Risk Assessment of Shellfish Toxins
Abstract
:1. Introduction
2. Risk Assessment–Definitions and Protocols
2.1. Hazard Identification
2.2. Hazard Characterisation
2.3. Exposure Assessment
2.4. Risk Characterisation
3. The Problem of Shellfish Toxins
Toxin class | Reported effects in humans | Reference |
---|---|---|
Azaspiracids | Nausea, vomiting, diarrhoea, abdominal pain. | [29] |
Brevetoxins | Nausea, vomiting, diarrhoea, chill, sweating, dysaesthesia, hypotension, paraesthesia of lips, face and extremities, cramps, paralysis, seizures and coma after ingestion. Rhinorrhoea, cough, bronchoconstriction after inhalation. | [3,30] |
Ciguatoxins | Vomiting, diarrhoea, bradycardia, hypotension, pruritis, arthralgia, myalgia, hyporeflexia, dysphagia, ataxia, paralysis. | [31] |
Cyclic imines | None. | [32] |
Domoic acid and derivatives | Vomiting, diarrhoea, abdominal pain, confusion, memory loss, seizure, coma, death. | [33] |
Okadaic acid and derivatives | Nausea, vomiting, diarrhoea, abdominal pain. | [34] |
Palytoxin and derivatives | Nausea, vomiting, myalgia, rhabdomyolysis, renal failure and death after ingestion. Rhinorrhoea, cough, bronchoconstriction after inhalation. | [35] |
Pectenotoxins | None. | [36] |
Saxitoxin and derivatives | Nausea, paraesthesia, tachycardia, muscular paralysis, respiratory failure, death. | [37] |
Tetrodotoxin and derivatives | Nausea, vomiting, diarrhoea, abdominal pain, paraesthesia, muscular paralysis, respiratory failure, death. | [27] |
Yessotoxin and derivatives | None. | [38] |
4. Hazard Identification of Shellfish Toxins
5. Hazard Characterisation of Shellfish Toxins
5.1. Acute Reference Doses of Shellfish Toxins
5.2. Tolerable Daily Intake of Shellfish Toxins
5.3. Genotoxicity of Shellfish Toxins
5.4. Carcinogenicity of Shellfish Toxins
5.5. Tumor Promotion by Shellfish Toxins
5.6. Reproductive and Developmental Effects of Shellfish Toxins
5.7. Inhalation Toxicity of Shellfish Toxins
5.8. Metabolism and Disposition of Shellfish Toxins
5.9. Mechanism of Toxicity of Shellfish Toxins
5.10. Exposure Assessment of Shellfish Toxins
5.10.1. Amount of Shellfish Eaten by Consumers
5.10.2. Assessment of the Amount of Toxin in Shellfish
6. Toxicity Equivalence Factors for Shellfish Toxins
Compound | Ratio of toxicity by gavage to toxicity by i.p. injection | Ratio of toxicity by feeding to toxicity by i.p. injection | Reference |
---|---|---|---|
Saxitoxin | 43 | 115 | [176] |
Neosaxitoxin | 79 | 142 | [176] |
GTX-1&4 | 110 | 233 | [176] |
Yessotoxin | >180 | - | [56] |
Palytoxin | 708 | >3500 | [58] |
Gymnodimine | 8 | >78 | [134] |
Spirolide A | 15 | 35 | [135] |
13-Desmethyl spirolide C | 23 | 145 | [135] |
Pinnatoxin E | 49 | - | [136] |
Pinnatoxin F | 2 | 4 | [136] |
Compound | Relative specific activity by the MBA | Relative LD50 by i.p. injection |
---|---|---|
Saxitoxin | 1.00 | 1.00 |
Neosaxitoxin | 1.16 | 3.12 |
Decarbamoylsaxitoxin | 0.64 | 0.79 |
Gonyautoxins 1&4 | 1.02 | 1.90 |
Gonyautoxins 2&3 | 0.60 | 0.76 |
7. Discussion
Acknowledgements
Conflicts of Interest
References
- Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment, Variability and Uncertainty in Toxicology of Chemicals in Food, Consumer Products and the Environment; Food Standards Agency: London, UK, 2007.
- FAO/WHO Environmental Health Criteria 240. Principles and Methods for the Risk Assessment of Chemicals in Food; WHO: Geneva, Switzerland, 2009. Available online: http://www.who.int/foodsafety/chem/principles/en/index1.html (accessed on 11 April 2013).
- Lawrence, J.; Loreal, H.; Toyofuku, H.; Hess, P.; Iddya, K.; Ababouch, L. FAO Fisheries and Aquaculture Technical Paper 551, Assessment and Management of Biotoxin Risks in Bivalve Molluscs; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Renwick, A.G. The use of safety or uncertainty factors in the setting of acute reference doses. Food Addit. Contam. 2000, 17, 627–635. [Google Scholar] [CrossRef]
- Renwick, A.G. Safety factors and establishment of acceptable daily intakes. Food Addit. Contam. 1991, 8, 135–150. [Google Scholar] [CrossRef]
- Renwick, A.G. Data-derived safety factors for the evaluation of food additives and environmental contaminants. Food Addit. Contam. 1993, 10, 275–305. [Google Scholar] [CrossRef]
- OECD Guideline for the Testing of Chemicals. Guideline 420. Acute Oral Toxicity - Fixed Dose Procedure; OECD: Paris, France, (adopted on 17 December 2001).
- OECD Guideline for the Testing of Chemicals. Guideline 423. Acute Oral Toxicity - Acute Toxic Class Method; OECD: Paris, France, (adopted on 17 December 2001).
- OECD Guidelines for the Testing of Chemicals. Guideline 425. Acute Oral Toxicity – Up-and-Down-Procedure (UDP); OECD: Paris, France, (adopted on 3 October 2008).
- OECD, Guidance Document on the Recognition, Assessment and Use of Clinical Signs as Human Endpoints for Experimental Animals Used in Safety Evaluation; OECD Series on Testing and Assessment, No. 19; OECD: Paris, France, 2002. [CrossRef]
- User Documentation for the AOT425StatPgm Program. Prepared for the US Environmental Protection Agency by Westat, May 2001, updated by USEPA Sept 2002. Available online: http://www.oecd.org/dataoecd/19/57/1839830.pdf (accessed on 11 April 2013).
- ICCVAM. In vitro cytotoxicity test methods for estimating acute oral systemic toxicity. Available online: http://iccvam.niehs.nih.gov/docs/acutetox_docs/BRD_TMER/BRDvol1_Nov2006.pdf (accessed on 11 April 2013).
- ICCVAM. Validation study of in vitro cytotoxicity test methods. Available online: http://iccvam.niehs.nih.gov/methods/acutetox/inv_nru_announce.htm (accessed on 11 April 2013).
- Benford, D. The Acceptable Daily Intake: A Tool for Ensuring Food Safety; International Life Sciences Institute: Brussels, Belgium, 2000. [Google Scholar]
- OECD Guidelines for the Testing of Chemicals. Guideline 407. Repeated Dose 28-Day Oral Toxicity Study in Rodents; OECD: Paris, France, (adopted on 3 October 2008).
- OECD Guideline for the Testing of Chemicals. Guideline 408. Repeated Dose 90-day Oral Toxicity Study in Rodents; OECD: Paris, France, (adopted on 21 September 1998).
- OECD Guideline for the Testing of Chemicals. Guideline 451. Carcinogenicity Studies; OECD: Paris, France, (adopted on 7 September 2009).
- OECD Guideline for the Testing of Chemicals. Guideline 452. Chronic Toxicity Studies; OECD: Paris, France, (adopted on 7 September 2009).
- OECD Guideline for the Testing of Chemicals. Guideline 453. Combined Chronic Toxicity/Carcinogenicity Studies; OECD: Paris, France, (adopted on 7 September 2009).
- Guidance on a Strategy for Testing of Chemicals for Mutagenicity; Committee on Mutagenicity of Chemicals in Food, Consumer Products and the Environment (COM): Department of Health, London, UK, 2000.
- OECD Guideline for Testing of Chemicals. Guideline 415. One-Generation Reproduction Toxicity Study; OECD: Paris, France, (adopted on 26 May 1983).
- OECD Guideline for Testing of Chemicals. Guideline 416. Two-Generation Reproduction Toxicity Study; OECD: Paris, France, (adopted on 22 January 2001).
- OECD Guideline for Testing of Chemicals. Guideline 422. Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test; OECD: Paris, France, (adopted on 22 March 1996).
- Hallegraeff, G.M. Harmful Algal Blooms: A Global Overview, Manual on Harmful Marine Microalgae; Hallegraeff, G.M., Anderson, D.M., Cembella, A.D., Eds.; UNESCO IOC: Paris, France, 1995; pp. 1–22. [Google Scholar]
- Medcof, J.C. Shellfish poisoning-another North American ghost. Can. Med. Assoc. J. 1960, 82, 87–90. [Google Scholar]
- Seafood and Freshwater Toxins. Pharmacology, Physiology, and Detection; Botana, L.M. (Ed.) CRC Press: Boca Raton, FL, USA, 2008.
- Noguchi, T.; Onuki, K.; Arakawa, O. Tetrodotoxin poisoning due to pufferfish and gastropods, and their intoxication mechanism. ISRN Toxicology 2011. Article ID 276939. [Google Scholar] [CrossRef]
- Van Dolah, F.M. Marine algal toxins: origins, health effects, and their increased occurrence. Environ. Health Perspect. 2000, 108 (Suppl. 1), 133–141. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Marine biotoxins in shellfish - azaspiracid group. EFSA J. 2008, 723, 52 pp.
- EFSA Panel on Contaminants in the Food Chain. Scientific opinion on marine biotoxins in shellfish - emerging toxins: brevetoxin group. EFSA J. 2010, 1677, 29 pp.
- Dickey, R.W.; Plakas, S.M. Ciguatera: a public health perspective. Toxicon 2010, 56, 123–136. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Scientific opinion on marine biotoxins in shellfish - cyclic imines (spirolides, gymnodimines, pinnatoxins and pteriatoxins). EFSA J. 2010, 8, 1628.
- EFSA Panel on Contaminants in the Food Chain. Marine biotoxins in shellfish - domoic acid. EFSA J. 2009, 1181.
- EFSA Panel on Contaminants in the Food Chain. Marine biotoxins in shellfish - okadaic acid and analogues. EFSA J. 2008, 589.
- EFSA Panel on Contaminants in the Food Chain. Scientific opinion on marine biotoxins in shellfish - palytoxin group. EFSA J. 2009, 1393.
- EFSA Panel on Contaminants in the Food Chain. Marine biotoxins in shellfish - pectenotoxin group. EFSA J. 2009, 1109.
- EFSA Panel on Contaminants in the Food Chain. Marine biotoxins in shellfish - saxitoxin group. EFSA J. 2009, 1019.
- EFSA Panel on Contaminants in the Food Chain. Marine biotoxins in shellfish - yessotoxin group. EFSA J. 2008, 907.
- Doucette, G.; Maneiro, I.; Riviero, I.; Svenson, C. Phycotoxin pathways in aquatic food webs: transfer, accumulation and degradation. In Ecological Studies; Granéli, E., Turner, J.T., Eds.; Springer-Verlag: Heidelberg, Germany, 2006; Volume 189, pp. 283–295. [Google Scholar]
- Tester, P.A.; Turner, J.T.; Shea, D. Vectorial transport of toxins from the dinoflagellate Gymnodinium breve through copepods to fish. J. Plankton Res. 2000, 22, 47–61. [Google Scholar] [CrossRef]
- Turner, J.T.; Tester, P.A. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol. Oceanogr. 1997, 42, 1203–1214. [Google Scholar] [CrossRef]
- Wiese, M.; D’Agostino, P.M.; Mihali, T.K.; Moffitt, M.C.; Neilan, B.A. Neurotoxic alkaloids: saxitoxin and its analogs. Mar. Drugs 2010, 8, 2185–2211. [Google Scholar] [CrossRef]
- Suzuki, T.; Igarashi, T.; Ichimi, K.; Watai, M.; Suzuki, M.; Ogiso, E.; Yasumoto, T. Kinetics of diarrhetic shellfish poisoning toxins, okadaic acid, dinophysistoxin-1, pectenotoxin-6 and yessotoxin in scallops Patinopecten yessoensis. Fish. Sci. 2005, 71, 948–955. [Google Scholar] [CrossRef]
- Bricelj, V.M.; Shumway, S.E. Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation. Rev. Fish. Sci. 1998, 6, 315–383. [Google Scholar]
- Abraham, A.; Wang, Y.; El Said, K.R.; Plakas, S.M. Characterization of brevetoxin metabolism in Karenia brevis bloom-exposed clams (Mercenaria sp.) by LC-MS/MS. Toxicon 2012, 60, 1030–1040. [Google Scholar] [CrossRef]
- Jauffrais, T.; Marcaillou, C.; Herrenknecht, C.; Truquet, P.; Séchet, V.; Nicolau, E.; Tillmann, U.; Hess, P. Azaspiracid accumulation, detoxification and biotransformation in blue mussels (Mytilus edulis) experimentally fed Azadinium spinosum. Toxicon 2012, 60, 582–595. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Codex Committee on Fish and Fishery Products, Twenty-Eighth Session, Beijing, China, 18–22 September 2006. Available online: ftp://ftp.fao.org/codex/Meetings/CCFFP/ccffp28/fp2806ae.pdf (accessed on 11 April 2013).
- Ishige, M.; Satoh, N.; Yasumoto, T. Pathological Studies on the Mice Administrated with the Causative Agent of Diarrhetic Shellfish Poisoning (Okadaic Acid and Pectenotoxin-2); Report Number 38; Hokkaido Institute of Public Health: Sapporo, Japan, 1988; pp. 15–18. [Google Scholar]
- Miles, C.O.; Wilkins, A.L.; Munday, R.; Dines, M.H.; Hawkes, A.D.; Briggs, L.R.; Sandvik, M.; Jensen, D.J.; Cooney, J.M.; Holland, P.T.; Quilliam, M.A.; MacKenzie, A.L.; Beuzenberg, V.; Towers, N.R. Isolation of pectenotoxin-2 from Dinophysis acuta and its conversion to pectenotoxin-2 seco acid, and preliminary assessment of their acute toxicities. Toxicon 2004, 43, 1–9. [Google Scholar]
- Aune, T.; Sørby, R.; Yasumoto, T.; Ramstad, H.; Landsverk, T. Comparison of oral and intraperitoneal toxicity of yessotoxin towards mice. Toxicon 2002, 40, 77–82. [Google Scholar] [CrossRef]
- Tubaro, A.; Sosa, S.; Carbonatto, M.; Altinier, G.; Vita, F.; Melato, M.; Satake, M.; Yasumoto, T. Oral and intraperitoneal acute toxicity studies of yessotoxin and homoyessotoxins in mice. Toxicon 2003, 41, 783–792. [Google Scholar] [CrossRef]
- Aasen, J.A.B.; Espenes, A.; Miles, C.O.; Samdal, I.A.; Hess, P.; Aune, T. Combined oral toxicity of azaspiracid-1 and yessotoxin in female NMRI mice. Toxicon 2011, 57, 909–917. [Google Scholar] [CrossRef]
- Tubaro, A.; Sosa, S.; Altinier, G.; Soranzo, M.R.; Satake, M.; Della Loggia, R.; Yasumoto, T. Short-term oral toxicity of homoyessotoxins, yessotoxin and okadaic acid in mice. Toxicon 2004, 43, 439–445. [Google Scholar] [CrossRef]
- Espenes, A.; Aasen, J.; Hetland, D.; Satake, M.; Smith, A.; Eraker, N.; Aune, T. Toxicity of yessotoxin in mice after repeated oral exposure. In 5th International Conference on Molluscan Shellfish Safety, Galway, Ireland, 2004; Henshilwood, K., Deegan, B., McMahon, T., Cusack, C., Keaveney, S., Silke, J., O'Cinneide, M., Lyons, D., Hess, P., Eds.; 2004; pp. 419–423. [Google Scholar]
- Benford, D. Risk—what is it? Toxicol. Lett. 2008, 180, 68–71. [Google Scholar] [CrossRef]
- Tubaro, A.; Dell'Ovo, V.; Sosa, S.; Florio, C. Yessotoxins: a toxicological overview. Toxicon 2010, 56, 163–172. [Google Scholar] [CrossRef]
- Ito, E.; Yasumoto, T. Toxicological studies on palytoxin and ostreocin-D administered to mice by three different routes. Toxicon 2009, 54, 244–251. [Google Scholar] [CrossRef]
- Munday, R. Toxicological requirements for risk assessment of shellfish contaminants: a review. Afr. J. Mar. Sci. 2006, 28, 447–449. [Google Scholar] [CrossRef]
- Fernández, D.A.; Louzao, M.C.; Vilariño, N.; Espiña, B.; Vieytes, M.R.; Román, A.; Poli, M.; Botana, L.M. Kinetic, mechanistic and cytomorphological effects of palytoxin in human intestinal cells (Caco-2) explain its lower-than-parental oral toxicity. FEBS Lett. 2013, 280, 3906–3919. [Google Scholar]
- Munday, R. Palytoxin toxicology: animal studies. Toxicon 2011, 57, 470–477. [Google Scholar] [CrossRef]
- Wekell, J.C.; Gauglitz, E.J.; Barnett, H.J.; Hatfield, C.L.; Simons, D.; Ayres, D. Occurrence of domoic acid in Washington State razor clams (Siliqua patula) during 1991–1993. Nat. Toxins 1994, 2, 197–205. [Google Scholar] [CrossRef]
- Oshima, Y.; Yasumoto, T.; Kodama, M.; Ogata, T.; Fukuyo, Y.; Matsuura, F. Features of paralytic shellfish poison occurring in Tohuku district. Bull. Jpn. Soc. Sci. Fish. 1982, 48, 525–530. [Google Scholar] [CrossRef]
- Prakash, A.; Medcof, J.C.; Tennant, A.D. Paralytic Shellfish Poisoning in Eastern Canada; Bulletin 177; Fisheries Research Board of Canada: Ottawa, Canada, 1971. [Google Scholar]
- Svensson, S. Depuration of okadaic acid (diarrhetic shellfish toxin) in mussels, Mytilus edulis (Linnaeus), feeding on different quantities of nontoxic algae. Aquaculture 2003, 218, 277–291. [Google Scholar] [CrossRef]
- Torgersen, T.; Sandvik, M.; Lundve, B.; Lindegarth, S. Profiles and levels of fatty acid esters of okadaic acid group toxins and pectenotoxins during toxin depuration. Part II: blue mussels (Mytilus edulis) and flat oyster (Ostrea edulis). Toxicon 2008, 52, 418–427. [Google Scholar] [CrossRef]
- Marrouchi, R.; Dziri, F.; Belayouni, N.; Hamza, A.; Benoit, E.; Molgó, J.; Kharrat, R. Quantitative determination of gymnodimine-A by high performance liquid chromatography in contaminated clams from Tunisia coastline. Mar. Biotechnol. 2010, 12, 579–585. [Google Scholar] [CrossRef]
- Stirling, D.J. Survey of historical New Zealand shellfish samples for accumulation of gymnodimine. N. Z. J. Mar. Freshwater Res 2001, 35, 851–857. [Google Scholar] [CrossRef]
- James, K.J.; Lehane, M.; Moroney, C.; Fernandez-Puente, P.; Satake, M.; Yasumoto, T.; Furey, A. Azaspiracid shellfish poisoning: unusual toxin dynamics in shellfish and the increased risk of acute human intoxications. Food Addit. Contam. 2002, 19, 555–561. [Google Scholar] [CrossRef]
- Twiner, M.J.; Rehmann, N.; Hess, P.; Doucette, G.J. Azaspiracid shellfish poisoning: a review on the chemistry, ecology and toxicology with an emphasis on human health impacts. Mar. Drugs 2008, 6, 39–72. [Google Scholar] [CrossRef]
- Plakas, S.M.; Wang, Z.; El Said, K.R.; Jester, E.L.E.; Granade, H.R.; Flewelling, L.; Scott, P.; Dickey, R.W. Brevetoxin metabolism and elimination in the Eastern oyster (Crassostrea virginica) after controlled exposures to Karenia brevis. Toxicon 2004, 44, 677–685. [Google Scholar] [CrossRef]
- Griffith, A.W.; Shumway, S.E.; Volety, A.K. Bioaccumulation and depuration of brevetoxins in the Eastern oyster (Crassostrea virginica) and the northern quahog (=hard clam, Mercenaria mercenaria). Toxicon 2013, 66, 75–81. [Google Scholar] [CrossRef]
- Aasen, J.; Samdal, I.A.; Miles, C.O.; Dahl, E.; Briggs, L.R.; Aune, T. Yessotoxins in Norwegian blue mussels (Mytilus edulis): uptake from Protoceratium reticulatum, metabolism and depuration. Toxicon 2005, 45, 265–272. [Google Scholar]
- Truelove, J.; Mueller, R.; Pulido, O.; Iverson, F. Subchronic toxicity study of domoic acid in the rat. Food Chem. Toxicol. 1996, 34, 525–529. [Google Scholar] [CrossRef]
- Pulido, O. Domoic acid toxicologic pathology: a review. Mar. Drugs 2008, 6, 180–219. [Google Scholar] [CrossRef]
- Truelove, J.; Mueller, R.; Pulido, O.; Martin, L.; Fernie, S.; Iverson, F. 30-Day oral toxicity study of domoic acid in Cynomolgus monkeys: lack of overt toxicity at doses approaching the acute toxic dose. Nat. Toxins 1997, 5, 111–114. [Google Scholar] [CrossRef]
- Dechraoui Bottein, M.-Y.; Rezvani, A.H.; Gordon, C.J.; Levin, E.D.; Ramsdell, J.S. Repeat exposure to ciguatoxin leads to enhanced and sustained thermoregulatory, pain threshold and motor activity responses in mice: relationship to blood ciguatoxin concentrations. Toxicology 2008, 246, 55–62. [Google Scholar] [CrossRef]
- Terao, K.; Ito, E.; Yasumoto, T. Light and electron microscopic studies of the murine heart after repeated administrations of ciguatoxin or ciguatoxin-4c. Nat. Toxins 1992, 1, 19–26. [Google Scholar] [CrossRef]
- Sommer, H.; Meyer, K.F. Paralytic shell-fish poisoning. Arch. Pathol. 1937, 24, 560–598. [Google Scholar]
- McFarren, E.F.; Schafer, M.L.; Campbell, J.E.; Lewis, K.H.; Jensen, E.T.; Schantz, E.J. Public health significance of paralytic shellfish poison. Adv. Food Res. 1961, 10, 135–179. [Google Scholar] [CrossRef]
- Leighfield, T.A.; Muha, N.; Ramsdell, J.S. Brevetoxin B is a clastogen in rats, but lacks mutagenic potential in the SP-98/100 Ames test. Toxicon 2009, 54, 851–856. [Google Scholar] [CrossRef]
- Pagnon, J.; Karunasinghe, N.; Ferguson, L.R. Genetic Toxicology Report. Ames Bacterial Mutagenicity Tests, Palytoxin; Technical Report; University of Auckland: Auckland, New Zealand, 2008. [Google Scholar]
- Guzmán, A.; Fernández de Henestrosa, A.R.; Marín, A.-P.; Ho, A.; González Borroto, J.I.; Carasa, I.; Pritchard, L. Evaluation of the genotoxic potential of the natural neurotoxin tetrodotoxin (TTX) in a battery of in vitro and in vivo genotoxicity assays. Mutat. Res. 2007, 634, 14–24. [Google Scholar] [CrossRef]
- Aonuma, S.; Ushijima, T.; Nakayasu, M.; Shima, H.; Sugimura, T.; Nagao, M. Mutation induction by okadaic acid, a protein phosphatase inhibitor, in CHL cells, but not in S. typhimurium. Mutat. Res. 1991, 250, 375–381. [Google Scholar] [CrossRef]
- Murrell, R.; Gibson, J. Brevetoxins 2, 3, 6, and 9 show variability in potency and cause significant induction of DNA damage and apoptosis in Jurkat E6-1 cells. Arch. Toxicol. 2009, 83, 1009–1019. [Google Scholar] [CrossRef]
- Sayer, A.N.; Hu, Q.; Bourdelais, A.J.; Baden, D.G.; Gibson, J.E. The inhibition of CHO-K1-BH4 cell proliferation and induction of chromosomal aberrations by brevetoxins in vitro. Food Chem. Toxicol. 2006, 44, 1082–1091. [Google Scholar] [CrossRef]
- Carvalho Pinto-Silva, C.R.; Moukha, S.; Matias, W.G.; Creppy, E.E. Domoic acid induces direct DNA damage and apoptosis in Caco-2 cells: recent advances. Environ. Toxicol. 2008, 23, 657–663. [Google Scholar] [CrossRef]
- Rogers, C.G.; Boyes, B.G. Evaluation of the genotoxicity of domoic acid in a hepatocyte-mediated assay with V79 Chinese hamster lung cells. Mutat. Res. 1989, 226, 191–195. [Google Scholar] [CrossRef]
- Le Hégarat, L.; Nesslany, F.; Mourot, A.; Marzin, D.; Fessard, V. Lack of DNA damage induction by okadaic acid, a marine toxin, in the CHO-Hprt and the in vitro UDS assays. Mutat. Res. 2004, 564, 139–147. [Google Scholar] [CrossRef]
- Souid-Mensi, G.; Moukha, S.; Mobio, T.A.; Maaroufi, K.; Creppy, E.E. The cytotoxicity and genotoxicity of okadaic acid are cell-line dependent. Toxicon 2008, 51, 1338–1344. [Google Scholar] [CrossRef]
- Valdiglesias, V.; Méndez, J.; Pásaro, E.; Cemeli, E.; Anderson, D.; Laffon, B. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells. Mutat. Res. 2010, 689, 74–79. [Google Scholar] [CrossRef]
- Valdiglesias, V.; Laffon, B.; Pásaro, E.; Cemeli, E.; Anderson, D.; Méndez, J. Induction of oxidative DNA damage by the marine toxin okadaic acid depends on human cell type. Toxicon 2011, 57, 882–888. [Google Scholar] [CrossRef]
- Traoré, A.; Baudrimont, I.; Ambaliou, S.; Dano, S.D.; Creppy, E.E. DNA breaks and cell cycle arrest induced by okadaic acid in Caco-2 cells, a human colonic epithelial cell line. Arch. Toxicol. 2001, 75, 110–117. [Google Scholar] [CrossRef]
- Le Hégarat, L.; Jacquin, A.-G.; Bazin, E.; Fessard, V. Genotoxicity of the marine toxin okadaic acid, in human Caco-2 cells and in mice gut cells. Environ. Toxicol. 2006, 21, 55–64. [Google Scholar] [CrossRef]
- Le Hégarat, L.; Fessard, V.; Poul, J.M.; Dragacci, S.; Sanders, P. Marine toxin okadaic acid induces aneuploidy in CHO-K1 cells in presence of rat liver postmitochondrial fraction, revealed by cytokinesis-block micronucleus assay coupled to FISH. Environ. Toxicol. 2004, 19, 123–128. [Google Scholar]
- Valdiglesias, V.; Laffon, B.; Pásaro, E.; Méndez, J. Evaluation of okadaic acid-induced genotoxicity in human cells using the micronucleus test and γH2AX analysis. J. Toxicol. Environ. Health 2011, 74A, 980–992. [Google Scholar] [CrossRef]
- Ito, E.; Satake, M.; Ofuji, K.; Higashi, M.; Harigaya, K.; McMahon, T.; Yasumoto, T. Chronic effects in mice caused by oral administration of sublethal doses of azaspiracid, a new marine toxin isolated from mussels. Toxicon 2002, 40, 193–203. [Google Scholar] [CrossRef]
- Ito, E. Toxicology of azaspiracid-1: acute and chronic poisoning, tumorigenicity, and chemical structure relationship to toxicity in a mouse model. In Seafood and Freshwater Toxins. Pharmacology, Physiology, and Detection, 2nd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 775–784. [Google Scholar]
- Giknis, M.L.A.; Clifford, C.B. Spontaneous neoplastic lesions in the Crl:CD-1®(ICR)BR mouse. Charles River Laboratories. Available online: http://www.criver.com/files/pdfs/rms/cd1/rm_rm_r_lesions_crl_cd_icr_br_mouse.aspx (accessed on 11 April 2013).
- Derelanko, M.J. Carcinogenesis. In Handbook of Toxicology, Second Edition; Derelanko, M.J., Hollinger, M.A., Eds.; CRC Press: Boca Raton, FL, USA, 2002; pp. 621–647. [Google Scholar]
- Grasso, P.; Crampton, R.F. The value of the mouse in carcinogenicity testing. Food Cosmet. Toxicol. 1972, 10, 418–426. [Google Scholar]
- Suganuma, M.; Fujiki, H.; Suguri, H.; Yoshizawa, S.; Hirota, M.; Nakayasu, M.; Ojika, M.; Wakamatsu, K.; Yamada, K.; Sugimura, T. Okadaic acid: an additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proc. Natl Acad. Sci. USA 1988, 85, 1768–1771. [Google Scholar] [CrossRef]
- Fujiki, H.; Suganuma, M.; Nakayasu, M.; Hakii, H.; Horiuchi, T.; Takayama, S.; Sugimura, T. Palytoxin is a non-12-O-tetradecanoylphorbol-13-acetate type tumor promoter in two-stage mouse skin carcinogenesis. Carcinogenesis 1986, 7, 707–710. [Google Scholar] [CrossRef]
- Suganuma, M.; Tatematsu, M.; Yatsunami, J.; Yoshizawa, S.; Okabe, S.; Uemura, D.; Fujiki, H. An alternative theory of tissue specificity by tumor promotion of okadaic acid in glandular stomach of SD rats. Carcinogenesis 1992, 13, 1841–1845. [Google Scholar] [CrossRef]
- Boutwell, R.K. The function and mechanism of promoters of carcinogenesis. CRC Crit. Rev. Toxicol. 1974, 2, 419–443. [Google Scholar] [CrossRef]
- Nessel, C.S.; Freeman, J.J.; Forgash, R.C.; McKee, R.H. The role of dermal irritation in the skin promoting activity of petroleum middle distillates. Toxicol. Sci. 1999, 49, 48–55. [Google Scholar] [CrossRef]
- Setälä, K.; Setälä, H.; Holsti, P. A new and physicochemically well-defined group of tumor-promoting (cocarcinogenic) agents for mouse skin. Science 1954, 120, 1075–1076. [Google Scholar]
- Roe, F.J.C.; Peirce, W.E.H. Tumor promotion by citrus oils: tumors of the skin and urethral orifice in mice. J. Natl Cancer Inst. 1960, 24, 1389–1403. [Google Scholar]
- Boyland, E. Estimation of acceptable levels of tumour promoters. Br. J. Indust. Med. 1987, 44, 422–423. [Google Scholar]
- Weisburger, J.H.; Williams, G.M. The distinct health risk analyses required for genotoxic carcinogens and promoting agents. Environ. Health Perspect. 1983, 50, 233–245. [Google Scholar] [CrossRef]
- Kuraishy, A.; Karin, M.; Grivennikov, S.I. Tumor promotion via injury- and death-induced inflammation. Immunity 2011, 35, 467–477. [Google Scholar] [CrossRef]
- Slaga, T.J. Antiinflammatory steroids: potent inhibitors of tumor promotion. In Carcinogenesis, Volume 5: Modifiers of Chemical Carcinogenesis; Slaga, T.J., Ed.; Raven Press: New York, NY, USA, 1980; pp. 111–126. [Google Scholar]
- Fürstenberger, G.; Csuk-Glänzer, B.I.; Marks, F.; Keppler, D. Phorbol ester-induced leukotriene biosynthesis and tumor promotion in mouse epidermis. Carcinogenesis 1994, 15, 2823–2827. [Google Scholar] [CrossRef]
- Fujiki, H.; Suganuma, M.; Suguri, H.; Yoshizawa, S.; Takagi, K.; Uda, N.; Wakamatsu, K.; Yamada, K.; Murata, M.; Yasumoto, T.; Sugimura, T. Diarrhetic shellfish toxin, dinophysistoxin-1, is a potent tumor promoter on mouse skin. Jpn. J. Cancer Res. 1988, 79, 1089–1093. [Google Scholar] [CrossRef]
- Suganuma, M.; Fujiki, H.; Furuya-Suguri, H.; Yoshizawa, S.; Yasumoto, S.; Kato, Y.; Fusetani, N.; Sugimura, T. Calyculin A, an inhibitor of protein phosphatases, a potent tumor promoter on CD-1 mouse skin. Cancer Res. 1990, 50, 3521–3525. [Google Scholar]
- Dakshinamurti, K.; Sharma, S.K.; Sundaram, M.; Watanabe, T. Hippocampal changes in developing postnatal mice following intrauterine exposure to domoic acid. J. Neurosci. 1993, 13, 4486–4495. [Google Scholar]
- Tanemura, K.; Igarashi, K.; Matsugami, T.; Aisaki, K.-I.; Kitajima, S.; Kanno, J.I. Intrauterine environment-genome interaction and children’s development (2): brain structure impairment and behavioral disturbance induced in male mice offspring by a single intraperitoneal administration of domoic acid (DA) to their dams. J. Toxicol. Sci. 2009, 34, SP279–SP286. [Google Scholar] [CrossRef]
- Levin, E.D.; Pang, W.G.; Harrison, J.; Williams, P.; Petro, A.; Ramsdell, J.S. Persistent neurobehavioral effects of early postnatal domoic acid exposure in rats. Neurotoxicol. Teratol. 2006, 28, 673–680. [Google Scholar] [CrossRef]
- Levin, E.D.; Pizarro, K.; Pang, W.G.; Harrison, J.; Ramsdell, J.S. Persisting behavioral consequences of prenatal domoic acid exposure in rats. Neurotoxicol. Teratol. 2005, 27, 719–725. [Google Scholar] [CrossRef]
- Matias, W.; Creppy, E. Transplacental passage of [3H]-okadaic acid in pregnant mice measured by radioactivity and high-performance liquid chromatography. Hum. Exp. Toxicol. 1996, 15, 226–230. [Google Scholar] [CrossRef]
- Benson, J.M.; Gomez, A.P.; Statom, G.L.; Tibbetts, B.M.; Fleming, L.E.; Backer, L.C.; Reich, A.; Baden, D.G. Placental transport of brevetoxin-3 in CD-1 mice. Toxicon 2006, 48, 1018–1026. [Google Scholar] [CrossRef]
- Pearn, J.; Harvey, P.; De Ambrosis, W.; Lewis, R.J.; McKay, R. Ciguatera and pregnancy. Med. J. Aust. 1982, 136, 57–58. [Google Scholar]
- Senecal, P.-E.; Osterloh, J.D. Normal fetal outcome after maternal ciguateric toxin exposure in the second trimester. Clin. Toxicol. 1991, 29, 473–478. [Google Scholar] [CrossRef]
- Pierce, R.H.; Henry, M.S.; Blum, P.C.; Osborn, S.E.; Cheng, Y.-S.; Zhou, Y.; Irvin, C.M.; Bourdelais, A.J.; Naar, J.; Baden, D.G. Compositional changes in neurotoxins and their oxidative derivatives from the dinoflagellate, Karenia brevis, in seawater and marine aerosol. J. Plankton Res. 2011, 33, 343–348. [Google Scholar] [CrossRef]
- Kirkpatrick, B.; Fleming, L.E.; Squicciarini, D.; Backer, L.C.; Clark, R.; Abraham, W.; Benson, J.; Cheng, Y.S.; Johnson, D.; Pierce, R.; Zaias, J.; Bossart, G.D.; Baden, D.G. Literature review of Florida red tide: implications for human health effects. Harmful Algae 2004, 3, 99–115. [Google Scholar] [CrossRef]
- Benson, J.M.; Hahn, F.F.; March, T.H.; McDonald, J.D.; Gomez, A.P.; Sopori, M.L.; Bourdelais, A.J.; Naar, J.; Zaias, J.; Bossart, G.D.; Baden, D.G. Inhalation toxicity of brevetoxin 3 in rats exposed for twenty-two days. Environ. Health Perspect. 2005, 113, 626–631. [Google Scholar] [CrossRef]
- Benson, J.M.; Hahn, F.F.; March, T.H.; McDonald, J.D.; Sopori, M.L.; Seagrave, J.C.; Gomez, A.P.; Bourdelais, A.J.; Naar, J.; Zaias, J.; Bossart, G.D.; Baden, D.G. Inhalation toxicity of brevetoxin 3 in rats exposed for 5 days. J. Toxicol. Environ. Health 2004, 67A, 1443–1456. [Google Scholar]
- Yan, X.; Benson, J.M.; Gomez, A.P.; Baden, D.G.; Murray, T.F. Brevetoxin-induced neural insult in the retrosplenial cortex of mouse brain. Inhal. Toxicol. 2006, 18, 1109–1116. [Google Scholar] [CrossRef]
- Aasen, J.A.B.; Espenes, A.; Hess, P.; Aune, T. Sub-lethal dosing of azaspiracid-1 in female NMRI mice. Toxicon 2010, 56, 1419–1425. [Google Scholar] [CrossRef]
- Cattet, M.; Geraci, J.R. Distribution and elimination of ingested brevetoxin (PbTx-3) in rats. Toxicon 1993, 31, 1483–1486. [Google Scholar] [CrossRef]
- Dechraoui Bottein, M.-Y.; Wang, Z.; Ramsdell, J.S. Toxicokinetics of the ciguatoxin P-CTX-1 in rats after intraperitoneal or oral administration. Toxicology 2011, 284, 1–6. [Google Scholar] [CrossRef]
- Matias, W.G.; Traore, A.; Creppy, E.E. Variations in the distribution of okadaic acid in organs and biological fluids of mice related to diarrhoeic syndrome. Hum. Exp. Toxicol. 1999, 18, 345–350. [Google Scholar] [CrossRef]
- Andrinolo, D.; Iglesias, V.; García, C.; Lagos, N. Toxicokinetics and toxicodynamics of gonyautoxins after an oral toxin dose in cats. Toxicon 2002, 40, 699–709. [Google Scholar] [CrossRef]
- Prinzmetal, M.; Sommer, H.; Leake, C.D. The pharmacological action of "mussel poison". J. Pharmacol. Exp. Therap. 1932, 46, 63–73. [Google Scholar]
- Munday, R.; Towers, N.R.; Mackenzie, L.; Beuzenberg, V.; Holland, P.T.; Miles, C.O. Acute toxicity of gymnodimine to mice. Toxicon 2004, 44, 173–178. [Google Scholar] [CrossRef]
- Munday, R.; Quilliam, M.A.; LeBlanc, P.; Lewis, N.; Gallant, P.; Sperker, S.A.; Ewart, H.S.; MacKinnon, S.L. Investigations into the toxicology of spirolides, a group of marine phycotoxins. Toxins 2012, 4, 1–14. [Google Scholar]
- Munday, R.; Selwood, A.I.; Rhodes, L. Acute toxicity of pinnatoxins E, F and G to mice. Toxicon 2012, 60, 995–999. [Google Scholar] [CrossRef]
- Burgess, V.A. Toxicology investigations with the pectenotoxin-2 seco acids. Ph.D. Thesis; Griffith University: Brisbane, Australia, 2003. Available online: http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20030905.090222/ (accessed on 11 April 2013).
- Otero, P.; Alfonso, A.; Rodríguez, P.; Rubiolo, J.A.; Cifuentes, J.M.; Bermúdez, R.; Vieytes, M.R.; Botana, L.M. Pharmacokinetic and toxicological data of spirolides after oral and intraperitoneal administration. Food Chem. Toxicol. 2012, 50, 232–237. [Google Scholar] [CrossRef]
- Truelove, J.; Iverson, F. Serum domoic acid clearance and clinical observations in the Cynomolgus monkey and Sprague-Dawley rat following a single IV dose. Bull. Environ. Contam. Toxicol. 1994, 52, 479–486. [Google Scholar]
- Ito, E.; Yasumoto, T.; Takai, A.; Imanishi, S.; Harada, K. Investigation of the distribution and excretion of okadaic acid in mice using immunostaining method. Toxicon 2002, 40, 159–165. [Google Scholar] [CrossRef]
- Stafford, R.G.; Hines, H.B. Urinary elimination of saxitoxin after intravenous injection. Toxicon 1995, 33, 1501–1510. [Google Scholar] [CrossRef]
- Hines, H.B.; Naseem, S.M.; Wannemacher, R.W. [3H]-Saxitoxinol metabolism and elimination in the rat. Toxicon 1993, 31, 905–908. [Google Scholar] [CrossRef]
- Radwan, F.F.Y.; Wang, Z.; Ramsdell, J.S. Identification of a rapid detoxification mechanism for brevetoxin in rats. Toxicol. Sci. 2005, 85, 839–846. [Google Scholar] [CrossRef]
- Poli, M.A.; Musser, S.M.; Dickey, R.W.; Eilers, P.P.; Hall, S. Neurotoxic shellfish poisoning and brevetoxin metabolites: a case study from Florida. Toxicon 2000, 38, 981–993. [Google Scholar] [CrossRef]
- Abraham, A.; Plakas, S.M.; Flewelling, L.J.; El Said, K.R.; Jester, E.L.E.; Granade, H.R.; White, K.D.; Dickey, R.W. Biomarkers of neurotoxic shellfish poisoning. Toxicon 2008, 52, 237–245. [Google Scholar] [CrossRef]
- García, C.; Truan, D.; Lagos, M.; Santelices, J.P.; Díaz, J.C.; Lagos, N. Metabolic transformation of dinophysistoxin-3 into dinophysistoxin-1 causes human intoxication by consumption of O-acyl-derivatives dinophysistoxins contaminated shellfish. J. Toxicol. Sci. 2005, 30, 287–296. [Google Scholar] [CrossRef]
- García, C.; del Carmen Bravo, M.; Lagos, M.; Lagos, N. Paralytic shellfish poisoning: post-mortem analysis of tissue and body fluid samples from human victims in the Patagonia fjords. Toxicon 2004, 43, 149–158. [Google Scholar] [CrossRef]
- Llewellyn, L.E.; Dodd, M.J.; Robertson, A.; Ericson, G.; de Koning, C.; Negri, A.P. Post-mortem analysis of samples from a human victim of a fatal poisoning caused by the xanthid crab, Zosimus aeneus. Toxicon 2002, 40, 1463–1469. [Google Scholar] [CrossRef]
- Rodrigues, S.M.; de Carvalho, M.; Mestre, T.; Ferreira, J.J.; Coelho, M.; Peralta, R.; Vale, P. Paralytic shellfish poisoning due to ingestion of Gymnodinium catenatum contaminated cockles – application of the AOAC HPLC Official Method. Toxicon 2012, 59, 558–566. [Google Scholar] [CrossRef]
- Doucette, T.A.; Tasker, R.A. Domoic acid: detection methods, pharmacology, and toxicology. In Seafood and Freshwater Toxins. Pharmacology, Physiology, and Detection, 2nd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 397–429. [Google Scholar]
- Ramsdell, J.S. The molecular and integrative basis to brevetoxin toxicity. In Seafood and Freshwater Toxins. Pharmacology, Physiology, and Detection, 2nd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 519–550. [Google Scholar]
- Nicholson, G.; Lewis, R. Ciguatoxins: cyclic polyether modulators of voltage-gated ion channel function. Mar. Drugs 2006, 4, 82–118. [Google Scholar] [CrossRef]
- Rossini, G.P.; Hess, P. Phycotoxins: chemistry, mechanisms of action and shellfish poisoning. In Molecular, Clinical and Environmental Toxicology. Volume 2: Clinical Toxicology; Luch, A., Ed.; Birkhäuser: Basel, Switzerland, 2010; pp. 65–122. [Google Scholar]
- Narahashi, T. Mechanism of tetrodotoxin and saxitoxin action. In Handbook of Natural Toxins. Marine Toxins and Venoms; Tu, A.T., Ed.; Dekker: New York, NY, USA, 1988; Volume 3, pp. 185–210. [Google Scholar]
- Kharrat, R.; Servent, D.; Girard, E.; Ouanounou, G.; Amar, M.; Marrouchi, R.; Benoit, E.; Molgó, J. The marine phycotoxin gymnodimine targets muscular and neuronal nicotinic acetylcholine receptor subtypes with high affinity. J. Neurochem. 2008, 107, 952–963. [Google Scholar]
- Bourne, Y.; Radić, Z.; Aráoz, R.; Talley, T.T.; Benoit, E.; Servent, D.; Taylor, P.; Molgó, J.; Marchot, P. Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism. Proc. Natl Acad. Sci. USA 2010, 107, 6076–6081. [Google Scholar] [CrossRef]
- Fonfría, E.S.; Vilariño, N.; Molgó, J.; Aráoz, R.; Otero, P.; Espiña, B.; Louzao, M.C.; Alvarez, M.; Botana, L.M. Detection of 13,19-didesmethyl C spirolide by fluorescence polarization using Torpedo electrocyte membranes. Anal. Biochem. 2010, 403, 102–107. [Google Scholar] [CrossRef]
- Araoz, R.; Servent, D.; Molgó, J.; Iorga, B.I.; Fruchart-Gaillard, C.; Benoit, E.; Gu, Z.; Stivala, C.; Zakarian, A. Total synthesis of pinnatoxins A and G and revision of the mode of action of pinnatoxin A. J. Am. Chem. Soc. 2011, 133, 10499–10511. [Google Scholar] [CrossRef]
- Baden, D.G.; Bikhazi, G.; Decker, S.J.; Foldes, F.F.; Leung, I. Neuromuscular blocking action of two brevetoxins from the Florida red tide organism Ptychodiscus brevis. Toxicon 1984, 22, 75–84. [Google Scholar] [CrossRef]
- Tsai, M.-C.; Chou, H.-N.; Chen, M.-L. Effect of brevetoxin-B on the neuromuscular transmission of the mouse diaphragm. J. Formosan Med. Assoc. 1991, 90, 431–436. [Google Scholar]
- Lewis, R.J.; Wong Hoy, A.W.; Sellin, M. Ciguatera and mannitol: in vivo and in vitro assessment in mice. Toxicon 1993, 31, 1039–1050. [Google Scholar] [CrossRef]
- Hellyer, S.D.; Selwood, A.I.; Rhodes, L.; Kerr, D.S. Marine algal pinnatoxins E and F cause neuromuscular block in an in vitro hemidiaphragm preparation. Toxicon 2011, 58, 693–699. [Google Scholar] [CrossRef]
- Rossini, G.P.; Bigiani, A. Palytoxin action on the Na+,K+-ATPase and the disruption of ion equilibria in biological systems. Toxicon 2011, 57, 429–439. [Google Scholar] [CrossRef]
- Attaway, D.H.; Ciereszko, L.S. Isolation and partial characterization of Caribbean palytoxin. In Proceedings, Second International Coral Reef Symposium, Brisbane, Australia, 1974; pp. 497–504.
- Cohen, P.; Holmes, C.F.B.; Tsukitani, Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem. Sci. 1990, 15, 98–102. [Google Scholar] [CrossRef]
- Munday, R. Is protein phosphatase inhibition responsible for the toxic effects of okadaic acid in animals? Toxins 2013, 5, 267–285. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Statement on further elaboration of the consumption figure of 400 g shellfish meat on the basis of new consumption data. EFSA J. 2010, 1706, 20 pp.
- Buckland, G. Implementing scientifically-robust and humane shellfish toxicity testing: we're still waiting. Altern. Lab. Anim. 2010, 38, 419–426. [Google Scholar]
- Hess, P.; Grune, B.; Anderson, D.B.; Aune, T.; Botana, L.M.; Caricato, P.; van Egmond, H.P.; Halder, M.; Hall, S.; Lawrence, J.F.; Moffat, C.; Poletti, R.; Richmond, J.; Rossini, G.P.; Seamer, C.; Vilageliu, J.S. Three Rs approaches in marine biotoxin testing. Altern. Lab. Anim. 2006, 34, 193–224. [Google Scholar]
- Campbell, K.; Vilariño, N.; Botana, L.M.; Elliott, C.T. A European perspective on progress in moving away from the mouse bioassay for marine-toxin analysis. Trends Anal. Chem. 2011, 30, 239–253. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Marine biotoxins in shellfish - summary on regulated marine biotoxins. EFSA J. 2009, 1306.
- Combes, R.D. The mouse bioassay for diarrhetic shellfish poisoning: a gross misuse of laboratory animals and of scientific methodology. Altern. Lab. Anim. 2003, 31, 595–610. [Google Scholar]
- Guy, A.L.; Griffin, G. Adopting alternatives for the regulatory monitoring of shellfish for paralytic shellfish poisoning in Canada: interface between federal regulators, science and ethics. Regulat. Toxicol. Pharmacol. 2009, 54, 256–263. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 2074/2005 of 5 December 2005. Off. J. Europ. Union 2005, L338/327–L338/359.
- European Commission. Commission Regulation (EU) No 15/2011 of 10 January 2011. Off. J. Europ. Union 2011, L6/3–L6/6.
- Munday, R.; Thomas, K.; Gibbs, R.; Murphy, C.; Quilliam, M.A. Acute toxicities of saxitoxin, neosaxitoxin, decarbamoyl saxitoxin and gonyautoxins 1&4 and 2&3 to mice by various routes of administration. Toxicon 2013, 76, 77–83. [Google Scholar] [CrossRef]
- AOAC Official Method 959.08. Paralytic Shellfish Poison. Biological Method. In Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W.; Latimer, G.W. (Eds.) AOAC International: Gaithersburg, MA, USA, 2005; pp. 79–82.
- Burkholder, J.M. Implications of harmful microalgae and heterotrophic dinoflagellates in management of sustainable marine fisheries. Ecol. Applic. 1998, 8 (Suppl.), S37–S62. [Google Scholar]
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Ann. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef]
- Moore, S.K.; Trainer, V.L.; Mantua, N.J.; Parker, M.S.; Laws, E.A.; Backer, L.C.; Fleming, L.E. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ. Health 2008, 7 (Suppl. 2), S4. [Google Scholar]
- Feki, W.; Hamza, A.; Frossard, V.; Abdennadher, M.; Hannachi, I.; Jacquot, M.; Belhassen, M.; Aleya, L. What are the potential drivers of blooms of the toxic dinoflagellate Karenia selliformis? A 10-year study in the Gulf of Gabes, Tunisia, southwestern Mediterranean Sea. Harmful Algae 2013, 23, 8–18. [Google Scholar] [CrossRef]
- Worm, B.; Barbier, E.B.; Beaumont, N.; Duffy, J.E.; Folke, C.; Halpern, B.S.; Jackson, J.B.C.; Lotze, H.K.; Micheli, F.; Palumbi, S.R.; Sala, E.; Selkoe, K.A.; Stachowicz, J.J.; Watson, R. Impacts of biodiversity loss on ocean ecosystem services. Science 2006, 314, 787–790. [Google Scholar] [CrossRef]
- Botana, L.M. A perspective on the toxicology of marine toxins. Chem. Res. Toxicol. 2012, 25, 1800–1804. [Google Scholar] [CrossRef]
- Botana, L.M.; Vilariño, N.; Alfonso, A.; Vale, C.; Louzao, C.; Elliott, C.T.; Campbell, K.; Botana, A.M. The problem of toxicity equivalent factors in developing alternative methods to animal bioassays for marine-toxin detection. Trends Anal. Chem. 2010, 29, 1316–1325. [Google Scholar] [CrossRef]
- Tichadou, L.; Glaizal, M.; Armengaud, A.; Grossel, H.; Lemée, R.; Kantin, R.; Lasalle, J.-L.; Drouet, G.; Rambaud, L.; Malfait, P.; de Haro, L. Health impact of unicellular algae of the Ostreopsis genus blooms in the Mediterranean Sea: experience of the French Mediterranean coast surveillance network from 2006 to 2009. Clin. Toxicol. 2010, 48, 839–844. [Google Scholar] [CrossRef]
- Mangialajo, L.; Ganzin, N.; Accoroni, S.; Asnaghi, V.; Blanfuné, A.; Cabrini, M.; Cattaneo-Vietti, R.; Chavanon, F.; Chiantore, M.; Cohu, S.; Costa, E.; Fornasaro, D.; Grossel, H.; Marco-Miralles, F.; Masó, M.; Reñé, A.; Rossi, A.M.; Sala, M.M.; Thibaut, T.; Totti, C.; Vila, M.; Lemée, R. Trends in Ostreopsis proliferation along the Northern Mediterranean coasts. Toxicon 2011, 57, 408–420. [Google Scholar] [CrossRef] [Green Version]
- Pfannkuchen, M.; Godrijan, J.; Marić Pfannkuchen, D.; Iveša, L.; Kružić, P.; Ciminiello, P.; Dell’Aversano, C.; Dello Iacovo, E.; Fattorusso, E.; Forino, M.; Tartaglione, L.; Godrijan, M. Toxin-producing Ostreopsis cf. ovata are likely to bloom undetected along coastal areas. Environ. Sci. Technol. 2012, 46, 5574–5582. [Google Scholar] [CrossRef]
- Teitelbaum, J.S.; Zatorre, R.J.; Carpenter, S.; Gendron, D.; Evans, A.C.; Gjedde, A.; Cashman, N.R. Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. New Engl. J. Med. 1990, 322, 1781–1787. [Google Scholar] [CrossRef]
- Perl, T.M.; Bédard, L.; Kosatsky, T.; Hockin, J.C.; Todd, E.C.D.; Remis, R.S. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. New Engl. J. Med. 1990, 322, 1775–1780. [Google Scholar] [CrossRef]
- Farrall, A.J.; Wardlaw, J.M. Blood–brain barrier: ageing and microvascular disease – systematic review and meta-analysis. Neurobiol. Aging 2009, 30, 337–352. [Google Scholar] [CrossRef]
- Mooradian, A.D. Effect of aging on the blood-brain barrier. Neurobiol. Aging 1988, 9, 31–39. [Google Scholar] [CrossRef]
- Mayhan, W.G. Disruption of blood-brain barrier during acute hypertension in adult and aged rats. Am. J. Physiol. 1990, 258, H1735–H1738. [Google Scholar]
- Huber, J.D.; VanGilder, R.L.; Houser, K.A. Streptozotocin-induced diabetes progressively increases blood-brain barrier permeability in specific brain regions in rats. Am. J. Physiol. 2006, 291, H2660–H2668. [Google Scholar]
- Klotz, U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab. Rev. 2009, 41, 67–76. [Google Scholar] [CrossRef]
- Jones, J.I.W.; Hawkey, C.J. Physiology and organ-related pathology of the elderly: stomach ulcers. Best Pract. Res. Clin. Gastroenterol. 2001, 15, 943–961. [Google Scholar] [CrossRef]
- Domschke, S.; Domschke, W. Gastroduodenal damage due to drugs, alcohol and smoking. Clin. Gastroenterol. 1984, 13, 405–436. [Google Scholar]
- Rainsford, K.D. An analysis of the gastro-intestinal side-effects of non-steroidal anti-inflammatory drugs, with particular reference to comparative studies in man and laboratory species. Rheumatol. Int. 1982, 2, 1–10. [Google Scholar] [CrossRef]
- Ito, E.; Yasumoto, T.; Terao, K. Morphological observations of diarrhea in mice caused by experimental ciguatoxicosis. Toxicon 1996, 34, 111–122. [Google Scholar] [CrossRef]
- Ito, E.; Satake, M.; Ofuji, K.; Kurita, N.; McMahon, T.; James, K.; Yasumoto, T. Multiple organ damage caused by a new toxin azaspiracid, isolated from mussels produced in Ireland. Toxicon 2000, 38, 917–930. [Google Scholar] [CrossRef]
- Aune, T.; Espenes, A.; Aasen, J.A.B.; Quilliam, M.A.; Hess, P.; Larsen, S. Study of possible combined toxic effects of azaspiracid-1 and okadaic acid in mice via the oral route. Toxicon 2012, 60, 895–906. [Google Scholar] [CrossRef]
- Sosa, S.; Ardizzone, M.; Beltramo, D.; Vita, F.; Dell’Ovo, V.; Barreras, A.;, Yasumoto. Repeated oral co-exposure to yessotoxin and okadaic acid: a short term toxicity study in mice. Toxicon 2013, 76, 94–102. [Google Scholar] [CrossRef]
- Murata, M.; Shimatani, M.; Sugitani, H.; Oshima, Y.; Yasumoto, T. Isolation and structural elucidation of the causative toxin of the diarrhetic shellfish poisoning. Bull. Jpn. Soc. Sci. Fish. 1982, 48, 549–552. [Google Scholar] [CrossRef]
- Yasumoto, T.; Murata, M.; Oshima, Y.; Sano, M.; Matsumoto, G.K.; Clardy, J. Diarrhetic shellfish toxins. Tetrahedron 1985, 41, 1019–1025. [Google Scholar] [CrossRef]
- Ogino, H.; Kumagai, M.; Yasumoto, T. Toxicologic evaluation of yessotoxin. Nat. Toxins 1997, 5, 255–259. [Google Scholar] [CrossRef]
- Ito, E.; Terao, K. Injury and recovery process of intestine caused by okadaic acid and related compounds. Nat. Toxins 1994, 2, 371–377. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Munday, R.; Reeve, J. Risk Assessment of Shellfish Toxins. Toxins 2013, 5, 2109-2137. https://doi.org/10.3390/toxins5112109
Munday R, Reeve J. Risk Assessment of Shellfish Toxins. Toxins. 2013; 5(11):2109-2137. https://doi.org/10.3390/toxins5112109
Chicago/Turabian StyleMunday, Rex, and John Reeve. 2013. "Risk Assessment of Shellfish Toxins" Toxins 5, no. 11: 2109-2137. https://doi.org/10.3390/toxins5112109
APA StyleMunday, R., & Reeve, J. (2013). Risk Assessment of Shellfish Toxins. Toxins, 5(11), 2109-2137. https://doi.org/10.3390/toxins5112109