Enniatin and Beauvericin Biosynthesis in Fusarium Species: Production Profiles and Structural Determinant Prediction
Abstract
:1. Introduction
2. Results
2.1. Analytical Method
2.2. Enniatins and Beauvericin Production by Fusarium Isolates
2.3. Sequences Analysis
2.4. Structural Analysis
2.4.1. Structural Models’ Comparison
2.4.2. Structural Interpretation of Multivariate Analysis Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Fungal Strains
5.2. Media and Growth Conditions
5.3. Chemicals and Preparation of Standards
5.4. Determination and Confirmation of Enniatins (A, A1, B and B1) and Beauvericin from Agar Medium
5.5. Sequence Data Analysis
5.6. RNA Isolation and Reverse Transcription
5.7. RT-PCR and Sequencing
5.8. Multi-Sequence Alignment
5.9. Structural Model Generation
5.10. Structural Models Comparisons
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sy-Cordero, A.A.; Pearce, C.J.; Oberlies, N.H. Revisiting the enniatins: A review of their isolation, biosynthesis, structure determination and biological activities. J. Antibiot. 2012, 65, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Strongman, D.B.; Strunz, G.M.; Giguère, P.; Yu, C.M.; Calhou, L. Enniatins from Fusarium avenaceum isolated from balsam fir foliage and their toxicity to spruce budworm larvae, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). J. Chem. Ecol. 1988, 14, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Hamill, R.L.; Higgins, C.E.; Boaz, H.E.; Gorman, M. The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett. 1969, 49, 4255–4258. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, L. Beauvericin, a bioactive compound produced by fungi: A short review. Molecules 2012, 17, 2367–2377. [Google Scholar] [CrossRef] [PubMed]
- Gäumann, E.; Roth, S.; Ettlinger, L.; Plattnerp, A.; Nager, U. Enniatin, ein neues, gegen Mykobakterien wirksames Antibiotikum. Experientia 1947, 3, 202–203. [Google Scholar] [CrossRef] [PubMed]
- Gäumann, E.; Naef-Roth, S.; Kern, H. Zur phytotoxischen Wirksamkeit der Enniatine. Phytopathol. Z. 1960, 40, 45–51. [Google Scholar] [CrossRef]
- Nilanonta, C.; Isaka, M.; Chanphen, R.; Thongorn, N.; Tanticharoen, M.; Thebtaranonth, Y. Unusual enniatins produced by the insect pathogenic fungus Verticillium hemipterigenum: Isolation and studies on precursor-directed biosynthesis. Tetrahedron 2003, 59, 1015–1020. [Google Scholar] [CrossRef]
- Lin, Y.C.; Wang, J.; Wu, X.; Zhou, S.; Vrijmoed, L.L.P.; Jones, G.B.G. A novel compound enniatin G from the mangrove fungus Halosarpheia sp. (strain732) from the South China Sea. Aust. J. Chem. 2002, 55, 225–227. [Google Scholar] [CrossRef]
- Shin, C.G.; An, D.G.; Song, H.H.; Lee, C. Beauvericin and enniatins H, I and MK1688 are new potent inhibitors of human immunodeficiency virus type-1 integrase. J. Antibiot. 2009, 62, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, D.; Finking, R.; Marahiel, M.A. Nonribosomal peptides: From genes to products. Nat. Prod. Rep. 2003, 20, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Finking, R.; Marahiel, M.A. Biosynthesis of nonribosomal peptides. Ann. Rev. Microbiol. 2004, 58, 453–488. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.; Marahiel, M.A. Exploring the domain structure of modular nonribosomal peptide synthetases. Structure 2001, 9, R3–R9. [Google Scholar] [CrossRef]
- Keating, T.A.; Marshall, C.G.; Walsh, C.T.; Keating, A.E. The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat. Struct. Biol. 2002, 9, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Zocher, R.; Keller, U.; Kleinkauf, H. Enniatin synthetase, a novel type of multifunctional enzyme catalyzing depsipeptide synthesis in Fusarium oxysporum. Biochemistry 1982, 21, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Zocher, R.; Keller, U.; Kleinkauf, H. Mechanism of depsipeptide formation catalyzed by enniatin synthetase. Biochem. Biophys. Res. Commun. 1983, 110, 292–299. [Google Scholar] [CrossRef]
- Zocher, R.; Keller, U. Thiol template peptide synthesis systems in bacteria and fungi. Adv. Microb. Physiol. 1997, 8, 85–131. [Google Scholar]
- Hornbogen, T.; Glinski, M.; Zocher, R. Biosynthesis of the mycotoxin enniatin in Fusarium species. Mycotoxin Res. 2000, 16, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Billich, A.; Zocher, R. N-Methyltransferase function of the multifunctional enzyme enniatin synthetase. Biochemistry 1987, 26, 8417–8423. [Google Scholar] [CrossRef]
- Zocher, R.; Salnikow, J.; Kleinkauf, H. Biosynthesis of enniatin B. FEBS Lett. 1976, 71, 13–17. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific Opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J. 2014, 12, 3802. [Google Scholar] [CrossRef]
- Bottalico, A.; Perrone, G. Toxigenic Fusarium species and mycotoxins associated with Head Blight in small-grain cereals in Europe. Eur. J. Plant Pathol. 2002, 108, 611–624. [Google Scholar] [CrossRef]
- Jestoi, M. Emerging Fusarium mycotoxins fusalproliferin, beauvericin, enniatins and moniliformin—A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar] [CrossRef] [PubMed]
- Shwab, E.; Keller, N. Regulation of secondary metabolite production in filamentous ascomycetes. Mycotoxin Res. 2008, 112, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microb. 2013, 11, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Juan-García, A.; Ruiz, M.J.; Font, G.; Manyes, L. Enniatin A1, enniatin B1 and beauvericin on HepG2: Evaluation of toxic effects. Food Chem. Toxicol. 2015, 84, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Lysøe, E.; Harris, L.J.; Walkowiak, S.; Subramaniam, R.; Divon, H.H.; Riiser, E.S.; Llorens, C.; Gabaldón, T.; Kistler, H.C.; Jonkers, W.; et al. The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLoS ONE 2014, 9, e112703. [Google Scholar]
- Nelson, P.E.; Toussoun, T.A.; Marasas, W.F.O. Fusarium Species—An Illustrated Manual for Identification; Pennsylvania State University Press: University Park, PA, USA, 1983. [Google Scholar]
- Logrieco, A.F.; Rizzo, A.; Ferracane, R.; Ritieni, A. Occurrence of beauvericin and enniatins in wheat affected by Fusarium avenaceum head blight. Appl. Environ. Microbiol. 2002, 68, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Logrieco, A.F.; Moretti, A.; Castella, G.; Kostecki, M.; Golinski, P.; Ritieni, A.; Chelkowski, J. Beauvericin production by Fusarium species. Appl. Environ. Microbiol. 1998, 64, 3084–3088. [Google Scholar] [PubMed]
- Jeong, H.; Lee, S.; Choi, G.J.; Lee, T.; Yun, S.H. Draft genome sequence of Fusarium fujikuroi B14, the causal agent of the Bakanae disease of rice. Genome Announc. 2013, 1, e00035-13. [Google Scholar] [CrossRef] [PubMed]
- Chiara, M.; Fanelli, F.; Mulè, G.; Logrieco, A.F.; Pesole, G.; Leslie, J.F.; Horner, D.S.; Toomajian, C. Genome sequencing of multiple isolates highlights subtelomeric genomic diversity within Fusarium fujikuroi. Genome Biol. Evol. 2015, 7, 3062–3069. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.J.; van der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B.; et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010, 464, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhuo, Y.; Jia, X.; Liu, J.; Gao, H.; Song, F.; Liu, M.; Zhang, L. Cloning and characterization of the gene cluster required for beauvericin biosynthesis in Fusarium proliferatum. Sci. China Life Sci. 2013, 56, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Tomoda, H.; Huang, X.H.; Cao, J.; Nishida, H.; Nagao, R.; Okuda, S.; Tanaka, H.; Omura, S.; Arai, H.; Inoue, K. Inhibition of acyl-CoA: Cholesterol acyltransferase activity by cyclodepsipeptide antibiotics. J. Antibiot. 1992, 45, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Dornetshuber, R.; Heffeter, P.; Kamyar, M.R.; Peterbauer, T.; Berger, W.; Lemmens-Gruber, R. Enniatin exerts p53-dependent cytostatic and p53-independent cytotoxic activities against human cancer cells. Chem. Res. Toxicol. 2007, 20, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Watjen, W.; Debbab, A.; Hohlfeld, A.; Chovolou, Y.; Kampkötter, A.; Edrada, R.A.; Ebel, R.; Hakiki, A.; Mosaddak, M.; Totzke, F.; et al. Enniatins A1, B and B1 from an endophytic strain of Fusarium tricinctum induce apoptotic cell death in H4IIE hepatoma cells accompanied by inhibition of ERK phosphorylation. Mol. Nutr. Food Res. 2009, 53, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Celik, M.; Aksoy, H.; Yilmaz, S. Evaluation of beauvericin genotoxicity with the chromosomal aberrations, sister-chromatid exchanges and micronucleus assays. Ecotoxicol. Environ. Saf. 2010, 73, 1553–1557. [Google Scholar] [CrossRef] [PubMed]
- Juan-García, A.; Manyes, L.; Ruiz, M.J.; Font, G. Involvement of enniatins-induced cytotoxicity in human HepG2 cells. Toxicol. Lett. 2013, 218, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Peeters, H.; Zocher, R.; Kleinkauf, H. Synthesis of beauvericin by a multifunctional enzyme. J. Antibiot. 1988, 41, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Plattner, P.A.; Nager, U.; Boller, A. Wilting agents and antibiotics. VII Isolation of new type antibiotics from Fusaria. Helv. Chim. Acta 1948, 31, 594–602. [Google Scholar]
- Seifert, K.A.; Aoki, T.; Baayen, R.P.; Waalwijk, C. The name Fusarium Moniliforme should no longer be used. Mycotoxin Res. 2003, 107, 643–644. [Google Scholar] [CrossRef]
- Süssmuth, R.; Müller, J.; von Döhrenb, H.; Molnár, I. Fungal cyclooligomer depsipeptides: From classical biochemistry to combinatorial biosynthesis. Nat. Prod. Rep. 2011, 28, 99–124. [Google Scholar] [CrossRef] [PubMed]
- Leslie, J.F.; Zeller, K.A.; Lamprecht, S.C.; Rheeder, J.P.; Marasas, W.F.O. Toxicity, Pathogenicity, and Genetic Differentiation of Five Species of Fusarium from Sorghum and Millet. Phytopathology 2005, 95, 3. [Google Scholar] [CrossRef] [PubMed]
- Leslie, J.F.; Marasas, W.F.O.; Shephard, G.S.; Sydenham, E.W.; Stockenstrom, S.; Thiel, P.G. Duckling toxicity and the production of fumonisin and moniliformin by isolates in the A and F mating populations of Gibberella fujikuroi. Appl. Environ. Microbiol. 1996, 62, 1182–1187. [Google Scholar] [PubMed]
- Leslie, J.F. Mating populations in Gibberella fujikuroi (Fusarium section Liseola). Phytopathology 1991, 81, 1058–1060. [Google Scholar]
- Fanelli, F.; Ferracane, R.; Ritieni, A.; Logrieco, A.F.; Mulè, G. Transcriptional regulation of enniatins production by Fusarium avenaceum. J. Appl. Microbiol. 2014, 116, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Billich, A.; Zocher, R. Constitutive expression of enniatin synthetase during fermentative growth of Fusarium scirpi. Appl. Environ. Microbiol. 1988, 54, 2504–2509. [Google Scholar] [PubMed]
- Madry, N.; Zocher, R.; Kleinkauf, H. Enniatin production by Fusarium oxysporum in chemically defined media. Eur. J. Appl. Microbiol. Biotechnol. 1983, 17, 75–79. [Google Scholar] [CrossRef]
- Rozen, S.; Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Method Mol. Biol. 2000, 132, 365–386. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Caliandro, R.; Rossetti, G.; Carloni, P.J. Local fluctuations and conformational transitions in proteins. Chem. Theory Comput. 2012, 8, 4775–4785. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Esbensen, K.; Geladi, P. Chemometrics and intelligent laboratory systems. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Caliandro, R.; Belviso, B.D. RootProf: Software for multivariate analysis of unidimensional profiles. J. Appl. Cryst. 2014, 47, 1087–1096. [Google Scholar] [CrossRef]
Mycotoxin | Elemental Formula [M + H]+ | Retention Time (min) | SIR (m/z) | Calibration Range (µg/mL) | LOQ UPLC/QDa (µg/g) |
---|---|---|---|---|---|
Enniatin A | C36H63N3O9 | 11.4 | 682 | 0.09−1.20 | 0.015 |
Enniatin A1 | C35H61N3O9 | 10.2 | 668 | 0.30−8.00 | 0.05 |
Enniatin B | C33H57N3O9 | 8.5 | 640 | 0.04−7.60 | 0.07 |
Enniatin B1 | C34H59N3O9 | 9.2 | 654 | 0.04−21.60 | 0.07 |
Beauvericin | C45H57N3O9 | 9.8 | 784 | 0.02−40.00 | 0.04 |
Species | Strain | Metabolic Profile | Genome Accession/Reference | ESYN1 CDS Accession |
---|---|---|---|---|
Fusarium fujikuroi | B14 | ENN A, ENN B, ENN B1, BEA | ANFV01 [30] | - |
Fusarium fujikuroi | FGSC 8932 | ENN A, ENN B, ENN B1, BEA | FRVF01 [31] | KY026610 |
Fusarium fujikuroi | KSU 10626 | ENN A, ENN B, ENN B1, BEA | FRVG01 [31] | KY026609 |
Fusarium fujikuroi | KSU 3368 | ENN A, ENN B, ENN B1, BEA | FRVH01 [31] | KY026611 |
Fusarium verticillioides | FGSC 7600 | ENN A, ENN B, ENN B1 | AAIM02 [32] | KY026615 |
Fusarium verticillioides | KSU 488 | ENN A, ENN B, ENN B1 | this study | - |
Fusarium verticillioides | KSU 999 | ENN A, ENN B, ENN B1 | this study | KY026616, KY026617 |
Fusarium spp. | KSU 3089G | ENN A, ENN B, ENN B1 | this study | KY026614 |
Fusarium proliferatum | KSU 830 | ENN A, ENN B, ENN B1 | this study | KY026613 |
Fusarium proliferatum | KSU 4854 | ENN B, ENN B1, BEA | this study | KY026612 |
Fusarium avenaceum | Fa05001 | ENN A *, ENN B * | JPYM01 [26] | - |
Fusarium avenaceum | FaLH03 | ENN A *, ENN B * | JQGD01 [26] | - |
Fusarium avenaceum | FaLH27 | ENN A *, ENN B * | JQGE01 [26] | - |
Hotspot Residues | Secondary Structure | Description |
---|---|---|
Ala502-Val503 | β strand | Discrimination of F. verticillioides strains in A′ segment |
Ala505-Trp510 | β strand | |
Gln725-Phe730 | α helix | Discrimination of F. avenaceum strains in A′ segment |
Ser749-Asn753 | α helix | |
Asn789-Ala793 | β strand | |
His797-Asp802 | β strand | |
Thr843-Phe857 | Loop | |
Asn1744 | β strand | Discrimination of F. avenaceum strains in B′ segment |
Phe1746 | Loop | |
Phe659-Gly660 | Loop | Explanation of beauvericin metabolic profiles of F. fujikuroi and F. proliferatum strains in A′ segment |
Asn789-Ala793 | β strand | |
His797-Asp802 | β strand | |
Thr843-Phe857 | Loop | |
Met1760-Gly1764 | α helix | Explanation of beauvericin metabolic profiles of F. fujikuroi and F. proliferatum strains in B′ segment |
Leu1817 | β strand | |
G1u822 | Loop |
Species | Primer forward | Primer reverse | T annealing |
---|---|---|---|
F. fujikuroi | ACTGTTGCGTTGACTTCCAA | ACAAGTTCACCAATTGCCCC | 54 °C |
F. proliferatum | TTTCTCATGGCTGCTGGAGA | GGTTATCATTCGCGTCACCC | 55 °C |
Fusarium spp. KSU 3089G | GAGCCGTGCATCTCTTTCTG | CTTTCACAGTGACGCGAACA | 54 °C |
F. verticillioides | GGTCGTCGCTTCAATGCTAG | GAACTCTCGCTCTGACCGTA | 54 °C |
F. verticillioides | CGCAATCGGTGAACTTGTGA | GGCCAACAATTCGCTACCAA | 54 °C |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liuzzi, V.C.; Mirabelli, V.; Cimmarusti, M.T.; Haidukowski, M.; Leslie, J.F.; Logrieco, A.F.; Caliandro, R.; Fanelli, F.; Mulè, G. Enniatin and Beauvericin Biosynthesis in Fusarium Species: Production Profiles and Structural Determinant Prediction. Toxins 2017, 9, 45. https://doi.org/10.3390/toxins9020045
Liuzzi VC, Mirabelli V, Cimmarusti MT, Haidukowski M, Leslie JF, Logrieco AF, Caliandro R, Fanelli F, Mulè G. Enniatin and Beauvericin Biosynthesis in Fusarium Species: Production Profiles and Structural Determinant Prediction. Toxins. 2017; 9(2):45. https://doi.org/10.3390/toxins9020045
Chicago/Turabian StyleLiuzzi, Vania C., Valentina Mirabelli, Maria Teresa Cimmarusti, Miriam Haidukowski, John F. Leslie, Antonio F. Logrieco, Rocco Caliandro, Francesca Fanelli, and Giuseppina Mulè. 2017. "Enniatin and Beauvericin Biosynthesis in Fusarium Species: Production Profiles and Structural Determinant Prediction" Toxins 9, no. 2: 45. https://doi.org/10.3390/toxins9020045
APA StyleLiuzzi, V. C., Mirabelli, V., Cimmarusti, M. T., Haidukowski, M., Leslie, J. F., Logrieco, A. F., Caliandro, R., Fanelli, F., & Mulè, G. (2017). Enniatin and Beauvericin Biosynthesis in Fusarium Species: Production Profiles and Structural Determinant Prediction. Toxins, 9(2), 45. https://doi.org/10.3390/toxins9020045