The Possible Diagnostic and Prognostic Use of Systemic Chemokine Profiles in Clinical Medicine—The Experience in Acute Myeloid Leukemia from Disease Development and Diagnosis via Conventional Chemotherapy to Allogeneic Stem Cell Transplantation
Abstract
:1. Introduction
Chemokine | Original name | Receptor | Releasing cells or organs | Important functions |
---|---|---|---|---|
CXC (α) chemokine | ||||
CXCL1 | GROα | CXCR2 > CXCR1, Duffy | MC, AML, EC, MP | ↑ angiogenesis, anti-infectious activity |
CXCL2 | GROβ | CXCR2, Duffy | MC, MP | ↑ angiogenesis |
CXCL3 | GROγ | CXCR2, Duffy | MC, MP | ↑ angiogenesis |
CXCL4 | PF-4 | CXCR3 | Platelets, MK | Immunostimulatory, ↓ Angiogenesis |
CXCL5 | ENA-78 | CXCR2 | MC | ↑ angiogenesis |
CXCL6 | GCP-2 | CXCR1-2 | MP, EC | ↑ angiogenesis, immunostimulatory |
CXCL7 | NAP-2 | CXCR1-2, Duffy | BMSC, MK | ↑ angiogenesis |
CXCL8 | IL-8 | CXCR1-2, Duffy | T-cells, MC, AML | ↑ angiogenesis |
CXCL9 | MIG | CXCR3 | T-cells, MC, AML | ↓ hematopoiesis, ↓ angiogenesis |
CXCL10 | IP-10 | CXCR3 | AML, T-cells, DC | ↓ Angiogenesis, involved transplant rejection |
CXCL11 | I-TAC | CXCR3, CXCR7 | AML, T-cells, DC | ↓ Angiogenesis, involved transplant rejection |
CXCL12 | SDF-1 | CXCR4, CXCR7 | SLO, BMSC | ↓ Angiogenesis, anti-infectious activity |
CXCL13 | BCA-1 | CXCR5 | SLO, DC | ↓ hematopoiesis, anti-infectious activity |
CXCL14 | BRAK | Unknown | Epithelial cells | Fibroblast growth factor |
CXCL15 | Lungkine | Unknown | Mucosal, endocrine org | ↑ neutrophil migration, regulation of hematopoiesis |
CXCL16 | SR-PSOX | CXCR6 | DC, MP | ↓ hematopoiesis |
CC (β) chemokine | ||||
CCL1 | I-309 | CCR8 | T-cells | Immunostimulatory, ↑ angiogenesis |
CCL2 | MCP-1 | CCR2, CCR4, Duffy, D6 | MC, AML, EC, DC | ↓ hematopoiesis, ↑ angiogenesis |
CCL3 | MIP-1α | CCR1, CCR4-5, D6 | EC, BMSC, T-cells, DC | ↓ hematopoiesis, ↑ angiogenesis |
CCL4 | MIP-1β | CCR1, CCR5, CCR8, D6 | T-cells, MC, AML | Regulation of inflammation |
CCL5 | RANTES | CCR1, CCR3-5, Duffy, D6 | T-cells, MC, AML | Regulation of inflammation, tumor inhibition |
CCL6 | CCR1, CCR2-3, D6 | BMSC | Regulation of inflammation | |
CCL7 | MCP-3 | CCR1-4, D6 | MC | Regulation of inflammation, tumor inhibition |
CCL8 | MCP-2 | CCR2-3, CCR5, D6 | BMSC | Regulation of inflammation |
CCL9/10 | CCR1 | SLO, MP | Regulation osteoclast function | |
CC (β) chemokine | ||||
CCL1 | I-309 | CCR8 | T-cells | Immunostimulatory, ↑ angiogenesis |
CCL2 | MCP-1 | CCR2, CCR4, Duffy, D6 | MC, AML, EC, DC | ↓ hematopoiesis, ↑ angiogenesis |
CCL3 | MIP-1α | CCR1, CCR4-5, D6 | EC, BMSC, T-cells, DC | ↓ hematopoiesis, ↑ angiogenesis |
CCL4 | MIP-1β | CCR1, CCR5, CCR8, D6 | T-cells, MC, AML | Regulation of inflammation |
CCL5 | RANTES | CCR1, CCR3-5, Duffy, D6 | T-cells, MC, AML | Regulation of inflammation, tumor inhibition |
CCL6 | CCR1, CCR2-3, D6 | BMSC | Regulation of inflammation | |
CCL7 | MCP-3 | CCR1-4, D6 | MC | Regulation of inflammation, tumor inhibition |
CCL8 | MCP-2 | CCR2-3, CCR5, D6 | BMSC | Regulation of inflammation |
CCL9/10 | CCR1 | SLO, MP | Regulation osteoclast function | |
CCL11 | Eotaxin | CCR3, Duffy | MC | ↑ angiogenesis |
CCL12 | CCR2, D6 | Murine SLO | Regulation of inflammation, fibrosis | |
CCL13 | MCP-4 | CCR1-3, Duffy, D6 | AML | Regulation of inflammation |
CCL14 | HCC-1 | CCR1, CCR5, Duffy, D6 | BMSC, SLO | Regulation of inflammation |
CCL15 | Lkn-1 | CCR1, CCR3 | T-cells, MC, DC | ↑ angiogenesis, ↑ inflammation |
CCL16 | LEC | CCR1, CCR3, CCR5 | Hepatocytes | ↑ angiogenesis, immune regulating |
CCL17 | TARC | CCR4, D6 | SLO, MC, AML, DC | Regulation of inflammation, graft rejection |
CCL18 | PARC | Unknown | SLO, DC | Anti-infectious activity |
CCL19 | ELC | CCR7, CCX-CKR | SLO, BMSC, DC | Regulation of AG presentation, cellular immunity |
CCL20 | LARC | CCR6 | SLO | Regulation of inflammation, tumor inhibition |
CCL21 | SLC | CCR7, CXX-CKR | SLO, DC | Important for AG presentation, cellular immunity |
CCL22 | MDC | CCR4, D6 | SLO, MC, AML, EC | Regulation of inflammation, graft rejection |
CCL23 | MPIF-1 | CCR1 | EC, MC, DC | ↑ angiogenesis, biomarker inflammation |
CCL24 | MPIF-2 | CCR3 | AML | Allergic inflammation |
CCL25 | TECK | CCR9, CXX-CKR | Thymus | Involved in inflammation |
CCL26 | Eotaxin-3 | CCR3 | MC, EC | Allergic inflammation |
CCL27 | Eskine | CCR2-3, CCR10 | Epidermal cells | Regulation of inflammation in the skin |
CCL28 | MEC | CCR10, CCR3 | EC | Antimicrobial activity |
C (γ) chemokine | ||||
XCL1 | Lymphotactin-α | XCL1 | MP, Neutrophils | ↑ hematopoiesis, anti-infectious activity |
XCL2 | Lymphotactin-β | XCL2 | T-cells, MP | Regulation of immune-/inflammatory responses |
CX3C (δ) chemokine | ||||
CX3CL1 | Fractalkine | CX3CL1 | MP, MC, DC | ↑ angiogenesis, atherosclerosis, inflammation |
Chemokine | Variations in Systemic Serum/Plasma Levels |
---|---|
CCL2 | Untreated AML: Increased levels described in one study [43], but Fredly et al. [39], including mainly older patients above 65 years of age, as well as Kornblau et al . did not detect this difference [40]. |
Expression in patient subsets: Fredly et al . [39] described decreased expression for elderly patients with CD14+ AML cells, whereas Kornblau et al . [40] described lower levels in younger patients with low-risk cytogenetic abnormalities. | |
CCL3 | Untreated AML: Decreased levels described in one study [40], but normal levels described in another study, including mainly elderly patients [39]. |
CCL4 | Untreated AML: Normal plasma levels [39,40]. |
CCL5 | Untreated AML, patient subsets: Increased serum levels described in AML patients above 70 years of age compared with younger patients [39], and for the younger patients, levels were decreased compared with healthy controls [40]. |
CCL11 | Untreated AML: Plasma levels are not generally altered [39,40]. Patient subsets: Decreased levels are seen for patients with high CD14 expression by the AML cells [39,40]. |
CCL17 | Untreated AML: Decreased levels that show a further decrease during and following intensive chemotherapy [44]. |
CCL18 | Untreated AML: Normal levels [45]. |
CXCL5 | Untreated AML: Decreased levels [39]. |
CXCL8 | Untreated AML: Increased serum levels are detected, and especially for patients with monocyte variants [39,46,47], these levels normalize when patients achieve complete hematological remission [47]. |
Acute phase reactions: Increased levels are detected during febrile neutropenia and especially in septicemia or septic shock [48,49,50]. | |
CXCL10 | Untreated AML: Increased levels (most clearly seen in younger patients) have been detected [40,44]; these levels were not affected by chemotherapy, and increased levels persisted even after induction of hematological remission [51]. |
CXCL12 | Untreated AML: Increased levels [43,44,52] and increased total CXCL12 levels are then accompanied by decreased levels of the functional non-cleaved form [52]. |
2. Systemic Levels of Single Soluble Mediators in Patients with AML: Chemokines versus Other Soluble Mediators
2.1. The Clinical Impact of Single Chemokine Levels
2.2. Systemic (Serum/Plasma) Levels of Immunoregulatory Cytokines and Growth Factors Other than the Chemokines
- Serum cytokine levels can also be altered by disease progression in patients with myeloproliferative neoplasms; IL2, soluble IL2 receptor and IL6 levels were increased after progression to AML in patients with progression from chronic myelofibrosis to AML [60].
- Several hematopoietic growth factors (i.e., granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), IL3, fms-like tyrosine kinase 3 ligand (Flt3-L)) show detectable levels in AML patients; these levels can be decreased by response to chemotherapy and/or increased by severe complicating infections [63].
2.3. Soluble Adhesion Molecules and Matrix Metalloproteases (MMPs) in Human AML
2.4. Conclusion: Systemic Chemokine Levels as Biomarkers in Human Diseases Will Probably Be Most Useful when Investigated as Chemokine Profiles and Combined with Analysis of Other Biologically Interacting Soluble Mediators
3. Cytokine Classification Based on the Main Function in Human AML
Soluble mediators | Functional interaction |
---|---|
Hematopoietic growth factors | Several hematopoietic growth factors facilitate AML cell proliferation, including G-CSF, GM-CSF, M-CSF, IL1, IL3, SCF, Flt3-L [20,41,47,50,55,56,57,58,63,71,72]. |
Angioregulatory cytokines | Angiogenesis seems to be important, both for leukemogenesis and chemosensitivity and several angioregulatory cytokines interact with the pro- and anti-angiogenic chemokines [20,42,43,44,46,51,58,61,62]. |
Soluble adhesion molecules | Several adhesion molecules exist in biologically active soluble forms [49]. These molecules can be formed either by shedding from the cell membrane, or they are synthesized as soluble isoforms of the molecules; the molecules can interact with cell trafficking/migration [49,65]. |
Soluble cytokine receptors | Several cytokine receptors are also released in biologically active soluble forms, e.g., TNF and IL2 receptors [48,52]. The systemic levels of certain receptors have prognostic impact; the mechanisms behind this could be either competition for cytokine binding sites with the membrane-expressed receptors, transport of the cytokines or prevention of degradation [54]. |
Heat shock proteins | The chaperones can be released together with their client proteins. The soluble levels of certain heat shock proteins can have a prognostic impact in human AML, and they may facilitate presentation of cancer-associated antigens [39,70]. |
Matrix metalloproteases | MMPs and the inhibitory TIMPs regulate degradation of extracellular matrix proteins and proteolytic activation of chemokines [38,66]. |
Cytokine classification | Cytokines |
---|---|
Chemokines | The CCL family of chemokines, 28 members numbered from CCL1 to CCL28 |
The CXCL family of chemokines, 16 members numbered from CXCL1 to CXCL16 (including CXCL8 that is also referred to as IL8) | |
C (γ) chemokines: XCL1, XCL2 | |
CX3CL1 | |
Interleukins | The major immunoregulatory interleukins, including IL1, IL2, IL4, IL5, IL6, IL7, IL8, IL9, IL10, IL11, IL12, IL13, IL17 |
IL1 receptor antagonist (a natural receptor antagonist) | |
Growth factors | IL3 |
Granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor G-CSF, | |
macrophage colony-stimulating factor (M-CSF), fms-like tyrosine kinase ligand (Flt3 L) | |
Vascular endothelial growth factor (VEGF, hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF) | |
epithelial growth factor (EGF9 | |
Erythropoietin (Epo), thrombopoietin (Tpo), stem cell factor (SCF) | |
Leptin | |
Immunoregulatory cytokines | CD40 Ligand, Interferon ( IFN)γ, tumor necrosis factor (TNF)α |
4. Methodological Strategies for Analysis of Cytokine Profiles
4.1. Serum versus Plasma Samples
4.2. Design of Normal Control Groups
4.3. Analysis of Cytokine Profiles—Statistics and Bioinformatics
5. Effects of Locally Released Soluble Mediators on Distant Organs—The Lesson from Mesenchymal Stem/Stromal Cell Infusions
6. Systemic Cytokine Profiles in Clinical Hematology
6.1. Similarities between Normal and Pathological Cytokine Profiles
6.2. Prognostication of Patients Receiving Conventional Intensive AML Chemotherapy
6.3. The Cytokine Profiles in AML Patients Receiving Low-Toxicity Disease-Stabilizing Treatment Based on Valproic Acid and All-Trans Retinoic Acid (ATRA)
6.4. Chemokine Serum Levels in Patients Receiving Disease-Stabilizing Treatment with Azacitidine Alone or Sequential Azacitidine and Lenalidomide
6.5. Systemic Chemokine Levels in the Preleukemic MDS
6.6. Systemic Cytokine Profiles as a Diagnostic Tool in Preleukemic MDS
6.7. The Pretransplant Cytokine Profile as a Possible Risk Factor for Acute GVHD in Patients Receiving Allogeneic Stem Cell Transplantation
6.8. Serum Cytokine Levels to Diagnose and Predict Outcome in Acute GVHD
1. Studies of single cytokines in acute GVHD | |
Acute GVHD is associated with increased systemic levels of single proinflammatory cytokines; for references, see [110] | |
IL6, IL8/CXCL8 | Both increased |
IL12 | Divergent effects; most studies describe normal levels, but one study described increased levels |
IL15, IL18 | Both increased |
TNFα | Divergent results; this cytokine has been investigated in several studies and both increased and normal levels have been described |
TNF receptor 1 | Increased |
IL2 receptor | Divergent effects; most studies describe increased levels, but normal levels were described in one study |
IFNγ | Divergent effects; most studies described increased levels, but one study described normal levels |
HGF | Increased |
2. Analysis of a large panel of immunoregulatory soluble mediators and selection of markers for further studies. | |
A study of systemic levels of 120 mediators in allotransplanted patients with acute GVHD, including the chemokines CCL2, CCL3, CCL5, CCL7, CCL8, CCL11, CCL13 and CXCL10 together with other cytokines, soluble receptors and adhesion molecules [82]. Four markers of particular importance were identified as markers of acute GVHD. | |
IL8/CXCL8 | Important for local recruitment of immunocompetent cells; additional proangiogenic effects |
IL2 receptor γ | Activated T-cells show increased expression of this growth factor receptor |
HGF | An immunoregulatory cytokine that may have immunosuppressive effects, but shows increased systemic levels in human acute GVHD |
TNFR1 | TNFα is a proinflammatory cytokine released by many immunocompetent cells |
3. Addition of organ-specific markers. | |
Acute GVHD is seen especially in the skin, liver and gastrointestinal tract [112,113,114]. Two organ-specific markers were added to the immunoregulatory markers . | |
Elafin | A skin-specific marker |
Reg-3α | This marker is expressed especially in the gastrointestinal tract |
4. Validation of a simplified systemic soluble mediator profile for diagnosis and prognostication in acute GVHD [114]. | |
Conclusion: A simplified systemic profile consisting of four immunoregulatory mediators (including the CXCL8 chemokine) and two organ-specific markers can be used for early diagnosis and prognostication of acute GVHD. |
6.9. The Cytokine Profile Late after Allogeneic Stem Cell Transplantation
7. The Importance of Sampling Standardization When Analyzing Effects of Therapeutic Interventions
8. Concluding Comments
- Platelets contain a wide range of chemokines that can be released during activation, including CCL2, CCL3, CCL5, CCL7, CCL17, CXCL1, CXCL4, CXCL5, CXCL7, CXCL8/IL8 and CXCL12 [73]. Platelet release during preparation of serum samples will influence these levels, and plasma samples may therefore be more convenient when these mediators are analyzed.
- Systemic plasma or serum cytokine profiles can be altered by several clinical procedures (e.g., transfusions, age, chemotherapy) and even diurnal variations; a careful standardization of sampling is therefore necessary.
- Chemokines should be included in evaluation of systemic cytokine profiles, because they are important for many different biological functions, and their levels, therefore, seem to reflect the nature (inflammation, platelet/endothelium activation, immune activation, angioregulation, altered hematopoiesis, platelet/endothelium interactions) and strength of the biological response, rather than the localization/organ involvement.
- Chemokines are released by a wide range of cells and in a wide range of organs, and the optimal clinical use of systemic chemokine analyses will probably require analyses of chemokines together with (i) organ-specific mediators and (ii) other soluble mediators that interact or contribute together with the chemokines in normal or pathological processes.
Acknowledgements
References
- Kittang, A.O.; Hatfield, K.; Sand, K.; Reikvam, H.; Bruserud, O. The chemokine network in acute myelogenous leukemia: Molecular mechanisms involved in leukemogenesis and therapeutic implications. Curr. Top. Microbiol. Immunol. 2010, 341, 149–172. [Google Scholar]
- Vereecque, R.; Saudemont, A.; Quesnel, B. Cytosine arabinoside induces costimulatory molecule expression in acute myeloid leukemia cells. Leukemia 2004, 18, 1223–1230. [Google Scholar] [CrossRef]
- Garcia, G.; Godot, V.; Humbert, M. New chemokine targets for asthma therapy. Curr. Allergy Asthma Rep. 2005, 5, 155–160. [Google Scholar] [CrossRef]
- Lake, R.A.; Robinson, B.W. Immunotherapy and chemotherapy—A practical partnership. Nat. Rev. Cancer 2005, 5, 397–405. [Google Scholar] [CrossRef]
- Yang, D.; Chen, Q.; Hoover, D.M.; Staley, P.; Tucker, K.D.; Lubkowski, J.; Oppenheim, J.J. Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J. Leukoc. Biol. 2003, 74, 448–455. [Google Scholar] [CrossRef]
- Charo, I.F.; Ransohoff, R.M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 2006, 354, 610–621. [Google Scholar] [CrossRef]
- Bruserud, O.; Wendelboe, O. Biological treatment in acute myelogenous leukaemia: How should T-cell targeting immunotherapy be combined with intensive chemotherapy? Expert Opin. Biol. Ther. 2001, 1, 1005–1016. [Google Scholar] [CrossRef]
- Cao, W.; Tang, S.; Yuan, H.; Wang, H.; Zhao, X.; Lu, H. Mycobacterium tuberculosis antigen Wag31 induces expression of C-chemokine XCL2 in macrophages. Curr. Microbiol. 2008, 57, 189–194. [Google Scholar] [CrossRef]
- Kennedy, J.; Kelner, G.S.; Kleyensteuber, S.; Schall, T.J.; Weiss, M.C.; Yssel, H.; Schneider, P.V.; Cocks, B.G.; Bacon, K.B.; Zlotnik, A. Molecular cloning and functional characterization of human lymphotactin. J. Immunol. 1995, 155, 203–209. [Google Scholar]
- Hieshima, K.; Ohtani, H.; Shibano, M.; Izawa, D.; Nakayama, T.; Kawasaki, Y.; Shiba, F.; Shiota, M.; Katou, F.; Saito, T.; Yoshie, O. CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J. Immunol. 2003, 170, 1452–1461. [Google Scholar]
- Wang, W.; Soto, H.; Oldham, E.R.; Buchanan, M.E.; Homey, B.; Catron, D.; Jenkins, N.; Copeland, N.G.; Gilbert, D.J.; Nguyen, N.; et al. Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J. Biol. Chem. 2000, 275, 22313–22323. [Google Scholar]
- Nowak, A.K.; Robinson, B.W.; Lake, R.A. Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res. 2003, 63, 4490–4496. [Google Scholar]
- Bergmann-Leitner, E.S.; Abrams, S.I. Treatment of human colon carcinoma cell lines with anti-neoplastic agents enhances their lytic sensitivity to antigen-specific CD8+ cytotoxic T lymphocytes. Cancer Immunol. Immunother. 2001, 50, 445–455. [Google Scholar] [CrossRef]
- Nomiyama, H.; Hieshima, K.; Nakayama, T.; Sakaguchi, T.; Fujisawa, R.; Tanase, S.; Nishiura, H.; Matsuno, K.; Takamori, H.; Tabira, Y.; et al. Human CC chemokine liver-expressed chemokine/CCL16 is a functional ligand for CCR1, CCR2 and CCR5, and constitutively expressed by hepatocytes. Int. Immunol. 2001, 13, 1021–1029. [Google Scholar] [CrossRef]
- Joubert, P.; Lajoie-Kadoch, S.; Wellemans, V.; Letuve, S.; Tulic, M.K.; Halayko, A.J.; Hamid, Q. Expression and regulation of CCL15 by human airway smooth muscle cells. Clin. Exp. Allergy 2012, 42, 85–94. [Google Scholar] [CrossRef]
- Sarafi, M.N.; Garcia-Zepeda, E.A.; MacLean, J.A.; Charo, I.F.; Luster, A.D. Murine monocyte chemoattractant protein (MCP)-5: A novel CC chemokine that is a structural and functional homologue of human MCP-1. J. Exp. Med. 1997, 185, 99–109. [Google Scholar] [CrossRef]
- Moore, B.B.; Murray, L.; Das, A.; Wilke, C.A.; Herrygers, A.B.; Toews, G.B. The role of CCL12 in the recruitment of fibrocytes and lung fibrosis. Am. J. Respir. Cell Mol. Biol. 2006, 35, 175–181. [Google Scholar] [CrossRef]
- Lean, J.M.; Murphy, C.; Fuller, K.; Chambers, T.J. CCL9/MIP-1gamma and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J. Cell. Biochem. 2002, 87, 386–393. [Google Scholar] [CrossRef]
- Moser, B.; Wolf, M.; Walz, A.; Loetscher, P. Chemokines: Multiple levels of leukocyte migration control. Trends Immunol. 2004, 25, 75–84. [Google Scholar] [CrossRef]
- Bruserud, O.; Ryningen, A.; Olsnes, A.M.; Stordrange, L.; Oyan, A.M.; Kalland, K.H.; Gjertsen, B.T. Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells. Haematologica 2007, 92, 332–341. [Google Scholar] [CrossRef]
- Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25, 677–686. [Google Scholar] [CrossRef]
- McColl, S.R. Chemokines and dendritic cells: A crucial alliance. Immunol. Cell Biol. 2002, 80, 489–496. [Google Scholar] [CrossRef]
- Lebre, M.C.; Burwell, T.; Vieira, P.L.; Lora, J.; Coyle, A.J.; Kapsenberg, M.L.; Clausen, B.E.; De Jong, E.C. Differential expression of inflammatory chemokines by Th1- and Th2-cell promoting dendritic cells: A role for different mature dendritic cell populations in attracting appropriate effector cells to peripheral sites of inflammation. Immunol. Cell Biol. 2005, 83, 525–535. [Google Scholar] [CrossRef]
- Rossi, D.; Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 2000, 18, 217–242. [Google Scholar] [CrossRef]
- Ma, B.; Zhu, Z.; Homer, R.J.; Gerard, C.; Strieter, R.; Elias, J.A. The C10/CCL6 chemokine and CCR1 play critical roles in the pathogenesis of IL-13-induced inflammation and remodeling. J. Immunol. 2004, 172, 1872–1881. [Google Scholar]
- Jun, K.J.; Lee, M.J.; Shin, D.C.; Woo, M.Y.; Kim, K.; Park, S. Identification of CCL1 as a gene differentially expressed in CD4 T cells expressing TIM-3. Immune Netw. 2011, 11, 203–209. [Google Scholar] [CrossRef]
- Schmitz, J.M.; McCracken, V.J.; Dimmitt, R.A.; Lorenz, R.G. Expression of CXCL15 (Lungkine) in murine gastrointestinal, urogenital, and endocrine organs. J. Histochem. Cytochem. 2007, 55, 515–524. [Google Scholar] [CrossRef]
- Augsten, M.; Hagglof, C.; Olsson, E.; Stolz, C.; Tsagozis, P.; Levchenko, T.; Frederick, M.J.; Borg, A.; Micke, P.; Egevad, L.; Ostman, A. CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc. Natl. Acad. Sci. USA 2009, 106, 3414–3419. [Google Scholar]
- Meuter, S.; Moser, B. Constitutive expression of CXCL14 in healthy human and murine epithelial tissues. Cytokine 2008, 44, 248–255. [Google Scholar] [CrossRef]
- Pillai, M.M.; Iwata, M.; Awaya, N.; Graf, L.; Torok-Storb, B. Monocyte-derived CXCL7 peptides in the marrow microenvironment. Blood 2006, 107, 3520–3526. [Google Scholar] [CrossRef]
- Linge, H.M.; Collin, M.; Nordenfelt, P.; Morgelin, M.; Malmsten, M.; Egesten, A. The human CXC chemokine granulocyte chemotactic protein 2 (GCP-2)/CXCL6 possesses membrane-disrupting properties and is antibacterial. Antimicrob. Agents Chemother. 2008, 52, 2599–2607. [Google Scholar] [CrossRef]
- Kasper, B.; Petersen, F. Molecular pathways of platelet factor 4/CXCL4 signaling. Eur. J. Cell Biol. 2011, 90, 521–526. [Google Scholar] [CrossRef]
- Allen, S.J.; Crown, S.E.; Handel, T.M. Chemokine: Receptor structure, interactions, and antagonism. Ann. Rev. Immunol. 2007, 25, 787–820. [Google Scholar] [CrossRef]
- Bruserud, O.; Kittang, A.O. The chemokine system in experimental and clinical hematology. Curr. Top Microbiol. Immunol. 2010, 341, 3–12. [Google Scholar] [CrossRef]
- Hatfield, K.J.; Olsnes, A.M.; Gjertsen, B.T.; Bruserud, O. Antiangiogenic therapy in acute myelogenous leukemia: Targeting of vascular endothelial growth factor and interleukin 8 as possible antileukemic strategies. Curr. Cancer Drug Targ. 2005, 5, 229–248. [Google Scholar] [CrossRef]
- Hatfield, K.; Oyan, A.M.; Ersvaer, E.; Kalland, K.H.; Lassalle, P.; Gjertsen, B.T.; Bruserud, O. Primary human acute myeloid leukaemia cells increase the proliferation of microvascular endothelial cells through the release of soluble mediators. Br. J. Haematol. 2009, 144, 53–68. [Google Scholar] [CrossRef]
- Hatfield, K.; Ryningen, A.; Corbascio, M.; Bruserud, O. Microvascular endothelial cells increase proliferation and inhibit apoptosis of native human acute myelogenous leukemia blasts. Int. J. Cancer 2006, 119, 2313–2321. [Google Scholar] [CrossRef]
- Hatfield, K.J.; Reikvam, H.; Bruserud, O. The crosstalk between the matrix metalloprotease system and the chemokine network in acute myeloid leukemia. Curr. Med. Chem. 2010, 17, 4448–4461. [Google Scholar] [CrossRef]
- Fredly, H.; Reikvam, H.; Gjertsen, B.T.; Bruserud, O. Disease-stabilizing treatment with all-trans retinoic acid and valproic acid in acute myeloid leukemia: Serum hsp70 and hsp90 levels and serum cytokine profiles are determined by the disease, patient age, and anti-leukemic treatment. Am. J. Hematol. 2012, 87, 368–376. [Google Scholar] [CrossRef]
- Kornblau, S.M.; McCue, D.; Singh, N.; Chen, W.; Estrov, Z.; Coombes, K.R. Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood 2010, 116, 4251–4261. [Google Scholar] [CrossRef]
- Van Etten, R.A. Aberrant cytokine signaling in leukemia. Oncogene 2007, 26, 6738–6749. [Google Scholar] [CrossRef]
- Reikvam, H.; Hatfield, K.; Fredly, H.; Nepstad, I.; Mosevoll, K.A.; Bruserud, Ø. The angiorgeulatory cytokine network in human acute myeloid leukemia—From leukemogenesis via remission to stem cell transplantasion. Eur. Cytokine Netw. 2012, 23, 140–153. [Google Scholar]
- Mazur, G.; Wrobel, T.; Butrym, A.; Kapelko-Slowik, K.; Poreba, R.; Kuliczkowski, K. Increased monocyte chemoattractant protein 1 (MCP-1/CCL-2) serum level in acute myeloid leukemia. Neoplasma 2007, 54, 285–289. [Google Scholar]
- Olsnes, A.M.; Motorin, D.; Ryningen, A.; Zaritskey, A.Y.; Bruserud, O. T lymphocyte chemotactic chemokines in acute myelogenous leukemia (AML): Local release by native human AML blasts and systemic levels of CXCL10 (IP-10), CCL5 (RANTES) and CCL17 (TARC). Cancer Immunol. Immunother. 2006, 55, 830–840. [Google Scholar] [CrossRef]
- Struyf, S.; Schutyser, E.; Gouwy, M.; Gijsbers, K.; Proost, P.; Benoit, Y.; Opdenakker, G.; Van Damme, J.; Laureys, G. PARC/CCL18 is a plasma CC chemokine with increased levels in childhood acute lymphoblastic leukemia. Am. J. Pathol. 2003, 163, 2065–2075. [Google Scholar] [CrossRef]
- Negaard, H.F.; Iversen, N.; Bowitz-Lothe, I.M.; Sandset, P.M.; Steinsvik, B.; Ostenstad, B.; Iversen, P.O. Increased bone marrow microvascular density in haematological malignancies is associated with differential regulation of angiogenic factors. Leukemia 2009, 23, 162–169. [Google Scholar] [CrossRef]
- Hsu, H.C.; Lee, Y.M.; Tsai, W.H.; Jiang, M.L.; Ho, C.H.; Ho, C.K.; Wang, S.Y. Circulating levels of thrombopoietic and inflammatory cytokines in patients with acute myeloblastic leukemia and myelodysplastic syndrome. Oncology 2002, 63, 64–69. [Google Scholar]
- Ostermann, H.; Rothenburger, M.; Mesters, R.M.; van de Loo, J.; Kienast, J. Cytokine response to infection in patients with acute myelogenous leukaemia following intensive chemotherapy. Br. J. Haematol. 1994, 88, 332–337. [Google Scholar] [CrossRef]
- Bruserud, O.; Halstensen, A.; Peen, E.; Solberg, C.O. Serum levels of adhesion molecules and cytokines in patients with acute leukaemia. Leuk. Lymphoma 1996, 23, 423–430. [Google Scholar] [CrossRef]
- Schonbohn, H.; Schuler, M.; Kolbe, K.; Peschel, C.; Huber, C.; Bemb, W.; Aulitzky, W.E. Plasma levels of IL-1, TNF alpha, IL-6, IL-8, G-CSF, and IL1-RA during febrile neutropenia: Results of a prospective study in patients undergoing chemotherapy for acute myelogenous leukemia. Ann. Hematol. 1995, 71, 161–168. [Google Scholar] [CrossRef]
- Olsnes, A.M.; Hatfield, K.J.; Bruserud, O. The chemokine system and its contribution to leukemogenesis and treatment responsiveness in patients with acute myeloid leukemia. J. BUON 2009, 14, S131–S140. [Google Scholar]
- Kalinkovich, A.; Tavor, S.; Avigdor, A.; Kahn, J.; Brill, A.; Petit, I.; Goichberg, P.; Tesio, M.; Netzer, N.; Naparstek, E.; et al. Functional CXCR4-expressing microparticles and SDF-1 correlate with circulating acute myelogenous leukemia cells. Cancer Res. 2006, 66, 11013–11020. [Google Scholar] [CrossRef]
- Feng, X.; Scheinberg, P.; Wu, C.O.; Samsel, L.; Nunez, O.; Prince, C.; Ganetzky, R.D.; McCoy, J.P., Jr.; Maciejewski, J.P.; Young, N.S. Cytokine signature profiles in acquired aplastic anemia and myelodysplastic syndromes. Haematologica 2011, 96, 602–606. [Google Scholar] [CrossRef]
- Baker, S.J.; Rane, S.G.; Reddy, E.P. Hematopoietic cytokine receptor signaling. Oncogene 2007, 26, 6724–6737. [Google Scholar] [CrossRef]
- Russell, N.H. Autocrine growth factors and leukaemic haemopoiesis. Blood Rev. 1992, 6, 149–156. [Google Scholar] [CrossRef]
- Elbaz, O.; Shaltout, A. Implication of granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-3 (IL-3) in children with acute myeloid leukaemia (AML); malignancy. Hematology 2001, 5, 383–388. [Google Scholar]
- Tao, M.; Li, B.; Nayini, J.; Andrews, C.B.; Huang, R.W.; Devemy, E.; Song, S.; Venugopal, P.; Preisler, H.D. SCF, IL-1β, IL-1ra and GM-CSF in the bone marrow and serum of normal individuals and of AML and CML patients. Cytokine 2000, 12, 699–707. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Estey, E.; Wen, S.; Pierce, S.; Kantarjian, H.; Albitar, M.; Kurzrock, R. The prognostic significance of cytokine levels in newly diagnosed acute myeloid leukemia and high-risk myelodysplastic syndromes. Cancer 2008, 113, 1605–1613. [Google Scholar] [CrossRef]
- Foss, B.; Nesthus, I.; Bergheim, J.; Bruserud, O. Serum levels of thrombopoietin and stem cell factor in acute leukemia patients with chemotherapy-induced cytopenia and complicating infections. Platelets 1999, 10, 17–23. [Google Scholar] [CrossRef]
- Panteli, K.E.; Hatzimichael, E.C.; Bouranta, P.K.; Katsaraki, A.; Seferiadis, K.; Stebbing, J.; Bourantas, K.L. Serum interleukin (IL)-1, IL-2, sIL-2Ra, IL-6 and thrombopoietin levels in patients with chronic myeloproliferative diseases. Br. J. Haematol. 2005, 130, 709–715. [Google Scholar] [CrossRef]
- Kim, J.G.; Sohn, S.K.; Kim, D.H.; Baek, J.H.; Lee, N.Y.; Suh, J.S.; Chae, S.C.; Lee, K.S.; Lee, K.B. Clinical implications of angiogenic factors in patients with acute or chronic leukemia: Hepatocyte growth factor levels have prognostic impact, especially in patients with acute myeloid leukemia. Leuk. Lymphoma 2005, 46, 885–891. [Google Scholar] [CrossRef]
- Aguayo, A.; Kantarjian, H.M.; Estey, E.H.; Giles, F.J.; Verstovsek, S.; Manshouri, T.; Gidel, C.; O’Brien, S.; Keating, M.J.; Albitar, M. Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer 2002, 95, 1923–1930. [Google Scholar] [CrossRef]
- Bruserud, O.; Foss, B.; Petersen, H. Hematopoietic growth factors in patients receiving intensive chemotherapy for malignant disorders: Studies of granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin-3 (IL-3) and Flt-3 ligand (Flt3L). Eur. Cytokine Netw. 2001, 12, 231–238. [Google Scholar]
- Chou, W.-C.; Huang, H.-H.; Hou, H.-A.; Chen, C.-Y.; Tang, J.-L.; Yao, M.; Tsay, W.; Ko, B.-S.; Wu, S.-J.; Huang, S.-Y.; et al. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood 2010, 116, 4086–4094. [Google Scholar] [CrossRef]
- Hatfield, K.J.; Lassalle, P.; Leiva, R.A.; Lindas, R.; Wendelboe, O.; Bruserud, O. Serum levels of endothelium-derived endocan are increased in patients with untreated acute myeloid leukemia. Hematology 2011, 16, 351–356. [Google Scholar] [CrossRef]
- Reikvam, H.; Hatfield, K.J.; Oyan, A.M.; Kalland, K.H.; Kittang, A.O.; Bruserud, O. Primary human acute myelogenous leukemia cells release matrix metalloproteases and their inhibitors: Release profile and pharmacological modulation. Eur. J. Haematol. 2010, 84, 239–251. [Google Scholar] [CrossRef]
- Bruserud, O.; Gjertsen, B.T.; Foss, B.; Huang, T.S. New strategies in the treatment of acute myelogenous leukemia (AML): In vitro culture of aml cells—The present use in experimental studies and the possible importance for future therapeutic approaches. Stem Cells 2001, 19, 1–11. [Google Scholar] [CrossRef]
- Clarke, C.; Smyth, M.J. Calreticulin exposure increases cancer immunogenicity. Nat. Biotechnol. 2007, 25, 192–193. [Google Scholar] [CrossRef]
- Fitzgerald, K.A. The Cytokine: FactsBook; Academic Press: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Fredly, H.; Ersvaer, E.; Gjertsen, B.T.; Bruserud, O. Immunogenic apoptosis in human acute myeloid leukemia (AML): Primary human AML cells expose calreticulin and release heat shock protein (HSP) 70 and HSP90 during apoptosis. Oncol. Rep. 2011, 25, 1549–1556. [Google Scholar]
- Foss, B.; Hervig, T.; Bruserud, O. Connexins are active participants of hematopoietic stem cell regulation. Stem Cells Dev. 2009, 18, 807–812. [Google Scholar] [CrossRef]
- Bruserud, O.; Gjertsen, B.T.; von Volkman, H.L. In vitro culture of human acute myelogenous leukemia (AML) cells in serum-free media: Studies of native AML blasts and AML cell lines. J. Hematother. Stem Cell Res. 2000, 9, 923–932. [Google Scholar] [CrossRef]
- Bruserud, O. Bidirectional crosstalk between platelets and monocytes initiated by toll-like receptor: An important step in the early defense against fungal infections? Platelets 2013, 24, 85–97. [Google Scholar] [CrossRef]
- Bergkvist, A.; Rusnakova, V.; Sindelka, R.; Garda, J.M.; Sjogreen, B.; Lindh, D.; Forootan, A.; Kubista, M. Gene expression profiling—Clusters of possibilities. Methods 2010, 50, 323–335. [Google Scholar] [CrossRef]
- Reikvam, H.; Mosevoll, K.A.; Melve, G.K.; Gunther, C.C.; Sjo, M.; Bentsen, P.T.; Bruserud, O. The pretransplantation serum cytokine profile in allogeneic stem cell recipients differs from healthy individuals, and various profiles are associated with different risks of posttransplantation complications. Biol. Blood Marrow Transplant. 2012, 18, 190–199. [Google Scholar] [CrossRef]
- Valk, P.J.; Verhaak, R.G.; Beijen, M.A.; Erpelinck, C.A.; Barjesteh van Waalwijk van Doorn-Khosrovani, S.; Boer, J.M.; Beverloo, H.B.; Moorhouse, M.J.; van der Spek, P.J.; Lowenberg, B.; Delwel, R. Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med. 2004, 350, 1617–1628. [Google Scholar]
- Bullinger, L.; Dohner, K.; Bair, E.; Frohling, S.; Schlenk, R.F.; Tibshirani, R.; Dohner, H.; Pollack, J.R. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N. Engl. J. Med. 2004, 350, 1605–1616. [Google Scholar] [CrossRef]
- Verhaak, R.G.; Wouters, B.J.; Erpelinck, C.A.; Abbas, S.; Beverloo, H.B.; Lugthart, S.; Lowenberg, B.; Delwel, R.; Valk, P.J. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica 2009, 94, 131–134. [Google Scholar] [CrossRef]
- Kornblau, S.M.; Tibes, R.; Qiu, Y.H.; Chen, W.; Kantarjian, H.M.; Andreeff, M.; Coombes, K.R.; Mills, G.B. Functional proteomic profiling of AML predicts response and survival. Blood 2009, 113, 154–164. [Google Scholar] [CrossRef]
- Reikvam, H.; Hatfield, K.J.; Ersvaer, E.; Hovland, R.; Skavland, J.; Gjertsen, B.T.; Petersen, K.; Bruserud, O. Expression profile of heat shock proteins in acute myeloid leukaemia patients reveals a distinct signature strongly associated with FLT3 mutation status—Consequences and potentials for pharmacological intervention. Br. J. Haematol. 2012, 156, 468–480. [Google Scholar] [CrossRef]
- Jorgensen, K.M.; Hjelle, S.M.; Oye, O.K.; Puntervoll, P.; Reikvam, H.; Skavland, J.; Anderssen, E.; Bruserud, O.; Gjertsen, B.T. Untangling the intracellular signalling network in cancer—A strategy for data integration in acute myeloid leukaemia. J. Proteomics 2011, 74, 269–281. [Google Scholar] [CrossRef]
- Paczesny, S.; Krijanovski, O.I.; Braun, T.M.; Choi, S.W.; Clouthier, S.G.; Kuick, R.; Misek, D.E.; Cooke, K.R.; Kitko, C.L.; Weyand, A.; et al. A biomarker panel for acute graft-versus-host disease. Blood 2009, 113, 273–278. [Google Scholar]
- Wernicke, C.; Grunewald, T.; Juenger, H.; Kuci, S.; Kuci, Z.; Koehl, U.; Mueller, I.; Doering, M.; Peters, C.; Lawitschka, A.; et al. Mesenchymal stromal cells for treatment of steroid-refractory GvHD: A review of the literature and two pediatric cases. Int. Arch. Med. 2011, 4, 27. [Google Scholar] [CrossRef]
- Prockop, D.J.; Oh, J.Y. Medical therapies with adult stem/progenitor cells (MSCs): A backward journey from dramatic results in vivo to the cellular and molecular explanations. J. Cell Biochem. 2012, 113, 1460–1469. [Google Scholar]
- Kraman, M.; Bambrough, P.J.; Arnold, J.N.; Roberts, E.W.; Magiera, L.; Jones, J.O.; Gopinathan, A.; Tuveson, D.A.; Fearon, D.T. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science 2010, 330, 827–830. [Google Scholar] [CrossRef]
- Le Blanc, K.; Rasmusson, I.; Sundberg, B.; Gotherstrom, C.; Hassan, M.; Uzunel, M.; Ringden, O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004, 363, 1439–1441. [Google Scholar] [CrossRef]
- Le Blanc, K.; Frassoni, F.; Ball, L.; Locatelli, F.; Roelofs, H.; Lewis, I.; Lanino, E.; Sundberg, B.; Bernardo, M.E.; Remberger, M.; et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet 2008, 371, 1579–1586. [Google Scholar] [CrossRef]
- Aggarwal, S.; Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105, 1815–1822. [Google Scholar] [CrossRef]
- Glennie, S.; Soeiro, I.; Dyson, P.J.; Lam, E.W.; Dazzi, F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005, 105, 2821–2827. [Google Scholar] [CrossRef]
- Egea, V.; von Baumgarten, L.; Schichor, C.; Berninger, B.; Popp, T.; Neth, P.; Goldbrunner, R.; Kienast, Y.; Winkler, F.; Jochum, M.; Ries, C. TNF-alpha respecifies human mesenchymal stem cells to a neural fate and promotes migration toward experimental glioma. Cell Death Differ. 2011, 18, 853–863. [Google Scholar] [CrossRef]
- Cao, W.; Yang, Y.; Wang, Z.; Liu, A.; Fang, L.; Wu, F.; Hong, J.; Shi, Y.; Leung, S.; Dong, C.; Zhang, J.Z. Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease. Immunity 2011, 35, 273–284. [Google Scholar] [CrossRef]
- Pogacic, V.; Bullock, A.N.; Fedorov, O.; Filippakopoulos, P.; Gasser, C.; Biondi, A.; Meyer-Monard, S.; Knapp, S.; Schwaller, J. Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity. Cancer Res. 2007, 67, 6916–6924. [Google Scholar]
- Tsykunova, G.; Reikvam, H.; Hovland, R.; Bruserud, O. The surface molecule signature of primary human acute myeloid leukemia (AML) cells is highly associated with NPM1 mutation status. Leukemia 2012, 26, 557–559. [Google Scholar] [CrossRef]
- Studeny, M.; Marini, F.C.; Dembinski, J.L.; Zompetta, C.; Cabreira-Hansen, M.; Bekele, B.N.; Champlin, R.E.; Andreeff, M. Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl. Cancer Inst. 2004, 96, 1593–1603. [Google Scholar] [CrossRef]
- Hall, B.; Dembinski, J.; Sasser, A.K.; Studeny, M.; Andreeff, M.; Marini, F. Mesenchymal stem cells in cancer: Tumor-associated fibroblasts and cell-based delivery vehicles. Int. J. Hematol. 2007, 86, 8–16. [Google Scholar] [CrossRef]
- Shi, Y.; Su, J.; Roberts, A.I.; Shou, P.; Rabson, A.B.; Ren, G. How mesenchymal stem cells interact with tissue immune responses. Trend Immunol. 2012, 33, 136–143. [Google Scholar] [CrossRef]
- Roodhart, J.M.; Daenen, L.G.; Stigter, E.C.; Prins, H.J.; Gerrits, J.; Houthuijzen, J.M.; Gerritsen, M.G.; Schipper, H.S.; Backer, M.J.; van Amersfoort, M.; et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell 2011, 20, 370–383. [Google Scholar] [CrossRef]
- Apelseth, T.O.; Hervig, T.; Wentzel-Larsen, T.; Petersen, K.; Reikvam, H.; Bruserud, O. A prospective observational study of the effect of platelet transfusions on levels of platelet-derived cytokines, chemokines and interleukins in acute leukaemia patients with severe chemotherapy-induced cytopenia. Eur. Cytokine Netw. 2011, 22, 52–62. [Google Scholar]
- Mosevoll, K.A.; Akkok, C.A.; Hervig, T.; Melve, G.; Bruserud, Ø.; Reikvam, H. Apheresis-induced alterations in systemic cytokine levels—Studies in myeloma patients undergoing stem cell harvesting and healthy individuals undergoing platelet harvesting. Cythotherapy 2013, in press. [Google Scholar]
- Pollyea, D.A.; Kohrt, H.E.; Gallegos, L.; Figueroa, M.E.; Abdel-Wahab, O.; Zhang, B.; Bhattacharya, S.; Zehnder, J.; Liedtke, M.; Gotlib, J.R.; et al. Safety, efficacy and biological predictors of response to sequential azacitidine and lenalidomide for elderly patients with acute myeloid leukemia. Leukemia 2012, 26, 893–901. [Google Scholar] [CrossRef]
- Aivado, M.; Spentzos, D.; Germing, U.; Alterovitz, G.; Meng, X.Y.; Grall, F.; Giagounidis, A.A.; Klement, G.; Steidl, U.; Otu, H.H.; et al. Serum proteome profiling detects myelodysplastic syndromes and identifies CXC chemokine ligands 4 and 7 as markers for advanced disease. Proc. Natl. Acad. Sci. USA 2007, 104, 1307–1312. [Google Scholar]
- Kordasti, S.Y.; Afzali, B.; Lim, Z.; Ingram, W.; Hayden, J.; Barber, L.; Matthews, K.; Chelliah, R.; Guinn, B.; Lombardi, G.; et al. IL-17-producing CD4(+) T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. Br. J. Haematol. 2009, 145, 64–72. [Google Scholar] [CrossRef]
- WHO, World Health Organization Classification of Tumors of Haematopoietic and Lymphoid Tissues, 4th ed; International Agency for Cancer: Lyon, France, 2008.
- Ferrara, J.L.; Levine, J.E.; Reddy, P.; Holler, E. Graft-versus-host disease. Lancet 2009, 373, 1550–1561. [Google Scholar] [CrossRef]
- Wolf, D.; von Lilienfeld-Toal, M.; Wolf, A.M.; Schleuning, M.; von Bergwelt-Baildon, M.; Held, S.A.; Brossart, P. Novel treatment concepts for graft-versus-host disease. Blood 2012, 119, 16–25. [Google Scholar] [CrossRef]
- Ito, W.; Takeda, M.; Ueki, S.; Tanigai, T.; Kayaba, H.; Chihara, J. Effect of the hepatocyte growth factor on allergic inflammatory cells. Int. Arch. Allergy Immunol. 2010, 152, 96–100. [Google Scholar] [CrossRef]
- Rutella, S.; Bonanno, G.; Procoli, A.; Mariotti, A.; de Ritis, D.G.; Curti, A.; Danese, S.; Pessina, G.; Pandolfi, S.; Natoni, F.; et al. Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood 2006, 108, 218–227. [Google Scholar]
- Ito, W.; Takeda, M.; Tanabe, M.; Kihara, J.; Kato, H.; Chiba, T.; Yamaguchi, K.; Ueki, S.; Kanehiro, A.; Kayaba, H.; Chihara, J. Anti-allergic inflammatory effects of hepatocyte growth factor. Int. Arch. Allergy Immunol. 2008, 146, 82–87. [Google Scholar] [CrossRef]
- Dietrich, S.; Falk, C.S.; Benner, A.; Karamustafa, S.; Hahn, E.; Andrulis, M.; Hegenbart, U.; Ho, A.D.; Dreger, P.; Luft, T. Endothelial vulnerability and endothelial damage are associated with risk of graft-versus-host disease and response to steroid treatment. Biol. Blood Marrow Transplant. 2013, 19, 22–27. [Google Scholar] [CrossRef]
- Toubai, T.; Tanaka, J.; Paczesny, S.; Shono, Y.; Reddy, P.; Imamura, M. Role of cytokines in the pathophysiology of acute graft-versus-host disease (GVHD): Are serum/plasma cytokines potential biomarkers for diagnosis of acute GVHD following allogeneic hematopoietic cell transplantation (Allo-HCT)? Curr. Stem Cell Res. Ther. 2012, 7, 229–239. [Google Scholar] [CrossRef]
- Paczesny, S.; Braun, T.M.; Levine, J.E.; Hogan, J.; Crawford, J.; Coffing, B.; Olsen, S.; Choi, S.W.; Wang, H.; Faca, V.; et al. Elafin is a biomarker of graft-versus-host disease of the skin. Sci. Transl. Med. 2010, 2, 13ra2. [Google Scholar] [CrossRef]
- Harris, A.C.; Ferrara, J.L.; Braun, T.M.; Holler, E.; Teshima, T.; Levine, J.E.; Choi, S.W.; Landfried, K.; Akashi, K.; Vander Lugt, M.; et al. Plasma biomarkers of lower gastrointestinal and liver acute GVHD. Blood 2012, 119, 2960–2963. [Google Scholar]
- Ferrara, J.L.; Harris, A.C.; Greenson, J.K.; Braun, T.M.; Holler, E.; Teshima, T.; Levine, J.E.; Choi, S.W.; Huber, E.; Landfried, K.; et al. Regenerating islet-derived 3-α is a biomarker of gastrointestinal graft-versus-host disease. Blood 2011, 118, 6702–6708. [Google Scholar]
- Levine, J.E.; Logan, B.R.; Wu, J.; Alousi, A.M.; Bolanos-Meade, J.; Ferrara, J.L.; Ho, V.T.; Weisdorf, D.J.; Paczesny, S. Acute graft-versus-host disease biomarkers measured during therapy can predict treatment outcomes: A blood and marrow transplant clinical trials Nnetwork study. Blood 2012, 119, 3854–3860. [Google Scholar]
- Paczesny, S. Discovery and validation of graft-versus-host disease biomarkers. Blood 2013, 121, 585–594. [Google Scholar] [CrossRef]
- Allegretti, M.; Cesta, M.C.; Garin, A.; Proudfoot, A.E. Current status of chemokine receptor inhibitors in development. Immunol. Lett. 2012, 145, 68–78. [Google Scholar] [CrossRef]
- Melve, G.K.; Ersvssr, E.; Kittang, A.O.; Bruserud, O. The chemokine system in allogeneic stem-cell transplantation: A possible therapeutic target? Expert Rev. Hematol. 2011, 4, 563–576. [Google Scholar] [CrossRef]
- Busca, A. The use of monoclonal antibodies for the treatment of graft-versus-host disease following allogeneic stem cell transplantation. Expert Opin. Biol. Ther. 2011, 11, 687–697. [Google Scholar] [CrossRef]
- Emery, P. Optimizing outcomes in patients with rheumatoid arthritis and an inadequate response to anti-TNF treatment. Rheumatology 2012, 51, v22–v30. [Google Scholar] [CrossRef]
- Choi, S.W.; Stiff, P.; Cooke, K.; Ferrara, J.L.; Braun, T.; Kitko, C.; Reddy, P.; Yanik, G.; Mineishi, S.; Paczesny, S.; et al. TNF-inhibition with etanercept for graft-versus-host disease prevention in high-risk HCT: Lower TNFR1 levels correlate with better outcomes. Biol. Blood Marrow Transplant. 2012, 18, 1525–1532. [Google Scholar] [CrossRef]
- Cecchi, F.; Rabe, D.C.; Bottaro, D.P. Targeting the HGF/Met signalling pathway in cancer. Eur. J. Cancer. 2010, 46, 1260–1270. [Google Scholar] [CrossRef]
- Naran, S.; Zhang, X.; Hughes, S.J. Inhibition of HGF/MET as therapy for malignancy. Expert Opin. Ther. Targ. 2009, 13, 569–581. [Google Scholar] [CrossRef]
- Bruserud, O. Acute myelogenous leukemia blasts as accessory cells during T lymphocyte activation: Possible implications for future therapeutic strategies. Leukemia 1999, 13, 1175–1187. [Google Scholar] [CrossRef]
- Bruserud, O.; Bergheim, J.; Shammas, F.V.; Nesthus, I. Serum concentrations of tumour necrosis factor-alpha during chemotherapy-induced leukopenia in patients with acute leukaemia and bacterial infections. Leuk. Res. 1994, 18, 415–421. [Google Scholar] [CrossRef]
- Bruserud, O.; Hamann, W.; Patel, S.; Ehninger, G.; Pawelec, G. IL2- and IL4-dependent proliferation of T-cell clones derived early after allogeneic bone marrow transplantation: Studies of patients with chronic myelogenous leukaemia. Eur. J. Haematol. 1992, 48, 221–227. [Google Scholar]
- Bruserud, O.; Hamann, W.; Patel, S.; Ehninger, G.; Schmidt, H.; Pawelec, G. IFN-γ and TNF-α secretion by CD4+ and CD8+ TCR α β + T-cell clones derived early after allogeneic bone marrow transplantation. Eur. J. Haematol. 1993, 51, 73–79. [Google Scholar]
- Mosevold, K.A.; Bruserud, O. Circadian variations do not have a major impact on serum levels of soluble (S) L-selectin (CD63L), S-intercellular adhesion molecule 1 (sICAM-1/CD54) and thrombopoietin in healthy individuals. Scand. J. Clin. Lab. Invest. 2002, 62, 75–79. [Google Scholar] [CrossRef]
- Glenjen, N.; Mosevoll, K.A.; Bruserud, O. Serum levels of angiogenin, basic fibroblast growth factor and endostatin in patients receiving intensive chemotherapy for acute myelogenous leukemia. Int. J. Cancer 2002, 101, 86–94. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Reikvam, H.; Fredly, H.; Kittang, A.O.; Bruserud, Ø. The Possible Diagnostic and Prognostic Use of Systemic Chemokine Profiles in Clinical Medicine—The Experience in Acute Myeloid Leukemia from Disease Development and Diagnosis via Conventional Chemotherapy to Allogeneic Stem Cell Transplantation. Toxins 2013, 5, 336-362. https://doi.org/10.3390/toxins5020336
Reikvam H, Fredly H, Kittang AO, Bruserud Ø. The Possible Diagnostic and Prognostic Use of Systemic Chemokine Profiles in Clinical Medicine—The Experience in Acute Myeloid Leukemia from Disease Development and Diagnosis via Conventional Chemotherapy to Allogeneic Stem Cell Transplantation. Toxins. 2013; 5(2):336-362. https://doi.org/10.3390/toxins5020336
Chicago/Turabian StyleReikvam, Håkon, Hanne Fredly, Astrid Olsnes Kittang, and Øystein Bruserud. 2013. "The Possible Diagnostic and Prognostic Use of Systemic Chemokine Profiles in Clinical Medicine—The Experience in Acute Myeloid Leukemia from Disease Development and Diagnosis via Conventional Chemotherapy to Allogeneic Stem Cell Transplantation" Toxins 5, no. 2: 336-362. https://doi.org/10.3390/toxins5020336
APA StyleReikvam, H., Fredly, H., Kittang, A. O., & Bruserud, Ø. (2013). The Possible Diagnostic and Prognostic Use of Systemic Chemokine Profiles in Clinical Medicine—The Experience in Acute Myeloid Leukemia from Disease Development and Diagnosis via Conventional Chemotherapy to Allogeneic Stem Cell Transplantation. Toxins, 5(2), 336-362. https://doi.org/10.3390/toxins5020336