirim, M.; Manning, B.B.; Lovell, R.T.; Grizzle, J.M.; Rottinghaus, G.E. Toxicity of moniliformin and fumonisin B1 fed singly and in combination in diets for young Channel Catfish Ictalurus punctatus. J. World Aquac. Soc. 2000, 31, 599–608. [Google Scholar]
- Santacroce, M.; Conversano, M.; Casalino, E.; Lai, O.; Zizzadoro, C.; Centoducati, G.; Crescenzo, G. Aflatoxins in aquatic species: Metabolism, toxicity and perspectives. Rev. Fish Biol. Fish. 2008, 18, 99–130. [Google Scholar] [CrossRef]
- Mantovani, A.; Frazzoli, C.; la Rocca, C. Risk assessment of endocrine-active compounds in feeds. Vet. J. 2009, 182, 392–401. [Google Scholar] [CrossRef]
- Dorne, J.L.C.M.; Fink-Gremmels, J. Human and animal health risk assessment of chemicals in the food chain: Comparative aspects and future perspectives. Toxicol. Appl. Pharmacol. in press.
- Valenta, H.; Dänicke, S.; Blüthgen, A. Mycotoxins in soybean feedstuffs used in Germany. Mycotox. Res. 2002, 18, 208–211. [Google Scholar] [CrossRef]
- Pelissero, C.; le Menn, F.; Kaushik, S. Estrogenic effects of dietary soya bean meal on vitellogenesis in cultured Siberian sturgeon Acipenser baeri. Gen. Comp. Endocrinol. 1991, 83, 447–457. [Google Scholar] [CrossRef]
- Kaushik, S.J.; Cravedi, J.P.; Lalles, J.P.; Sumpter, J.; Fauconneau, B.; Laroche, M. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture 1995, 133, 257–274. [Google Scholar]
- Wolf-Hall, C.E.; Hanna, M.A.; Bullerman, L.B. Stability of deoxynivalenol in heat-treated foods. J. Food Protect. 1999, 62, 962–964. [Google Scholar]
- Bretz, M.; Beyer, M.; Cramer, B.; Knecht, A.; Humpf, H.-U. Thermal degradation of the Fusarium mycotoxin deoxynivalenol. J. Agric. Food Chem. 2006, 54, 6445–6451. [Google Scholar]
- Kushiro, M. Effects of milling and cooking processes on the deoxynivalenol content in wheat. Int. J. Mol. Sci. 2008, 9, 2127–2145. [Google Scholar] [CrossRef]
- Wu, Q.; Lohrey, L.; Cramer, B.; Yuan, Z.; Humpf, H.-U. Impact of physicochemical parameters on the decomposition of deoxynivalenol during extrusion cooking of wheat grits. J. Agric. Food Chem. 2011, 59, 12480–12485. [Google Scholar] [CrossRef]
- Ryu, D.; Hanna, M.A.; Bullerman, L.B. Stability of zearalenone during extrusion of corn grits. J. Food Protect. 1999, 62, 1482–1484. [Google Scholar]
- Huwig, A.; Freimund, S.; Käppeli, O.; Dutler, H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 2001, 122, 179–188. [Google Scholar] [CrossRef]
- Okubara, P.A.; Blechl, A.E.; McCormick, S.P.; Alexander, N.J.; Dill-Macky, R.; Hohn, T.M. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor. Appl. Genet. 2002, 106, 74–83. [Google Scholar]
- Karlovsky, P. Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl. Microbiol. Biotechnol. 2011, 91, 491–504. [Google Scholar] [CrossRef]
- Oldenburg, E.; Bramm, A.; Valenta, H. Influence of nitrogen fertilization on deoxynivalenol contamination of winter wheat—Experimental field trials and evaluation of analytical methods. Mycotox. Res. 2007, 23, 7–12. [Google Scholar] [CrossRef]
- VDLUFA-Methodenbuch III, 6. Ergänzung 2006, Zearalenon 16.9.2; VDLUFA-Verlag: Darmstadt, Germany, 2006.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pietsch, C.; Kersten, S.; Burkhardt-Holm, P.; Valenta, H.; Dänicke, S. Occurrence of Deoxynivalenol and Zearalenone in Commercial Fish Feed: An Initial Study. Toxins 2013, 5, 184-192. https://doi.org/10.3390/toxins5010184
Pietsch C, Kersten S, Burkhardt-Holm P, Valenta H, Dänicke S. Occurrence of Deoxynivalenol and Zearalenone in Commercial Fish Feed: An Initial Study. Toxins. 2013; 5(1):184-192. https://doi.org/10.3390/toxins5010184
Chicago/Turabian StylePietsch, Constanze, Susanne Kersten, Patricia Burkhardt-Holm, Hana Valenta, and Sven Dänicke. 2013. "Occurrence of Deoxynivalenol and Zearalenone in Commercial Fish Feed: An Initial Study" Toxins 5, no. 1: 184-192. https://doi.org/10.3390/toxins5010184
APA StylePietsch, C., Kersten, S., Burkhardt-Holm, P., Valenta, H., & Dänicke, S. (2013). Occurrence of Deoxynivalenol and Zearalenone in Commercial Fish Feed: An Initial Study. Toxins, 5(1), 184-192. https://doi.org/10.3390/toxins5010184