Recommended Mass Spectrometry-Based Strategies to Identify Botulinum Neurotoxin-Containing Samples
Abstract
:1. Introduction
2. Results
2.1. BoNT Detection and Differentiation
Sample | Matrix | BoNT/A observed? | BoNT/B observed? | BoNT/E observed? | BoNT/F observed? | Actual BoNT |
---|---|---|---|---|---|---|
S1 | Meat extract | Yes | X | X | X | BoNT/A |
S2 | 0.1% BSA/PBS | Yes | X | X | X | BoNT/A |
S3 | 0.1% BSA/PBS | X | X | X | X | None |
S4 | 0.1% BSA/PBS | X | X | Yes | X | BoNT/E |
S5 | Meat extract | Yes | X | X | X | BoNT/A |
S6 | 0.1% BSA/PBS | X | Yes | X | X | BoNT/B |
S7 | 0.1% BSA/PBS | Yes | X | X | X | BoNT/A |
S8 | 0.1% BSA/PBS | Yes | Yes | X | X | BoNT/A BoNT/B |
S9 | 0.1% BSA/PBS | Yes | X | X | X | BoNT/A |
S10 | Milk | Yes | X | X | X | BoNT/A |
S11 | Serum | Yes | X | X | X | BoNT/A |
S12 | 0.1% BSA/PBS | Yes | X | X | X | BoNT/A |
S13 | Milk | Yes | X | X | X | BoNT/A |
2.2. BoNT Quantification
Sample | Matrix | Serotype | Nominal Conc (ng/mL) | Obs Conc #1 (ng/mL) | Obs Conc #2 (ng/mL) | z-score |
---|---|---|---|---|---|---|
S1 | Meat extract | BoNT/A | 10.5 | 13 | 13 | 1.1 |
S2 | 0.1% BSA/PBS | BoNT/A | 9.9 | 12 | 15 | 1.4 |
S3 | 0.1% BSA/PBS | None | N/A | <LOD | <LOD | N/A |
S4 | 0.1% BSA/PBS | BoNT/E | 10.9 | 23 | 20 | 3.8 |
S5 | Meat extract | BoNT/A | 108.0 | 170 | 180 | 2.4 |
S6 | 0.1% BSA/PBS | BoNT/B | 9.0 | 19 | 18 | 4.1 |
S7 | 0.1% BSA/PBS | BoNT/A | 100.0 | 120 | 130 | 1.0 |
S8A | 0.1% BSA/PBS | BoNT/A | 4.7 | 6.7 | 7 | 1.8 |
S8B | 0.1% BSA/PBS | BoNT/B | 4.5 | 6.2 | 6.1 | 1.4 |
S9 | 0.1% BSA/PBS | BoNT/A | 0.5 | 0.56 | 0.65 | 0.9 |
S10 | Milk | BoNT/A | 10.3 | 14 | 14 | 1.4 |
S11 | Serum | BoNT/A | 9.8 | 16 | 15 | 2.3 |
S12 | 0.1% BSA/PBS | BoNT/A | 1001.0 | 1800 | 1600 | 2.7 |
S13 | Milk | BoNT/A | 112.0 | 130 | 120 | 0.5 |
2.3. BoNT Amino Acid Sequencing
3. Discussion
4. Experimental Section
4.1. Materials
4.2. Preparation of mAb-Coated Beads
4.3. Extraction and Incubation of BoNT
4.4. Qualitative MS Analysis
4.5. Quantitative MS Analysis
4.6. MS/MS Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Binz, T.; Blasi, J.; Yamasaki, S.; Baumeister, A.; Link, E.; Sudhof, T.C.; Jahn, R.; Niemann, H. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J. Biol. Chem. 1994, 269, 1617–1620. [Google Scholar] [PubMed]
- Blasi, J.; Chapman, E.R.; Link, E.; Binz, T.; Yamasaki, S.; De Camilli, P.; Sudhof, T.C.; Niemann, H.; Jahn, R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 1993, 365, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Foran, P.; Lawrence, G.W.; Shone, C.C.; Foster, K.A.; Dolly, J.O. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: Correlation with its blockade of catecholamine release. Biochemistry 1996, 35, 2630–2636. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, G.; Rossetto, O.; Catsicas, S.; Polverino de Laureto, P.; DasGupta, B.R.; Benfenati, F.; Montecucco, C. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J. Biol. Chem. 1993, 268, 23784–23787. [Google Scholar] [PubMed]
- Schiavo, G.; Santucci, A.; Dasgupta, B.R.; Mehta, P.P.; Jontes, J.; Benfenati, F.; Wilson, M.C.; Montecucco, C. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett. 1993, 335, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Williamson, L.C.; Halpern, J.L.; Montecucco, C.; Brown, J.E.; Neale, E.A. Clostridial neurotoxins and substrate proteolysis in intact neurons: Botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J. Biol. Chem. 1996, 271, 7694–7699. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.R.; Baudys, J.; Webb, R.P.; Wright, P.; Smith, T.J.; Smith, L.A.; Fernandez, R.; Raphael, B.H.; Maslanka, S.E.; Pirkle, J.L.; et al. Discovery of a novel enzymatic cleavage site for botulinum neurotoxin F5. FEBS Lett. 2012, 586, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, G.; Benfenati, F.; Poulain, B.; Rossetto, O.; Polverino de Laureto, P.; DasGupta, B.R.; Montecucco, C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992, 359, 832–835. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, G.; Malizio, C.; Trimble, W.S.; Polverino de Laureto, P.; Milan, G.; Sugiyama, H.; Johnson, E.A.; Montecucco, C. Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J. Biol. Chem. 1994, 269, 20213–20216. [Google Scholar] [PubMed]
- Schiavo, G.; Shone, C.C.; Rossetto, O.; Alexander, F.C.; Montecucco, C. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J. Biol. Chem. 1993, 268, 11516–11519. [Google Scholar] [PubMed]
- Yamasaki, S.; Baumeister, A.; Binz, T.; Blasi, J.; Link, E.; Cornille, F.; Roques, B.; Fykse, E.M.; Sudhof, T.C.; Jahn, R.; et al. Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J. Biol. Chem. 1994, 269, 12764–12772. [Google Scholar] [PubMed]
- Yamasaki, S.; Binz, T.; Hayashi, T.; Szabo, E.; Yamasaki, N.; Eklund, M.; Jahn, R.; Niemann, H. Botulinum neurotoxin type G proteolyses the Ala81-Ala82 bond of rat synaptobrevin 2. Biochem. Biophys. Res. Commun. 1994, 200, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Blasi, J.; Chapman, E.R.; Yamasaki, S.; Binz, T.; Niemann, H.; Jahn, R. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving hpc-1/syntaxin. EMBO J. 1993, 12, 4821–4828. [Google Scholar] [PubMed]
- Schiavo, G.; Shone, C.C.; Bennett, M.K.; Scheller, R.H.; Montecucco, C. Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J. Biol. Chem. 1995, 270, 10566–10570. [Google Scholar] [CrossRef] [PubMed]
- Barr, J.R.; Moura, H.; Boyer, A.E.; Woolfitt, A.R.; Kalb, S.R.; Pavlopoulos, A.; McWilliams, L.G.; Schmidt, J.G.; Martinez, R.A.; Ashley, D.L. Botulinum neurotoxin detection and differentiation by mass spectrometry. Emerg. Infect. Dis. 2005, 11, 1578–1583. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.R.; Moura, H.; Boyer, A.E.; McWilliams, L.G.; Pirkle, J.L.; Barr, J.R. The use of endopep-ms for the detection of botulinum toxins A, B, E, and F in serum and stool samples. Anal. Biochem. 2006, 351, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.R.; Smith, T.J.; Moura, H.; Hill, K.; Lou, J.; Geren, I.N.; Garcia-Rodriguez, C.; Marks, J.D.; Smith, L.A.; Pirkle, J.L.; et al. The use of endopep-ms to detect multiple subtypes of botulinum neurotoxins A, B, E, and F. Int. J. Mass Spectrom. 2008, 278, 101–108. [Google Scholar] [CrossRef]
- Kalb, S.R.; Krilich, J.C.; Dykes, J.K.; Luquez, C.; Maslanka, S.E.; Barr, J.R. Detection of botulinum toxins A, B, E, and F in foods by Endopep-ms. J. Agric. Food Chem. 2015. [Epub ahead of print]. [Google Scholar]
- Kalb, S.R.; Santana, W.I.; Pirkle, J.L.; Barr, J.R. Detection, differentiation, and subtyping of botulinum toxins A, B, E, and F by mass spectrometry. Botulism J. 2012, 2, 119–134. [Google Scholar] [CrossRef]
- Kalb, S.R.; Garcia-Rodriguez, C.; Lou, J.; Baudys, J.; Smith, T.J.; Marks, J.D.; Smith, L.A.; Pirkle, J.L.; Barr, J.R. Extraction of Bont/A, /B, /E, and /F with a single, high affinity monoclonal antibody for detection of botulinum neurotoxin by Endopep-ms. PLoS One 2010, 5, e12237. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.R.; Lou, J.; Garcia-Rodriguez, C.; Geren, I.N.; Smith, T.J.; Moura, H.; Marks, J.D.; Smith, L.A.; Pirkle, J.L.; Barr, J.R. Extraction and inhibition of enzymatic activity of botulinum neurotoxins/A1, /A2, and /A3 by a panel of monoclonal anti-Bont/A antibodies. PLoS One 2009, 4, e5355. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.R.; Santana, W.I.; Geren, I.N.; Garcia-Rodriguez, C.; Lou, J.; Smith, T.J.; Marks, J.D.; Smith, L.A.; Pirkle, J.L.; Barr, J.R. Extraction and inhibition of enzymatic activity of botulinum neurotoxins /B1, /B2, /B3, /B4, and /B5 by a panel of monoclonal anti-Bont/B antibodies. BMC Biochem. 2011, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Parks, B.A.; Shearer, J.D.; Baudys, J.; Kalb, S.R.; Sanford, D.C.; Pirkle, J.L.; Barr, J.R. Quantification of botulinum neurotoxin serotypes A and B from serum using mass spectrometry. Anal. Chem. 2011, 83, 9047–9053. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Baudys, J.; Krilich, J.; Smith, T.J.; Barr, J.R.; Kalb, S.R. A two-stage multiplex method for quantitative analysis of botulinum neurotoxins type A, B, E, and F by MALDI-TOF mass spectrometry. Anal. Chem. 2014, 86, 10847–10854. [Google Scholar] [CrossRef] [PubMed]
- Boyer, A.E.; Moura, H.; Woolfitt, A.R.; Kalb, S.R.; McWilliams, L.G.; Pavlopoulos, A.; Schmidt, J.G.; Ashley, D.L.; Barr, J.R. From the mouse to the mass spectrometer: Detection and differentiation of the endoproteinase activities of botulinum neurotoxins A-G by mass spectrometry. Anal. Chem. 2005, 77, 3916–3924. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.R.; Baudys, J.; Raphael, B.H.; Dykes, J.K.; Luquez, C.; Maslanka, S.E.; Barr, J.R. Functional characterization of botulinum neurotoxin serotype H as a hybrid of known serotypes F and A (Bont F/A). Anal. Chem. 2015, 87, 3911–3917. [Google Scholar] [CrossRef] [PubMed]
- Maslanka, S.E.; Luquez, C.; Dykes, J.K.; Tepp, W.H.; Pier, C.L.; Pellett, S.; Raphael, B.H.; Kalb, S.R.; Barr, J.R.; Rao, A.; et al. A novel botulinum toxin, previously reported as serotype H, has a hybrid structure of known serotypes A and F that is neutralized with serotype A antitoxin. J. Infectious Dis. 2015, in press. [Google Scholar]
- Kalb, S.R.; Baudys, J.; Smith, T.J.; Smith, L.A.; Barr, J.R. Three enzymatically active neurotoxins of clostridium botulinum strain Af84: Bont/A2, /F4, and /F5. Anal. Chem. 2014, 86, 3254–3262. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Baudys, J.; Kalb, S.R.; Barr, J.R. Improved detection of botulinum neurotoxin type A in stool by mass spectrometry. Anal. Biochem. 2011, 412, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Maslanka, S.E.; Luquez, C.; Raphael, B.H.; Dykes, J.K.; Joseph, L.A. Utility of botulinum toxin ELISA A, B, E, F kits for clinical laboratory investigations of human botulism. Botulism J. 2011, 2, 72–92. [Google Scholar] [CrossRef]
- Weisemann, J.; Krez, N.; Fiebig, U.; Worbs, S.; Skiba, M.; Dorner, M.B.; Bergstrom, T.; Munoz, A.; Zegers, I.; Fikri, Y.; et al. Generation and characterisation of six recombinant botulinum neurotoxins as reference material for an international proficiency test organized by the EQuATox consortium. 2015; manuscript in preparation. [Google Scholar]
- Whitemarsh, R.C.; Tepp, W.H.; Bradshaw, M.; Lin, G.; Pier, C.L.; Scherf, J.M.; Johnson, E.A.; Pellett, S. Characterization of botulinum neurotoxin A subtypes 1 through 5 by investigation of activities in mice, in neuronal cell cultures, and in vitro. Infect. Immun. 2013, 81, 3894–3902. [Google Scholar] [CrossRef] [PubMed]
- Kull, S.; Schulz, K.M.; Strotmeier, J.W.; Kirchner, S.; Schreiber, T.; Bollenbach, A.; Dabrowski, P.W.; Nitsche, A.; Kalb, S.R.; Dorner, M.B.; et al. Isolation and functional characterization of the novel clostridium botulinum neurotoxin a8 subtype. PLoS One 2015, 10, e0116381. [Google Scholar] [CrossRef] [PubMed]
- Hunt, D.F.; Yates, J.R., 3rd; Shabanowitz, J.; Winston, S.; Hauer, C.R. Protein sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 1986, 83, 6233–6237. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalb, S.R.; Baudys, J.; Wang, D.; Barr, J.R. Recommended Mass Spectrometry-Based Strategies to Identify Botulinum Neurotoxin-Containing Samples. Toxins 2015, 7, 1765-1778. https://doi.org/10.3390/toxins7051765
Kalb SR, Baudys J, Wang D, Barr JR. Recommended Mass Spectrometry-Based Strategies to Identify Botulinum Neurotoxin-Containing Samples. Toxins. 2015; 7(5):1765-1778. https://doi.org/10.3390/toxins7051765
Chicago/Turabian StyleKalb, Suzanne R., Jakub Baudys, Dongxia Wang, and John R. Barr. 2015. "Recommended Mass Spectrometry-Based Strategies to Identify Botulinum Neurotoxin-Containing Samples" Toxins 7, no. 5: 1765-1778. https://doi.org/10.3390/toxins7051765
APA StyleKalb, S. R., Baudys, J., Wang, D., & Barr, J. R. (2015). Recommended Mass Spectrometry-Based Strategies to Identify Botulinum Neurotoxin-Containing Samples. Toxins, 7(5), 1765-1778. https://doi.org/10.3390/toxins7051765