Depicting the Discrepancy between Tri Genotype and Chemotype on the Basis of Strain CBS 139514 from a Field Population of F. graminearum Sensu Stricto from Argentina
Abstract
:1. Introduction
2. Results
2.1. Molecular Analysis
2.2. Chemotype Determination of Fungal Strains
3. Discussion
4. Materials and Methods
4.1. Fungal Strains and Growth Conditions
4.2. Molecular Analysis
4.2.1. DNA Isolation and DNA Sequencing
4.2.2. Assembly, Annotation of Tri Genes and Sequence Analyses
4.3. Chemotype Determination by GC-MS
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Desjardins, A.E. Fusarium Mycotoxins Chemistry, Genetics and Biology; American Phytopathological Society Press: St. Paul, MN, USA, 2006. [Google Scholar]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Ward, T.J.; Bielawski, J.P.; Kistler, H.C.; Sullivan, E.; O’Donnell, K. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. Natl. Acad. Sci. USA 2002, 99, 9278–9283. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, M.; Migheli, Q. Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. Int. J. Food Microbiol. 2014, 17, 164–182. [Google Scholar] [CrossRef] [PubMed]
- De Kuppler, A.L.M.; Steiner, U.; Sulyok, M.; Krska, R.; Oerke, E.-C. Genotyping and phenotyping of Fusarium graminearum isolates from Germany related to their mycotoxin biosynthesis. Int. J. Food Microbiol. 2011, 151, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, M.; Giraud, F.; Brochot, C.; Cocco, E.; Hoffmann, L.; Bohn, T. Genetic Fusarium chemotyping as a useful tool for predicting nivalenol contamination in winter wheat. Int. J. Food Microbiol. 2010, 137, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Z.; van der Lee, T.; Chen, W.Q.; Xu, J.; Xu, J.-S.; Yang, L.; Yu, D.; Waalwijk, C.; Feng, J. Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3-ADON producers in Southern China. Phytopathology 2010, 100, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Frisvad, J.C. Media and growth conditions for induction of secondary metabolite production. In Fungal Secondary Metabolism: Methods and Protocols, Methods in Molecular Biology; Keller, N.P., Turner, G., Eds.; Humana Press: New York, NY, USA, 2012; pp. 47–58. [Google Scholar]
- Lee, T.; Oh, D.-W.; Kim, H.-S.; Lee, J.; Kim, Y.-H.; Yun, S.-H.; Lee, Y.W. Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl. Environ. Microbiol. 2001, 67, 2966–2972. [Google Scholar] [CrossRef] [PubMed]
- Ward, T.J.; Clear, R.M.; Rooney, A.P.; O’Donnell, K.; Gaba, D.; Patrick, S.; Starkey, D.E.; Gilbert, J.; Geiser, D.M.; Nowicki, T.W. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 2008, 45, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Kulik, T. Development of TaqMan assays for 3ADON, 15-ADON and NIV Fusarium genotypes based on Tri12 gene. Cereal Res. Commun. 2011, 39, 200–214. [Google Scholar] [CrossRef]
- Nielsen, L.K.; Jensen, J.D.; Rodríguez, A.; Jørgensen, L.N.; Justesen, A.F. Tri12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. Int. J. Food Microbiol. 2012, 157, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, A.E.; Busman, M.; Manandhar, G.; Jarosz, A.M.; Manandhar, H.K.; Proctor, R.H. Gibberella ear rot of maize (Zea mays) in Nepal: Distribution of the mycotoxins nivalenol and deoxynivalenol in naturally and experimentally infected maize. J. Agric. Food. Chem. 2008, 56, 5428–5436. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, M.; Cocco, E.; Guignard, C.; Hoffmann, L. The effect of agmatine on trichothecene type B and zearalenone production in Fusarium graminearum, F. culmorum and F. poae. PeerJ 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Castañares, E.; Albuquerque, D.R.; Dinolfo, M.I.; Pinto, V.F.; Patriarca, A.; Stenglein, S.A. Trichothecene genotypes and production profiles of Fusarium graminearum isolates obtained from barley cultivated in Argentina. Int. J. Food Microbiol. 2014, 179, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Garvey, G.S.; McCormick, S.P.; Rayment, I. Structural and functional characterization of the Tri101 trichothecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum: Kinetic insights to combating Fusarium head blight. J. Biol. Chem. 2008, 283, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Matsumoto, G.; Shingu, Y.; Yoneyama, K.; Yamaguchi, I. The mystery of the trichothecene 3-O-acetyltransferase gene. Analysis of the region around Tri101 and characterization of its homologue from Fusarium sporotrichioides. FEBS Lett. 1998, 435, 163–168. [Google Scholar] [CrossRef]
- Kulik, T.; Buśko, M.; Pszczółkowska, A.; Perkowski, J.; Okorski, A. Plant lignans inhibit growth and trichothecene biosynthesis in Fusarium graminearum. Lett. Appl. Microbiol. 2014, 59, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Perkowski, J.; Kiecana, I.; Kaczmarek, Z. Natural occurrence and distribution of Fusarium toxins in 15 naturally-contaminated barley cultivars. Eur. J. Plant. Pathol. 2003, 109, 331–339. [Google Scholar] [CrossRef]
- Alexander, N.J.; McCormick, S.P.; Waalwijk, C.; van der Lee, T.; Proctor, R.H. The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet. Biol. 2011, 48, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, C.C.; Fernando, W.G.D. Comparative analysis of deoxynivalenol biosynthesis related gene expression among different chemotypes of Fusarium graminearum in spring wheat. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Ward, T.J.; Aberra, D.; Kistler, H.C.; Aoki, T.; Orwig, N.; Kimura, M.; Bjørnstad, S.; Klemsdal, S.S. Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genet. Biol. 2008, 45, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Li, H.P.; Qu, B.; Zhang, J.B.; Huang, T.; Chen, F.F.; Liao, Y.C. Development of a generic PCR detection of 3-acetyldeoxy-nivalenol-, 15-acetyldeoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum Clade. Int. J. Mol. Sci. 2008, 9, 2495–2504. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, A.E. Natural product chemistry meets genetics: When is a genotype a chemotype? J. Agric. Food Chem. 2008, 56, 7587–7592. [Google Scholar] [CrossRef] [PubMed]
- Abarenkov, K.; Tedersoo, L.; Nilsson, R.H.; Vellak, K.; Saar, I.; Veldre, V.; Parmasto, E.; Prous, M.; Aan, A.; Ots, M.; et al. PlutoF—A web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evol. Bioinform. Online 2010, 6, 189–196. [Google Scholar]
- PlutoF platform. Available online: https://plutof.ut.ee/ (accessed on 7 October 2016).
- Kulik, T.; Abarenkov, K.; Buśko, M.; Bilska, K.; van Diepeningen, A.D.; Ostrowska-Kołodziejczak, A.; Krawczyk, K.; Brankovics, B.; Stenglein, S.; Sawicki, J.; et al. ToxGen: An improved reference database for the identification of type B-trichothecene genotypes in Fusarium. Unpublished work. 2016. [Google Scholar]
- Geneious. Available online: http://www.geneious.com (accessed on 7 October 2016).
CBS Strain | Genotype/Chemotype | GenBank Accession Number (Core Tri Cluster/Tri101) | Trichothecene Production mg·kg−1 | Chemical Analyses | ||||
---|---|---|---|---|---|---|---|---|
DON | 3ADON | 15ADON | NIV | 4ANIV | ||||
139514 1 | 15ADON/3ADON | KU572431/KX774500 | 17.9 | 7.15 | 1.3 | n.d. | n.t. | [15] |
0.59 ± 0.03 | 0.68 ± 0.01 | 0.03 ± 0.002 | 0.01 ± 0.001 | 0.02 ± 0.001 | this study 3 | |||
25.42 ± 0.96 | 273.12 ± 30.4 | 0.43 ± 0.01 | n.d. | n.t. | this study 4 | |||
139513 2 | 15ADON/15ADON | KU572432/KX774499 | 4.08 | n.d. | 2.04 | n.d. | n.t. | [15] |
138561 | 15ADON/15ADON | KU572429/KX774496 | 2.52 ± 0.04 | 0.46 ± 0.06 | 1.37 ± 0.02 | n.d. | n.d. | [18] |
2.16 ± 0.94 | 1.42 ± 0.3 | 1.6 ± 0.48 | 0.12 ± 0.02 | 0.96 ± 0.01 | this study 3 | |||
138562 | 3ADON/3ADON | KU572434/KX774497 | 1.3 ± 0.02 | 3.75 ± 0.05 | n.t. | n.t. | n.t. | [18] |
0.91 ± 0.42 | 2.48 ± 1.26 | 0.09 ± 0.02 | 0.03 ± 0.02 | 0.02 ± 0.01 | this study 3 | |||
119173 | 3ADON/3ADON | KU572433/KX774495 | 5.5 ± 2.7 | 24.7 ± 1.1 | 0.03 ± 0.01 | 0.08 ± 0.05 | 0.02 ± 0.01 | this study 3 |
138563 | NIV/NIV | KU572430/KX774498 | 0.01 ± 0.01 | 0.04 ± 0.03 | n.d. | 1.86 ± 1.6 | 0.88 ± 0.43 | this study 3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulik, T.; Buśko, M.; Bilska, K.; Ostrowska-Kołodziejczak, A.; Van Diepeningen, A.D.; Perkowski, J.; Stenglein, S. Depicting the Discrepancy between Tri Genotype and Chemotype on the Basis of Strain CBS 139514 from a Field Population of F. graminearum Sensu Stricto from Argentina. Toxins 2016, 8, 330. https://doi.org/10.3390/toxins8110330
Kulik T, Buśko M, Bilska K, Ostrowska-Kołodziejczak A, Van Diepeningen AD, Perkowski J, Stenglein S. Depicting the Discrepancy between Tri Genotype and Chemotype on the Basis of Strain CBS 139514 from a Field Population of F. graminearum Sensu Stricto from Argentina. Toxins. 2016; 8(11):330. https://doi.org/10.3390/toxins8110330
Chicago/Turabian StyleKulik, Tomasz, Maciej Buśko, Katarzyna Bilska, Anna Ostrowska-Kołodziejczak, Anne D. Van Diepeningen, Juliusz Perkowski, and Sebastian Stenglein. 2016. "Depicting the Discrepancy between Tri Genotype and Chemotype on the Basis of Strain CBS 139514 from a Field Population of F. graminearum Sensu Stricto from Argentina" Toxins 8, no. 11: 330. https://doi.org/10.3390/toxins8110330
APA StyleKulik, T., Buśko, M., Bilska, K., Ostrowska-Kołodziejczak, A., Van Diepeningen, A. D., Perkowski, J., & Stenglein, S. (2016). Depicting the Discrepancy between Tri Genotype and Chemotype on the Basis of Strain CBS 139514 from a Field Population of F. graminearum Sensu Stricto from Argentina. Toxins, 8(11), 330. https://doi.org/10.3390/toxins8110330