A Review on Bradykinin-Related Peptides Isolated from Amphibian Skin Secretion
Abstract
:1. Introduction
2. The Distribution of BRPs among Amphibian
2.1. BRPs from Ascaphidae
Name | Peptide Sequence | Species |
---|---|---|
BK | RPPGFSPFR | Ascaphus truei [17] |
AR-10 | APVPLFSPFR | Ascaphus truei [17] |
AV-12 | APVPLFSPFRVV | Ascaphus truei [17] |
RD-11 | RPPGFSPFRVD | Ascaphus truei [17] |
2.2. BRPs from Bombinatoridae
Name | Peptide Sequence | Species |
---|---|---|
BK | RPPGFSPFR | Bombina orientalis [23] |
Bombinakinin M | DLPKINRKGPRPPGFSPFR | Bombina maxima [18,19,21,22] |
Bombinakinin O | RPPGFSPFRGKFH | Bombina orientalis [20] |
Thr6-BK | RPPGFTPFR | Bombina orientalis [24] |
Ala3, Thr6-BK | RPAGFTPFR | Bombina variegata [25] |
Val1, Thr3, Thr6-BK | VPTGFTPFR | Bombina variegata [25] |
pGlu1, Ile2, Leu5, Gly6, Leu8-BK | QIPGLGPLR | Bombina maxima [26] |
2.3. BRPs from Hylidae
Names | Peptide Sequences | Species |
---|---|---|
BK | RPPGFSPFR | Phasmahyla jandaia [32] Phyllomedusa azurea [30] Phyllomedusa hypochondrialis [33,34] |
desArg9-BK | RPPGFSPF | Phasmahyla jandaia [32] |
Hyp3-BK | RPPGFSPFR | Phyllomedusa azurea [30] |
desArg9, Hyp3-BK | RPPGFSPF | Agalychnis callidryas [35] |
Thr6-BK | RPPGFTPFR | Agalychnis callidryas [31,35] Pachymedusa dacnicolor [31] Phasmahyla jandaia [32] Phyllomedusa azurea [30] Phyllomedusa hypochondrialis [31,33,34] |
desArg9, Thr6-BK | RPPGFTPF | Phasmahyla jandaia [32] Phyllomedusa azurea [30] Phyllomedusa hypochondrialis [31,33,34] |
Hyp3, Thr6-BK | RPPGFTPFR | Agalychnis callidryas [31] Pachymedusa dacnicolor [31] |
Thr6-BK-Val, Asp | RPPGFTPFRVD | Pachymedusa dacnicolor [31] Agalychnis callidryas [31] |
Hyp3, Thr6-BK-Val, Asp | RPPGFTPFRVD | Agalychnis callidryas [31] Pachymedusa dacnicolor [31] |
Val1, Thr6-BK | VPPGFTPFR | Phyllomedusa azurea [29,30] Phyllomedusa hypochondrialis [31,34] Phyllomedusa sauvagei [29] |
Val1, Hyp2, Thr6-BK | VPPGFTPFR | Phyllomedusa azurea [30] |
desArg9, Val1, Thr6-BK | VPPGFTPF | Phyllomedusa hypochondrialis [31,34] |
Val1, Thr6-BK-Leu | VPPGFTPFRL | Phyllomedusa azurea [30] |
Val1, Thr6-BK-Leu, Thr | VPPGFTPFRLT | Phyllomedusa azurea [30] |
Glu, Pro-Val1-BK-Leu, Thr | EPVPPGFTPFRLT | Phyllomedusa azurea [30] Phyllomedusa nordestina [36] |
Val1, Thr6-BK-Gln | VPPGFTPFRQ | Phyllomedusa hypochondrialis [31,34] |
Val1, Thr6-BK-Gln, Ser | VPPGFTPFRQS | Phyllomedusa azurea [30] Phyllomedusa hypochondrialis [31,34] |
Val1, Hyp2, Thr6-BK-Gln, Ser | VPPGFTPFRQS | Phyllomedusa azurea [37,38] Phyllomedusa hypochondrialis [31,34] |
Val1, Hyp2, Thr6-BK-Gln, Thr | VPPGFTPFRQT | Phyllomedusa azurea [30] |
Val1, Thr6-BK-Gln, Asp | VPPGFTPFRVD | Phyllomedusa hypochondrialis [31,34] |
PK * | RPPGFSPFRIY | Phasmahyla jandaia [32] Phyllomedusa bicolor [39] Phyllomedusa hypochondrialis [33,34] Phyllomedusa rohdei [40] |
Hyp3-PK * | RPPGFSPFRIY | Agalychnis callidryas [35] Phyllomedusa hypochondrialis [33,34] |
Thr6-PK * | RPPGFTPFRIY | Pachymedusa dacnicolor [41,42] Phasmahyla jandaia [32] Phyllomedusa hypochondrialis [33,34] Phyllomedusa sauvagei [29] |
Hyp3, Thr6-PK * | RPPGFTPFRIY | Pachymedusa dacnicolor [41,42] Phyllomedusa sauvagei [29] |
Thr6, Val10-PK * | RPPGFTPFRVY | Phyllomedusa azurea [30] |
Asp, Pro, Glu-Thr6, Val10-PK * | DPERPPGFTPFRVY | Phyllomedusa azurea [30] |
2.4. BRPs from Ranidae
Names | Peptide Sequences | Species |
---|---|---|
BK | RPPGFSPFR | Hyla arborea schelkownikowi [48] Lithobates pipiens [49] Odorrana grahami [50] Rana chensinensis [49] Hylarana guentheri [46] Rana tagoi okiensis [51] Pelophylax ridibundus [47] Rana muscosa [52] Rana temporaria [45] |
desArg9-BK | RPPGFSPF | Rana temporaria [45,53] |
desArg1-BK | PPGFSPFR | Hylarana guentheri [46] |
Hyp3-BK | RPPGFSPFR | Hylarana guentheri [46] Rana temporaria [45] |
Thr6-BK | RPPGFTPFR | Hylarana guentheri [46] Rana tagoi okiensis [51] Pelophylax ridibundus [47] |
Thr6, Leu8-BK | RPPGFTPLR | Odorrana versabilis [54] |
Leu5, Thr6-BK | RPPGLTPFR | Odorrana grahami [50] |
Asp6-BK | RPPGFDPFR | Pelophylax ridibundus [47] |
Val1-BK | VPPGFSPFR | Hylarana guentheri [46] |
Val1, Thr6-BK | VPPGFTPFR | Lithobates pipiens [49] Hylarana guentheri [46] |
BK-Ile | RPPGFSPFRI | Pelophylax ridibundus [47] |
BK-Ile, Ala | RPPGFSPFRIA | Pelophylax ridibundus [47] |
BK-IAPAS | RPPGFSPFRIAPAS | Pelophylax ridibundus [47] Lithobates pipiens [49] |
BK-IAPASIL | RPPGFSPFRIAPASIL | Rana temporaria [45,53] |
Thr6-BK-Ile, Ala | RPPGFTPFRIA | Pelophylax ridibundus [47] |
Thr6-BK-IAPAS | RPPGFTPFRIAPAS | Lithobates pipiens [49] |
BK-VAPAS | RPPGFSPFRVAPAS | Odorrana schmackeri [55] |
Arg0, Trp5, Leu8-BK | RRPPGWSPLR | Pelophylaxkl. esculentus [56] |
IR-Leu8-BK | IRRPPGFSPLR | Lithobates palustris [57,58] |
IR-Leu8-BK-IA | IRRPPGFSPLRIA | Lithobates palustris [59,60] |
AGIR-Leu8-BK | AGIRRPPGFSPLR | Lithobates palustris [59,60] |
AGIR-Leu8-BK-IA | AGIRRPPGFSPLRIA | Rana chensinensis [49] Lithobates palustris [59,60] |
LLPIVG-BK | LLPIVGRPPGFSPFR | Rana temporaria [45] |
Arg0, Leu1, Thr6, Trp8-BK | RLPPGFTPWR | Rana sakuraii [60] |
RAA-Leu1, Thr6-BK | RAALPPGFTPFR | Amolops wuyiensis [61] |
RVA-Leu1, Thr6-BK | RVALPPGFTPFR | Amolops wuyiensis [61] |
RAEA-Val1, Thr6-BK | RAEAVPPGFTPFR | Hylarana nigrovittata [62] |
RAP-Val1, Thr6-BK | RAPVPPGFTPFR | Amolops loloensis [59] |
Thr6-kallidin | KRPPGFTPFR | Hylarana guentheri [46] |
RLS-Thr6-kallidin | RLSKRPPGFTPFR | Hylarana guentheri [46] |
3. Pharmacological Activities of Isolated BRPs
BRPs | Pharmacological Effect |
---|---|
Agonist | |
RPPGFTPLR | Contract the rat ileum; increase contraction frequency in the rat uterus [54]. |
RPPGFTPFR RPPGFTPFR RPPGFTPFRVD RPPGFTPFRVD | Activating mammalian arterial smooth muscle bradykinin receptors; contract rat ileum, bladder and uterine [31,34]. |
VPPGFTPFR VPPGFTPFR VPPGFTPFRQS VPPGFTPFRQS | Contract the rat ileum and guinea pig ileum preparations [31,34]. |
RPAGFTPFR VPTGFTPFR | Relax pre-contracted rat arterial, contract rat ileum [25]. |
RPPGFSPFRIY | Decrease dog blood pressure [44]. |
RAPVPPGFTPFR RAEAVPPGFTPFR | Contractile effects on isolated guinea pig ileum [59]. |
DLPKINRKGPRPPGFSPFR | Contract guniea pig ileum; B2 receptor selective agonist [72]. |
Antagonist | |
RPPGFSPL | B1 receptor antagonist on the rabbit aorta and artery [70]. |
RRPPGWSPLR | Antagonize the relaxation in rat arterial smooth muscle induced by bradykinin [26,56]. |
RVALPPGFTPFR RAALPPGFTPFR | Antagonize the contractile effects of bradykinin on isolated rat ileum smooth muscle preparations [61]. |
RVALPPGFTPLR | B2 receptor antagonist on rat tail artery [74]. |
QIPGLGPLR | B2 receptor antagonist on the rat artery [26,56]. |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Erspamer, V. Biogenic amines and active polypeptides of the amphibian skin. Annu. Rev. Pharmacol. 1971, 11, 327–350. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.T. The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol. Rev. 1997, 72, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.W. Thirty years of discovering arthropod alkaloids in amphibian skin. J. Nat. Prod. 1998, 61, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Erspamer, V.; Erspamer, G.F.; Cei, J. Active peptides in the skins of two hundred and thirty American amphibian species. Comp. Biochem. Physiol. Part C 1986, 85, 125–137. [Google Scholar] [CrossRef]
- Roseghini, M.; Erspamer, G.F.; Severini, C. Biogenic amines and active peptides in the skin of fifty-two African amphibian species other than bufonids. Comp. Biochem. Physiol. Part C 1988, 91, 281–286. [Google Scholar] [CrossRef]
- Roseghini, M.; Erspamer, G.F.; Severini, C.; Simmaco, M. Biogenic amines and active peptides in extracts of the skin of thirty-two European amphibian species. Comp. Biochem. Physiol. Part C 1989, 94, 455–460. [Google Scholar] [CrossRef]
- Anastasi, A.; Erspamer, V.; Endean, R. Isolation and structure of caerulein, an active decapeptide from the skin of Hyla caerulea. Experientia 1967, 23, 699–700. [Google Scholar] [CrossRef] [PubMed]
- Anastasi, A.; Bertaccini, G.; Cei, J.; de Caro, G.; Erspamer, V.; Impicciatore, M.; Roseghini, M. Presence of caerulein in extracts of the skin of Leptodactylus pentadactylus labyrinthicus and of Xenopus laevis. Br. J. Pharmacol. 1970, 38, 221. [Google Scholar] [CrossRef] [PubMed]
- Bhoola, K.D.; Figueroa, C.D.; Worthy, K. Bioregulation of kinins: Kallikreins, kininogens, and kininases. Pharmacol. Rev. 1992, 44, 1–80. [Google Scholar] [PubMed]
- Blais, C., Jr.; Marceau, F.; Rouleau, J.L.; Adam, A. The kallikrein-kininogen-kinin system: Lessons from the quantification of endogenous kinins. Peptides 2000, 21, 1903–1940. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.J. The kallikrein–kinin system in humans. Clin. Exp. Pharmacol. Physiol. 2001, 28, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Rabito, S.F.; Binia, A.; Segovia, R. Plasma kininogen content of toads, fowl and reptiles. Comp. Biochem. Physiol. Part A 1972, 41, 281–284. [Google Scholar] [CrossRef]
- Seki, T.; Miwa, I.; Nakajima, T.; Erdös, E.G. Plasma kallikrein-kinin system in nonmammalian blood: Evolutionary aspects. Am. J. Physiol. 1973, 224, 1425–1430. [Google Scholar] [PubMed]
- Dunn, K.; Perks, A. Comparative studies of plasma kinins: The kallikrein-kinin system in poikilotherm and other vertebrates. Gen. Comp. Endocrinol. 1975, 26, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M. Bradykinin and its receptors in non-mammalian vertebrates. Regul. Pept. 1999, 79, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Erspamer, V.; Erspamer, G.F. Pharmacological actions of eledoisin on extravascular smooth muscle. Br. J. Pharmacol. Chemother. 1962, 19, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Jouenne, T.; Cosette, P.; Cosquer, D.; Vaudry, H.; Taylor, C.K.; Abel, P.W. Bradykinin-related peptides and tryptophyllins in the skin secretions of the most primitive extant frog, Ascaphus truei. Gen. Comp. Endocrinol. 2005, 143, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Lai, R.; Liu, H.; Hui Lee, W.; Zhang, Y. A novel bradykinin-related peptide from skin secretions of toad Bombina maxima and its precursor containing six identical copies of the final product. Biochem. Biophys. Res. Commun. 2001, 286, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Bjourson, A.J.; McClean, S.; Orr, D.F.; O’Kane, E.J.; Rao, P.; Shaw, C. Cloning of maximakinin precursor cDNAs from Chinese toad, Bombina maxima, venom. Peptides 2003, 24, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T. New vasoactive peptides of nonmammalian origin. Life Sci. 1975, 16, 795–796. [Google Scholar] [CrossRef]
- Lai, R.; Liu, H.; Lee, W.H.; Zhang, Y. Bombinakinin M gene associated peptide, a novel bioactive peptide from skin secretions of the toad Bombina maxima. Peptides 2003, 24, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Liu, S.; Shen, J.; Jin, Y.; Zhang, Y. Cloning of bradykinin precursor cDNAs from skin of Bombina maxima reveals novel bombinakinin M antagonists and a bradykinin potential peptide. Regul. Pept. 2005, 127, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Orr, D.F.; Bjourson, A.J.; McClean, S.; O’Rourke, M.; Hirst, D.G.; Rao, P.; Shaw, C. Bradykinins and their precursor cDNAs from the skin of the fire-bellied toad (Bombina orientalis). Peptides 2002, 23, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, Y.; Yang, M.; Zhou, M.; Chen, T.; Sui, D.; Shaw, C. Peptide DV-28 amide: An inhibitor of bradykinin-induced arterial smooth muscle relaxation encoded by Bombina orientalis skin kininogen-2. Peptides 2010, 31, 979–982. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Orr, D.F.; Bjourson, A.J.; McClean, S.; O’Rourke, M.; Hirst, D.G.; Rao, P.; Shaw, C. Novel bradykinins and their precursor cDNAs from European yellow-bellied toad (Bombina variegata) skin. Eur. J. Biochem. 2002, 269, 4693–4700. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; O’Rourke, M.; Orr, D.F.; Coulter, D.J.; Hirst, D.G.; Rao, P.; Shaw, C. Kinestatin: A novel bradykinin B2 receptor antagonist peptide from the skin secretion of the Chinese toad, Bombina maxima. Regul. Pept. 2003, 116, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.M. Bradykinin receptors: Pharmacological properties and biological roles. Pharmacol. Ther. 1992, 56, 131–190. [Google Scholar] [CrossRef] [PubMed]
- Frost, D.R. Amphibian Species of the World: An Online Reference. Version 5.6. Available online: http://research.amnh.org/herpetology/amphibia/index.html (accessed on 23 August 2013).
- Chen, T.; Shaw, C. Cloning of the (Thr6)-phyllokinin precursor from Phyllomedusa sauvagei skin confirms a non-consensus tyrosine O-sulfation motif. Peptides 2003, 24, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.H.; Bjourson, A.J.; Shaw, C.; McClean, S. Bradykinin-related peptides from Phyllomedusa hypochondrialis azurea: Mass spectrometric structural characterisation and cloning of precursor cDNAs. Rapid Commun. Mass Spectrom. 2006, 20, 3780–3788. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Xi, X.; Ge, L.; Yang, N.; Hou, X.; Ma, J.; Ma, C.; Wu, Y.; Guo, X.; Li, R. Bradykinin-related peptides (BRPs) from skin secretions of three genera of phyllomedusine leaf frogs and their comparative pharmacological effects on mammalian smooth muscles. Peptides 2014, 52, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Rates, B.; Silva, L.P.; Ireno, I.C.; Leite, F.S.; Borges, M.H.; Bloch, C., Jr.; de Lima, M.E.; Pimenta, A. Peptidomic dissection of the skin secretion of Phasmahyla jandaia (Bokermann and Sazima, 1978) (Anura, Hylidae, Phyllomedusinae). Toxicon 2011, 57, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhou, M.; Gagliardo, R.; Walker, B.; Shaw, C. Elements of the granular gland peptidome and transcriptome persist in air-dried skin of the South American orange-legged leaf frog, Phyllomedusa hypocondrialis. Peptides 2006, 27, 2129–2136. [Google Scholar] [CrossRef] [PubMed]
- Brand, G.; Krause, F.; Silva, L.; Leite, J.; Melo, J.; Prates, M.; Pesquero, J.; Santos, E.; Nakaie, C.; Costa-Neto, C. Bradykinin-related peptides from Phyllomedusa hypochondrialis. Peptides 2006, 27, 2137–2146. [Google Scholar] [CrossRef] [PubMed]
- Mignogna, G.; Severini, C.; Erspamer, G.F.; Siciliano, R.; Kreil, G.; Barra, D. Tachykinins and other biologically active peptides from the skin of the Costa Rican phyllomedusid frog Agalychnis callidryas. Peptides 1997, 18, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Neiva, M.; Vargas, D.; Conceição, K.; Rádis-Baptista, G.; Assakura, M.; Jared, C.; Hayashi, M. Gene expression analysis by ESTs sequencing of the Brazilian frog Phyllomedusa nordestina skin glands. Toxicon 2013, 61, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.H.; Bjourson, A.J.; Orr, D.F.; Shaw, C.; McClean, S. A combined mass spectrometric and cDNA sequencing approach to the isolation and characterization of novel antimicrobial peptides from the skin secretions of Phyllomedusa hypochondrialis azurea. Peptides 2007, 28, 1331–1343. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.H.; Bjourson, A.J.; Orr, D.F.; Shaw, C.; McClean, S. Amphibian skin secretomics: Application of parallel quadrupole time-of-flight mass spectrometry and peptide precursor cDNA cloning to rapidly characterize the skin secretory peptidome of Phyllomedusa hypochondrialis azurea: Discovery of a novel peptide family, the hyposins. J. Proteome Res. 2007, 6, 3604–3613. [Google Scholar] [CrossRef] [PubMed]
- König, E.; Clark, V.C.; Shaw, C.; Bininda-Emonds, O.R. Molecular cloning of skin peptide precursor-encoding cDNAs from tibial gland secretion of the Giant Monkey Frog, Phyllomedusa bicolor (Hylidae, Anura). Peptides 2012, 38, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Anastasi, A.; Erspamer, V.; Bertaccini, G.; Cei, J. A bradykinin-Like Endecapeptide of the Skin of Phyllomedusa Rohdei. Hypotens. Pept. 1966, 76–85. [Google Scholar]
- Meneses, E.P.; Villa-Hernández, O.; Hernández-Orihuela, L.; Castro-Franco, R.; Pando, V.; Aguilar, M.B.; Batista, C.V.F. Peptidomic analysis of the skin secretions of the frog Pachymedusa dacnicolor. Amino Acids 2011, 40, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Balderrama, G.D.; Meneses, E.P.; Orihuela, L.H.; Hernández, O.V.; Franco, R.C.; Robles, V.P.; Batista, C.V.F. Analysis of sulfated peptides from the skin secretion of the Pachymedusa dacnicolor frog using IMAC-Ga enrichment and high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Dendorfer, A.; Wagemann, M.; Reißmann, S.; Dominiak, P. Structural requirements for B2-agonists with improved degradation stability. Immunopharmacology 1999, 45, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Anastasi, A.; Bertaccini, G.; Erspamer, V. Pharmacological Data on Phyllokinin (Bradykinyl-Isoleucyl-Tyrosine O-Sulphate) and Bradykinyl-Isoleucyl-Tyrosine. Br. J. Pharmacol. Chemother. 1966, 27, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Aronsson, U. Multiple bradykinin-related peptides from the skin of the frog, Rana temporaria. Peptides 1997, 18, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Bjourson, A.J.; Coulter, D.J.; Chen, T.; Shaw, C.; O’Rourke, M.; Hirst, D.G.; Zhang, Y.; Rao, P.; McClean, S. Bradykinin-related peptides, including a novel structural variant, (Val1)-bradykinin, from the skin secretion of Guenther’s frog, Hylarana guentheri and their molecular precursors. Peptides 2007, 28, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Samgina, T.Y.; Artemenko, K.A.; Gorshkov, V.A.; Ogourtsov, S.V.; Zubarev, R.A.; Lebedev, A.T. De novo sequencing of peptides secreted by the skin glands of the Caucasian Green Frog Rana ridibunda. Rapid Commun. Mass Spectrom. 2008, 22, 3517–3525. [Google Scholar] [CrossRef] [PubMed]
- Samgina, T.Y.; Gorshkov, V.; Artemenko, K.A.; Kovalev, S.; Ogourtsov, S.; Zubarev, R.A.; Lebedev, A. Novel natural peptides from Hyla arborea schelkownikowi skin secretion. Rapid Commun. Mass Spectrom. 2010, 24, 1749–1754. [Google Scholar] [CrossRef] [PubMed]
- Sin, Y.; Zhou, M.; Chen, W.; Wang, L.; Chen, T.; Walker, B.; Shaw, C. Skin bradykinin-related peptides (BRPs) and their biosynthetic precursors (kininogens): Comparisons between various taxa of Chinese and North American ranid frogs. Peptides 2008, 29, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Che, Q.; Wang, X.; Li, J.; Yang, H.; Li, D.; Zhang, K.; Lai, R. Cloning and characterization of the first amphibian bradykinin gene. Biochimie 2010, 92, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Tazato, S.; Michael Conlon, J.; Iwamuro, S. Cloning and expression of genes enocoding antimicrobial peptides and bradykinin from the skin and brain of Oki Tago’s brown frog, Rana tagoi okiensis. Peptides 2010, 31, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Rollins-Smith, L.A.; Woodhams, D.C.; Reinert, L.K.; Vredenburg, V.T.; Briggs, C.J.; Nielsen, P.F.; Conlon, J.M. Antimicrobial peptide defenses of the mountain yellow-legged frog (Rana muscosa). Dev. Comp. Immunol. 2006, 30, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Samgina, T.Y.; Vorontsov, E.; Gorshkov, V.; Hakalehto, E.; Hanninen, O.; Zubarev, R.; Lebedev, A. Composition and antimicrobial activity of the skin peptidome of Russian brown frog Rana temporaria. J. Proteome Res. 2012, 11, 6213–6222. [Google Scholar] [PubMed]
- Lyu, P.; Ge, L.; Wang, L.; Guo, X.; Zhang, H.; Li, Y.; Zhou, Y.; Zhou, M.; Chen, T.; Shaw, C. Ornithokinin (avian bradykinin) from the skin of the Chinese bamboo odorous frog, Odorrana versabilis. J. Pept. Sci. 2014, 20, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Bjourson, A.J.; He, J.; Cai, G.; Rao, P.; Shaw, C. Bradykinins and their cDNA from piebald odorous frog, Odorrana schmackeri, skin. Peptides 2003, 24, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, L.; Wang, H.; Chen, H.; Zhou, M.; Chen, T.; Shaw, C. A fish bradykinin (Arg0, Trp5, Leu8-bradykinin) from the defensive skin secretion of the European edible frog, Pelophylax kl. esculentus: Structural characterization; molecular cloning of skin kininogen cDNA and pharmacological effects on mammalian smooth muscle. Peptides 2011, 32, 26–30. [Google Scholar]
- Basir, Y.J.; Knoop, F.C.; Dulka, J.; Conlon, J.M. Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris. Biochim. Biophys. Acta 2000, 1543, 95–105. [Google Scholar] [CrossRef] [PubMed]
- McCrudden, C.M.; Zhou, M.; Chen, T.; O’Rourke, M.; Walker, B.; Hirst, D.; Shaw, C. The complex array of bradykinin-related peptides (BRPs) in the peptidome of pickerel frog (Rana palustris) skin secretion is the product of transcriptional economy. Peptides 2007, 28, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Han, Y.; Li, J.; Xu, X.; Rees, H.H.; Lai, R. A novel bradykinin-like peptide from skin secretions of rufous-spotted torrent frog, Amolops loloensis. Peptides 2006, 27, 2683–2687. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Iwamuro, S.; Ohnuma, A.; Coquet, L.; Leprince, J.; Jouenne, T.; Vaudry, H.; Taylor, C.K.; Abel, P.W.; Conlon, J.M. Expression of genes encoding antimicrobial and bradykinin-related peptides in skin of the stream brown frog Rana sakuraii. Peptides 2007, 28, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, L.; Zhou, M.; Chen, T.; Ding, A.; Rao, P.; Walker, B.; Shaw, C. Amolopkinins W1 and W2—Novel bradykinin-related peptides (BRPs) from the skin of the Chinese torrent frog, Amolops wuyiensis: Antagonists of bradykinin-induced smooth muscle contraction of the rat ileum. Peptides 2009, 30, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; You, D.; Chen, L.; Wang, X.; Zhang, K.; Lai, R. A novel bradykinin-like peptide from skin secretions of the frog, Rana nigrovittata. J. Pept. Sc. 2008, 14, 626–630. [Google Scholar] [CrossRef]
- Samgina, T.Y.; Gorshkov, V.; Vorontsov, Y.A.; Artemenko, K.; Zubarev, R.; Lebedev, A. Mass spectrometric study of bradykinin-related peptides (BRPs) from the skin secretion of Russian ranid frogs. Rapid Commun. Mass Spectrom. 2011, 25, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Abelous, J.; Bardier, E. Les substances hypotensives de l’urine humaine normale. CR Soc. Biol. 1909, 66, 511–512. [Google Scholar]
- Moreau, M.E.; Garbacki, N.; Molinaro, G.; Brown, N.J.; Marceau, F.; Adam, A. The kallikrein-kinin system: Current and future pharmacological targets. J. Pharmacol. Sci. 2005, 99, 6–38. [Google Scholar] [CrossRef] [PubMed]
- Velarde, V.; Ullian, M.E.; Morinelli, T.A.; Mayfield, R.K.; Jaffa, A.A. Mechanisms of MAPK activation by bradykinin in vascular smooth muscle cells. Am. J. Physiol. 1999, 277, C253–C261. [Google Scholar] [PubMed]
- Hsu, Y.; Chiu, C.; Wang, C.; Chien, C.; Luo, S.; Hsiao, L.; Liang, K.; Yang, C. Tumour necrosis factor-α enhances bradykinin-induced signal transduction via activation of Ras/Raf/MEK/MAPK in canine tracheal smooth muscle cells. Cell. Signal. 2001, 13, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Blaukat, A. Structure and signalling pathways of kinin receptors. Andrologia 2003, 35, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Regoli, D.; Barabe, J. Pharmacology of bradykinin and related kinins. Pharmacol. Rev. 1980, 32, 1–46. [Google Scholar] [PubMed]
- Drouin, J.; Gaudreau, P.; St-Pierre, S.; Regoli, D. Biological activities of kinins modified at the N-or at the C-terminal end. Can. J. Physiol. Pharmacol. 1979, 57, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.M. Bradykinin receptors. Gen. Pharmacol. 1997, 28, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bawolak, M.; Roy, C.; Gera, L.; Marceau, F. Prolonged signalling and trafficking of the bradykinin B2 receptor stimulated with the amphibian peptide maximakinin: Insight into the endosomal inactivation of kinins. Pharmacol. Res. 2012, 65, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Kyle, D.J.; Chakravarty, S.; Sinsko, J.A.; Stormann, T.M. A proposed model of bradykinin bound to the rat B2 receptor and its utility for drug design. J. Med. Chem. 1994, 37, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Luo, Y.; Du, Q.; Wang, L.; Zhou, M.; Ma, J.; Li, R.; Chen, T.; Shaw, C. A Novel Bradykinin-Related Dodecapeptide (RVALPPGFTPLR) from the Skin Secretion of the Fujian Large-Headed Frog (Limnonectes fujianensis) Exhibiting Unusual Structural and Functional Features. Toxins 2014, 6, 2886–2898. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li-Ling, J.; Huang, H.; Ma, F.; Li, Q. Phylogenetic analysis of vertebrate kininogen genes. Genomics 2008, 91, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Charest-Morin, X.; Fortin, J.; Bawolak, M.; Lodge, R.; Marceau, F. Green fluorescent protein fused to peptide agonists of two dissimilar G protein-coupled receptors: Novel ligands of the bradykinin B2 (rhodopsin family) receptor and parathyroid hormone PTH1 (secretin family) receptor. Pharmacol. Res. Perspect. 2013, 1. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, X.; Li, B.; Chen, T.; Kwok, H.F. A Review on Bradykinin-Related Peptides Isolated from Amphibian Skin Secretion. Toxins 2015, 7, 951-970. https://doi.org/10.3390/toxins7030951
Xi X, Li B, Chen T, Kwok HF. A Review on Bradykinin-Related Peptides Isolated from Amphibian Skin Secretion. Toxins. 2015; 7(3):951-970. https://doi.org/10.3390/toxins7030951
Chicago/Turabian StyleXi, Xinping, Bin Li, Tianbao Chen, and Hang Fai Kwok. 2015. "A Review on Bradykinin-Related Peptides Isolated from Amphibian Skin Secretion" Toxins 7, no. 3: 951-970. https://doi.org/10.3390/toxins7030951
APA StyleXi, X., Li, B., Chen, T., & Kwok, H. F. (2015). A Review on Bradykinin-Related Peptides Isolated from Amphibian Skin Secretion. Toxins, 7(3), 951-970. https://doi.org/10.3390/toxins7030951