Uremic Toxins and Lipases in Haemodialysis: A Process of Repeated Metabolic Starvation
Abstract
:1. Introduction
1.1. Energy Supply by Triglyceride Breakdown
1.2. Interaction of Heparin to Lipase Attachment
1.3. Lipases, Uremic and Haemodialysis Conditions
1.4. Cofactors and Inhibitors to Lipases
1.5. Measures in Dialysis to Counteract Release of Lipases
2. Conclusions
Acknowledgements
Conflicts of Interest
References
- Schon, S.; Ekberg, H.; Wikstrom, B.; Oden, A.; Ahlmen, J. Renal replacement therapy in sweden. Scand. J. Urol. Nephrol. 2004, 38, 332–339. [Google Scholar] [CrossRef]
- Vanholder, R.; Massy, Z.; Argiles, A.; Spasovski, G.; Verbeke, F.; Lameire, N. Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol. Dial. Transplant. 2005, 20, 1048–1056. [Google Scholar] [CrossRef]
- Allon, M.; Depner, T.A.; Radeva, M.; Bailey, J.; Beddhu, S.; Butterly, D.; Coyne, D.W.; Gassman, J.J.; Kaufman, A.M.; Kaysen, G.A.; et al. Impact of dialysis dose and membrane on infection-related hospitalization and death: Results of the hemo study. J. Am. Soc. Nephrol. 2003, 14, 1863–1870. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Heimburger, O.; Lindholm, B.; Kaysen, G.A.; Bergstrom, J. Are there two types of malnutrition in chronic renal failure? Evidence for relationships between malnutrition, inflammation and atherosclerosis (mia syndrome). Nephrol. Dial. Transplant. 2000, 15, 953–960. [Google Scholar] [CrossRef]
- Qureshi, A.R.; Alvestrand, A.; Danielsson, A.; Divino-Filho, J.C.; Gutierrez, A.; Lindholm, B.; Bergstrom, J. Factors predicting malnutrition in hemodialysis patients: A cross-sectional study. Kidney Int. 1998, 53, 773–782. [Google Scholar] [CrossRef]
- Carrero, J.J.; Stenvinkel, P.; Cuppari, L.; Ikizler, T.A.; Kalantar-Zadeh, K.; Kaysen, G.; Mitch, W.E.; Price, S.R.; Wanner, C.; Wang, A.Y.; et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: A consensus statement from the international society of renal nutrition and metabolism (isrnm). J. Ren. Nutr. 2013, 23, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Vanholder, R.; Argiles, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; Descamps-Latscha, B.; Henle, T.; et al. Uremic toxicity: Present state of the art. Int. J. Artif. Organs 2001, 24, 695–725. [Google Scholar]
- Vanholder, R.; De Smet, R.; Glorieux, G.; Argiles, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003, 63, 1934–1943. [Google Scholar] [CrossRef]
- Rigalleau, V.; Gin, H. Carbohydrate metabolism in uraemia. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 463–469. [Google Scholar] [CrossRef]
- Wang, H.; Eckel, R.H. Lipoprotein lipase: From gene to obesity. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E271–E288. [Google Scholar] [CrossRef]
- Stegmayr, B.; Olivecrona, T.; Olivecrona, G. Lipoprotein lipase disturbances induced by uremia and hemodialysis. Semin. Dial. 2009, 22, 442–444. [Google Scholar] [CrossRef]
- Kinnunen, P.K.; Jackson, R.L.; Smith, L.C.; Gotto, A.M., Jr.; Sparrow, J.T. Activation of lipoprotein lipase by native and synthetic fragments of human plasma apolipoprotein c-ii. Proc. Natl. Acad. Sci. USA 1977, 74, 4848–4851. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, S.M.; Lee, S.T. Apolipoprotein c-ii is a novel substrate for matrix metalloproteinases. Biochem. Biophys. Res. Commun. 2006, 339, 47–54. [Google Scholar] [CrossRef]
- Pianta, T.J.; Horvath, A.R.; Ellis, V.M.; Leonetti, R.; Moffat, C.; Josland, E.A.; Brown, M.A. Cardiac high-sensitivity troponin t measurement: A layer of complexity in managing haemodialysis patients. Nephrology 2012, 17, 636–641. [Google Scholar] [CrossRef]
- Miksztowicz, V.; McCoy, M.G.; Schreier, L.; Cacciagiu, L.; Elbert, A.; Gonzalez, A.I.; Billheimer, J.; Eacho, P.; Rader, D.J.; Berg, G. Endothelial lipase activity predicts high-density lipoprotein catabolism in hemodialysis: Novel phospholipase assay in postheparin human plasma. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 3033–3040. [Google Scholar] [CrossRef]
- Van der Giet, M.; Tolle, M.; Pratico, D.; Lufft, V.; Schuchardt, M.; Horl, M.P.; Zidek, W.; Tietge, U.J. Increased type iia secretory phospholipase a(2) expression contributes to oxidative stress in end-stage renal disease. J. Mol. Med. 2010, 88, 75–83. [Google Scholar] [CrossRef]
- Cronin, R.E.; Reilly, R.F. Unfractionated heparin for hemodialysis: Still the best option. Semin. Dial. 2010, 23, 510–515. [Google Scholar] [CrossRef]
- Cornet, A.D.; Smit, E.G.; Beishuizen, A.; Groeneveld, A.B. The role of heparin and allied compounds in the treatment of sepsis. Thromb. Haemost. 2007, 98, 579–586. [Google Scholar]
- Persson, E.; Nordenstrom, J.; Nilsson-Ehle, P.; Hagenfeldt, L. Lipolytic and anticoagulant activities of a low molecular weight fragment of heparin. Eur. J. Clin. Invest. 1985, 15, 215–220. [Google Scholar] [CrossRef]
- Nasstrom, B.; Olivecrona, G.; Olivecrona, T.; Stegmayr, B.G. Lipoprotein lipase during continuous heparin infusion: Tissue stores become partially depleted. J. Lab. Clin. Med. 2001, 138, 206–213. [Google Scholar] [CrossRef]
- Nasstrom, B.; Olivecrona, G.; Olivecrona, T.; Stegmayr, B.G. Lipoprotein lipase during heparin infusion: Lower activity in hemodialysis patients. Scand. J. Clin Lab. Invest. 2003, 63, 45–53. [Google Scholar] [CrossRef]
- Olivecrona, T.; Olivecrona, G. Lipoprotein and hepatic lipases in lipoprotein metabolism. In Lipoproteins in Health and Disease; Betteridge, D.J., Illingworth, D.R., Shepard, J., Eds.; Edward Arnold: London, UK, 1999; pp. 223–246. [Google Scholar]
- Schrader, J.; Stibbe, W.; Armstrong, V.W.; Kandt, M.; Muche, R.; Kostering, H.; Seidel, D.; Scheler, F. Comparison of low molecular weight heparin to standard heparin in hemodialysis/hemofiltration. Kidney Int. 1988, 33, 890–896. [Google Scholar] [CrossRef]
- Chan, M.K.; Persaud, J.; Varghese, Z.; Moorhead, J.F. Pathogenic roles of post-heparin lipases in lipid abnormalities in hemodialysis patients. Kidney Int. 1984, 25, 812–818. [Google Scholar] [CrossRef]
- Attman, P.O.; Alaupovic, P.; Tavella, M.; Knight-Gibson, C. Abnormal lipid and apolipoprotein composition of major lipoprotein density classes in patients with chronic renal failure. Nephrol. Dial. Transplant. 1996, 11, 63–69. [Google Scholar]
- Attman, P.O.; Samuelsson, O.; Alaupovic, P. The effect of decreasing renal function on lipoprotein profiles. Nephrol. Dial. Transplant. 2011, 26, 2572–2575. [Google Scholar] [CrossRef]
- Bagdade, J.D.; Yee, E.; Wilson, D.E.; Shafrir, E. Hyperlipidemia in renal failure: Studies of plasma lipoproteins, hepatic triglyceride production, and tissue lipoprotein lipase in a chronically uremic rat moedl. J. Lab. Clin Med. 1978, 91, 176–186. [Google Scholar]
- Schrader, J.; Andersson, L.O.; Armstrong, V.W.; Kundt, M.; Stibbe, W.; Scheler, F. Lipolytic effects of heparin and low molecular weight heparin and their importance in hemodialysis. Semin. Thromb. Hemost. 1990, 16 Suppl., 41–45. [Google Scholar]
- Oi, K.; Hirano, T.; Sakai, S.; Kawaguchi, Y.; Hosoya, T. Role of hepatic lipase in intermediate-density lipoprotein and small, dense low-density lipoprotein formation in hemodialysis patients. Kidney Int. Suppl. 1999, 71, S227–S228. [Google Scholar]
- Arnadottir, M.; Kurkus, J.; Nilsson-Ehle, P. Different types of heparin in haemodialysis: Long-term effects on post-heparin lipases. Scand. J. Clin. Lab. Invest. 1994, 54, 515–521. [Google Scholar] [CrossRef]
- Nasstrom, B.; Stegmayr, B.; Gupta, J.; Olivecrona, G.; Olivecrona, T. A single bolus of a low molecular weight heparin to patients on haemodialysis depletes lipoprotein lipase stores and retards triglyceride clearing. Nephrol. Dial. Transplant. 2005, 20, 1172–1179. [Google Scholar] [CrossRef]
- Nasstrom, B.; Stegmayr, B.; Olivecrona, G.; Olivecrona, T. Lipoprotein lipase in hemodialysis patients: Indications that low molecular weight heparin depletes functional stores, despite low plasma levels of the enzyme. BMC Nephrol. 2004, 5. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, D.; Grubbstrom, M.; Lundberg, L.D.; Olivecrona, G.; Olivecrona, T.; Stegmayr, B.G. Lipoprotein lipase responds similarly to tinzaparin as to conventional heparin during hemodialysis. BMC Nephrol. 2010, 11. [Google Scholar] [CrossRef]
- Kaysen, G.A. Hyperlipidemia of chronic renal failure. Blood Purif. 1994, 12, 60–67. [Google Scholar] [CrossRef]
- Cheung, A.K.; Parker, C.J.; Ren, K.; Iverius, P.H. Increased lipase inhibition in uremia: Identification of pre-beta-hdl as a major inhibitor in normal and uremic plasma. Kidney Int. 1996, 49, 1360–1371. [Google Scholar] [CrossRef]
- Sukonina, V.; Lookene, A.; Olivecrona, T.; Olivecrona, G. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc. Natl. Acad. Sci. USA 2006, 103, 17450–17455. [Google Scholar] [CrossRef]
- Lee, E.C.; Desai, U.; Gololobov, G.; Hong, S.; Feng, X.; Yu, X.C.; Gay, J.; Wilganowski, N.; Gao, C.; Du, L.L.; et al. Identification of a new functional domain in angiopoietin-like 3 (angptl3) and angiopoietin-like 4 (angptl4) involved in binding and inhibition of lipoprotein lipase (lpl). J. Biol. Chem. 2009, 284, 13735–13745. [Google Scholar] [CrossRef]
- Baranowski, T.; Kralisch, S.; Bachmann, A.; Lossner, U.; Kratzsch, J.; Bluher, M.; Stumvoll, M.; Fasshauer, M. Serum levels of the adipokine fasting-induced adipose factor/angiopoietin-like protein 4 depend on renal function. Horm. Metab. Res. 2011, 43, 117–120. [Google Scholar] [CrossRef]
- Mahmood, D.; Makoveichuk, E.; Nilsson, S.; Olivecrona, G.; Stegmayr, B. Response of angiopoietin-like proteins 3 and 4 to haemodialysis. Int. J. Artif. Organs 2014, 37, 13–20. [Google Scholar]
- Shoji, T.; Hatsuda, S.; Tsuchikura, S.; Kimoto, E.; Kakiya, R.; Tahara, H.; Koyama, H.; Emoto, M.; Tabata, T.; Nishizawa, Y. Plasma angiopoietin-like protein 3 (angptl3) concentration is associated with uremic dyslipidemia. Atherosclerosis 2009, 207, 579–584. [Google Scholar] [CrossRef]
- Stegmayr, B.G.; Jonsson, P.; Mahmood, D. A significant proportion of patients treated with citrate containing dialysate need additional anticoagulation. Int. J. Artif. Organs 2013, 36, 1–6. [Google Scholar] [CrossRef]
- Buturovic-Ponikvar, J.; Gubensek, J.; Ponikvar, R. Citrate anticoagulation for postdilutional online hemodiafiltration with calcium-containing dialysate and infusate: Significant clotting in the venous bubble trap. Int. J. Artif. Organs 2008, 31, 323–328. [Google Scholar]
- Mahmood, D.; Nilsson, S.; Olivecrona, G.; Stegmayr, B. Lipoprotein lipase activity is favoured by peritoneal dialysis compared to hemodialysis. Scand. J. Clin. Lab. Invest. 2014, in press. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Stegmayr, B. Uremic Toxins and Lipases in Haemodialysis: A Process of Repeated Metabolic Starvation. Toxins 2014, 6, 1505-1511. https://doi.org/10.3390/toxins6051505
Stegmayr B. Uremic Toxins and Lipases in Haemodialysis: A Process of Repeated Metabolic Starvation. Toxins. 2014; 6(5):1505-1511. https://doi.org/10.3390/toxins6051505
Chicago/Turabian StyleStegmayr, Bernd. 2014. "Uremic Toxins and Lipases in Haemodialysis: A Process of Repeated Metabolic Starvation" Toxins 6, no. 5: 1505-1511. https://doi.org/10.3390/toxins6051505
APA StyleStegmayr, B. (2014). Uremic Toxins and Lipases in Haemodialysis: A Process of Repeated Metabolic Starvation. Toxins, 6(5), 1505-1511. https://doi.org/10.3390/toxins6051505