Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Ab-Coated Beads
4.3. Production and Immunocapture of C. botulinum Culture Supernatants and BoNT Complexes
4.4. Digestion and LC-MS/MS Analysis of BoNTs
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sugii, S.; Ohishi, I.; Sakaguchi, G. Correlation between oral toxicity and in vitro stability of Clostridium botulinum type A and B toxins of different molecular sizes. Infect. Immun. 1977, 16, 910–914. [Google Scholar] [PubMed]
- Matsumura, T.; Sugawara, Y.; Yutani, M.; Amatsu, S.; Yagita, H.; Kohda, T.; Fukuoka, S.; Nakamura, Y.; Fukuda, S.; Hase, K.; et al. Botulinum toxin a complex exploits intestinal m cells to enter the host and exert neurotoxicity. Nat. Commun. 2015, 6, 6255. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, Y.; Matsumura, T.; Takegahara, Y.; Jin, Y.; Tsukasaki, Y.; Takeichi, M.; Fujinaga, Y. Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. J. Cell Biol 2010, 189, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Rumpel, S.; Zhou, J.; Strotmeier, J.; Bigalke, H.; Perry, K.; Shoemaker, C.B.; Rummel, A.; Jin, R. Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 2012, 335, 977–981. [Google Scholar] [CrossRef] [PubMed]
- Fujinaga, Y.; Inoue, K.; Nomura, T.; Sasaki, J.; Marvaud, J.C.; Popoff, M.R.; Kozaki, S.; Oguma, K. Identification and characterization of functional subunits of Clostridium botulinum type A progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS Lett. 2000, 467, 179–183. [Google Scholar] [CrossRef]
- Lee, K.; Gu, S.; Jin, L.; Le, T.T.; Cheng, L.W.; Strotmeier, J.; Kruel, A.M.; Yao, G.; Perry, K.; Rummel, A.; et al. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog. 2013, 9, e1003690. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Zhong, X.; Gu, S.; Kruel, A.M.; Dorner, M.B.; Perry, K.; Rummel, A.; Dong, M.; Jin, R. Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin a complex. Science 2014, 344, 1405–1410. [Google Scholar] [CrossRef] [PubMed]
- Blümel, J.; Frevert, J.; Medawar, P. Comparative antigenicity of three preparations of botulium neurotoxin type A in the rabbit. Neurotox. Res. 2006, 9, 238. [Google Scholar]
- Kukreja, R.; Chang, T.W.; Cai, S.; Lindo, P.; Riding, S.; Zhou, Y.; Ravichandran, E.; Singh, B.R. Immunological characterization of the subunits of type A botulinum neurotoxin and different components of its associated proteins. Toxicon 2009, 53, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Yokota, K.; Arimitsu, H.; Hwang, H.J.; Sakaguchi, Y.; Cui, J.; Takeshi, K.; Watanabe, T.; Ohyama, T.; Oguma, K. Production of anti-neurotoxin antibody is enhanced by two subcomponents, HA1 and HA3b, of Clostridium botulinum type B 16s toxin-haemagglutinin. Microbiology 2005, 151, 3739–3747. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.W.; Onisko, B.; Johnson, E.A.; Reader, J.R.; Griffey, S.M.; Larson, A.E.; Tepp, W.H.; Stanker, L.H.; Brandon, D.L.; Carter, J.M. Effects of purification on the bioavailability of botulinum neurotoxin type A. Toxicology 2008, 249, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, I.; Sugii, S.; Sakaguchi, G. Oral toxicities of Clostridium botulinum toxins in response to molecular size. Infect. Immun. 1977, 16, 107–109. [Google Scholar] [PubMed]
- Marvaud, J.C.; Gibert, M.; Inoue, K.; Fujinaga, Y.; Oguma, K.; Popoff, M.R. BotR/A is a positive regulator of botulinum neurotoxin and associated non-toxin protein genes in Clostridium botulinum A. Mol. Microbiol. 1998, 29, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Hines, H.B.; Lebeda, F.; Hale, M.; Brueggemann, E.E. Characterization of botulinum progenitor toxins by mass spectrometry. Appl. Environ. Microbiol. 2005, 71, 4478–4486. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Tepp, W.H.; Pier, C.L.; Jacobson, M.J.; Johnson, E.A. Expression of the Clostridium botulinum A2 neurotoxin gene cluster proteins and characterization of the A2 complex. Appl. Environ. Microbiol. 2010, 76, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Mazuet, C.; Ezan, E.; Volland, H.; Popoff, M.R.; Becher, F. Toxin detection in patients’ sera by mass spectrometry during two outbreaks of type A botulism in france. J. Clin. Microbiol. 2012, 50, 4091–4094. [Google Scholar] [CrossRef] [PubMed]
- Kukreja, R.V.; Singh, B.R. Comparative role of neurotoxin-associated proteins in the structural stability and endopeptidase activity of botulinum neurotoxin complex types A and E. Biochemistry 2007, 46, 14316–14324. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.R.; Goodnough, M.C.; Malizio, C.J.; Pirkle, J.L.; Barr, J.R. Detection of botulinum neurotoxin a in a spiked milk sample with subtype identification through toxin proteomics. Anal. Chem. 2005, 77, 6140–6146. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.R.; Baudys, J.; Rees, J.C.; Smith, T.J.; Smith, L.A.; Helma, C.H.; Hill, K.; Kull, S.; Kirchner, S.; Dorner, M.B.; et al. De novo subtype and strain identification of botulinum neurotoxin type B through toxin proteomics. Anal. Bioanal. Chem. 2012, 403, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.R.; Baudys, J.; Smith, T.J.; Smith, L.A.; Barr, J.R. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: Bont/A2, /F4, and /F5. Anal. Chem. 2014, 86, 3254–3262. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.D.; East, A.K. Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J. Appl Microbiol 1998, 84, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Baudys, J.; Kalb, S.R.; Barr, J.R. Improved detection of botulinum neurotoxin type A in stool by mass spectrometry. Anal. Biochem. 2011, 412, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Malizio, C.J.; Goodnough, M.C.; Johnson, E.A. Purification of Clostridium botulinum type A neurotoxin. In Methods in Molecular Biology; Holst, O., Ed.; Humana Press Inc.: Totowa, NJ, USA, 2000; Volume 145, pp. 27–39. [Google Scholar]
- Hill, K.K.; Xie, G.; Foley, B.T.; Smith, T.J.; Munk, A.C.; Bruce, D.; Smith, L.A.; Brettin, T.S.; Detter, J.C. Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and clostridium butyricum type E strains. BMC Biol. 2009, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.R.; Santana, W.I.; Geren, I.N.; Garcia-Rodriguez, C.; Lou, J.; Smith, T.J.; Marks, J.D.; Smith, L.A.; Pirkle, J.L.; Barr, J.R. Extraction and inhibition of enzymatic activity of botulinum neurotoxins /B1, /B2, /B3, /B4, and /B5 by a panel of monoclonal anti-BoNT/B antibodies. BMC Biochem. 2011, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.R.; Lou, J.; Garcia-Rodriguez, C.; Geren, I.N.; Smith, T.J.; Moura, H.; Marks, J.D.; Smith, L.A.; Pirkle, J.L.; Barr, J.R. Extraction and inhibition of enzymatic activity of botulinum neurotoxins/A1, /A2, and /A3 by a panel of monoclonal anti-BoNT/A antibodies. PLoS ONE 2009, 4, e5355. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.R.; Garcia-Rodriguez, C.; Lou, J.; Baudys, J.; Smith, T.J.; Marks, J.D.; Smith, L.A.; Pirkle, J.L.; Barr, J.R. Extraction of bont/A, /B, /E, and /F with a single, high affinity monoclonal antibody for detection of botulinum neurotoxin by endopep-MS. PLoS ONE 2010, 5, e12237. [Google Scholar] [CrossRef] [PubMed]
Strain | Serotype/Subtype | Complex/Cluster Type | Ab Used for Extraction | Source | Wash | Protein Identified | % Sequence Coverage |
---|---|---|---|---|---|---|---|
Hall A | A1 | HA+ | CR2/RAZ1 (anti-A) | Spiked | PBST | BoNT/A1 Hall | 88.5 |
Hall A | A1 | HA+ | CR2/RAZ1 (anti-A) | Spiked | PBST | NTNH from BoNT/A | 89.7 |
Hall A | A1 | HA+ | CR2/RAZ1 (anti-A) | Spiked | PBST | HA-70 from BoNT/A | 81.6 |
Hall A | A1 | HA+ | CR2/RAZ1 (anti-A) | Spiked | PBST | HA-33 from BoNT/A | 59.1 |
Hall A | A1 | HA+ | CR2/RAZ1 (anti-A) | Spiked | PBST | HA-17 from BoNT/A | 46.2 |
Alaska E | E3 | Orf+ | 4E17.1 (anti-E) | Spiked | PBST | BoNT/E3 | 88.2 |
Alaska E | E3 | Orf+ | 4E17.1 (anti-E) | Spiked | PBST | NTNH from BoNT/E | 28.3 |
Alaska E | E3 | Orf+ | 4E17.1 (anti-E) | Spiked | PBST | Orf-X1 | 74.3 |
Alaska E | E3 | Orf+ | 4E17.1 (anti-E) | Spiked | PBST | Orf-X2 | 32.1 |
Alaska E | E3 | Orf+ | 4E17.1 (anti-E) | Spiked | PBST | Orf-X3 | 59.7 |
Langland F | F1 | Orf+ | Polyclonal anti-F | Spiked | PBST | BoNT/F1 | 84.1 |
Langland F | F1 | Orf+ | Polyclonal anti-F | Spiked | PBST | NTNH from BoNT/F | 81.7 |
Langland F | F1 | Orf+ | Polyclonal anti-F | Spiked | PBST | P47 | 25.0 |
Langland F | F1 | Orf+ | Polyclonal anti-F | Spiked | PBST | Orf-X2 | 14.9 |
CDC 297 | A1 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | BoNT/A1 | 58.8 |
CDC 297 | A1 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | NTNH from BoNT/A1 | 36.5 |
SU1887 | A2 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | BoNT/A2 | 59.4 |
SU1887 | A2 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | NTNH from BoNT/A2 | 56.4 |
Loch Maree | A3 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | BoNT/A3 | 34.9 |
Loch Maree | A3 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | NTNH from BoNT/A3 | 18.0 |
CDC 2357 | A1(B) | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | BoNT/A1(B) | 81.2 |
CDC 2357 | A1(B) | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | NTNH from BoNT/B | 70.5 |
CDC 2357 | A1(B) | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | NTNH from BoNT/A | 50.1 |
CDC 2357 | A1(B) | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | HA-70 | 44.4 |
CDC 2357 | A1(B) | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | HA-33 | 28.3 |
CDC 2357 | A1(B) | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | HA-17 | 19.3 |
CDC 2357 | A1(B) | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | Orf-X2 | 14.4 |
CDC 2357 | A1(B) | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | NaCl | BoNT/A1(B) | 74.9 |
CDC 2357 | A1(B) | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | NaCl | NTNH from BoNT/B | 64.0 |
CDC 2357 | A1(B) | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | NaCl | NTNH from BoNT/A | 47.6 |
CDC 2357 | A1(B) | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | NaCl | HA-70 | 54.2 |
CDC 2357 | A1(B) | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | NaCl | HA-33 | 44.1 |
CDC 2357 | A1(B) | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | NaCl | HA-17 | 38.4 |
CDC 1436 | A2b5 | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | BoNT/A2 | 68.4 |
CDC 1436 | A2b5 | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | NTNH from BoNT/A2 | 37.7 |
CDC 1436 | A2b5 | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | NTNH from BoNT/B | 8.7 |
CDC 1436 | A2b5 | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | Orf-X2 | 38.9 |
CDC 1436 | A2b5 | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | Orf-X1 | 16.9 |
CDC 1436 | A2b5 | HA+ and Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | Orf-X3 | 9.6 |
CDC 1436 | A2b5 | HA+ and Orf+ | 2B18.2/B12.1 (anti-B) | Untreated supernatant | PBST | BoNT/B5 | 69.3 |
CDC 1436 | A2b5 | HA+ and Orf+ | 2B18.2/B12.1 (anti-B) | Untreated supernatant | PBST | NTNH from BoNT/B | 48.6 |
CDC 1436 | A2b5 | HA+ and Orf+ | 2B18.2/B12.1 (anti-B) | Untreated supernatant | PBST | Orf-X2 | 39.1 |
CDC 1436 | A2b5 | HA+ and Orf+ | 2B18.2/B12.1 (anti-B) | Untreated supernatant | PBST | HA-33 | 16.7 |
CDC 1436 | A2b5 | HA+ and Orf+ | 2B18.2/B12.1 (anti-B) | Untreated supernatant | PBST | Orf-X1 | 16.9 |
SU1304 | A2f4 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | BoNT/A2 | 73.6 |
SU1304 | A2f4 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | NTNH from BoNT/A2 | 63.2 |
SU1304 | A2f4 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | NTNH from BoNT/F | 49.8 |
SU1304 | A2f4 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | Orf-X2 from BoNT/A | 50.0 |
SU1304 | A2f4 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | Orf-X2 from BoNT/F | 50.5 |
SU1304 | A2f4 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | P47 from BoNT/A | 45.9 |
SU1304 | A2f4 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | Orf-X3 from BoNT/A | 19.8 |
SU1304 | A2f4 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | PBST | Orf-X1 from BoNT/A | 14.8 |
SU1304 | A2f4 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | NaCl | BoNT/A2 | 75.1 |
SU1304 | A2f4 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | NaCl | NTNH from BoNT/A2 | 61.0 |
SU1304 | A2f4 | Orf+ | CR2/RAZ1 (anti-A) | Untreated supernatant | NaCl | NTNH from BoNT/F | 54.8 |
SU1304 | A2f4 | Orf+ | Polyclonal anti-F | Untreated supernatant | PBST | BoNT/F4 | 56.2 |
SU1304 | A2f4 | Orf+ | Polyclonal anti-F | Untreated supernatant | PBST | NTNH from BoNT/A | 52.9 |
SU1304 | A2f4 | Orf+ | Polyclonal anti-F | Untreated supernatant | PBST | NTNH from BoNT/F | 39.3 |
SU1304 | A2f4 | Orf+ | Polyclonal anti-F | Untreated supernatant | PBST | Orf-X2 from BoNT/A | 50.5 |
SU1304 | A2f4 | Orf+ | Polyclonal anti-F | Untreated supernatant | PBST | Orf-X2 from BoNT/F | 35.7 |
SU1304 | A2f4 | Orf+ | Polyclonal anti-F | Untreated supernatant | PBST | P47 from BoNT/A | 48.3 |
SU1304 | A2f4 | Orf+ | Polyclonal anti-F | Untreated supernatant | PBST | Orf-X3 from BoNT/A | 23.7 |
SU1304 | A2f4 | Orf+ | Polyclonal anti-F | Untreated supernatant | PBST | Orf-X3 from BoNT/F | 17.9 |
SU1304 | A2f4 | Orf+ | Polyclonal anti-F | Untreated supernatant | PBST | Orf-X1 from BoNT/A | 20.4 |
ATCC 9564 | E1 | Orf+ | 4E17.1 (anti-E) | Untreated supernatant | PBST | BoNT/E1 | 91.3 |
ATCC 9564 | E1 | Orf+ | 4E17.1 (anti-E) | Untreated supernatant | PBST | NTNH from BoNT/E | 50.5 |
ATCC 9564 | E1 | Orf+ | 4E17.1 (anti-E) | Untreated supernatant | PBST | Orf-X1 | 85.4 |
ATCC 9564 | E1 | Orf+ | 4E17.1 (anti-E) | Untreated supernatant | PBST | Orf-X2 | 55.1 |
ATCC 9564 | E1 | Orf+ | 4E17.1 (anti-E) | Untreated supernatant | PBST | Orf-X3 | 70.3 |
ATCC 9564 | E1 | Orf+ | 4E17.1 (anti-E) | Untreated supernatant | NaCl | BoNT/E1 | 86.2 |
ATCC 9564 | E1 | Orf+ | 4E17.1 (anti-E) | Untreated supernatant | NaCl | NTNH from BoNT/E | 29.9 |
ATCC 9564 | E1 | Orf+ | 4E17.1 (anti-E) | Untreated supernatant | NaCl | Orf-X1 | 86.1 |
ATCC 9564 | E1 | Orf+ | 4E17.1 (anti-E) | Untreated supernatant | NaCl | Orf-X2 | 44.1 |
ATCC 9564 | E1 | Orf+ | 4E17.1 (anti-E) | Untreated supernatant | NaCl | Orf-X3 | 66.9 |
NTNH from A1 Hall | Identity in A Cluster of A1(B) | Identity in B Cluster of A1(B) |
---|---|---|
K97 | Identical | Identical |
E342 | Identical | Identical |
D455 | Identical | Identical |
V457 | Identical | Identical |
C583 | Identical | Identical |
N652 | Identical | Identical |
E758 | Q758 (conserved) | Q758 (conserved) |
N800 | Identical | Identical |
Q801 | Identical | Identical |
V803 | I803 (conserved) | I803 (conserved) |
L807 | Identical | Identical |
D808 | Identical | Identical |
E810 | D810 (conserved) | D810 (conserved) |
F811 | Identical | Identical |
I814 | Identical | Identical |
Q815 | E815 (conserved) | E815 (conserved) |
E831 | Identical | Identical |
K844 | Q844 (conserved) | Q844 (conserved) |
E845 | Identical | Identical |
N1039 | Identical | Identical |
N1100 | D1100 (conserved) | D1100 (conserved) |
N1102 | Identical | Identical |
Q1107 | Identical | Identical |
D1110 | Identical | Identical |
E1111 | Identical | Identical |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalb, S.R.; Baudys, J.; Smith, T.J.; Smith, L.A.; Barr, J.R. Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins. Toxins 2017, 9, 193. https://doi.org/10.3390/toxins9060193
Kalb SR, Baudys J, Smith TJ, Smith LA, Barr JR. Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins. Toxins. 2017; 9(6):193. https://doi.org/10.3390/toxins9060193
Chicago/Turabian StyleKalb, Suzanne R., Jakub Baudys, Theresa J. Smith, Leonard A. Smith, and John R. Barr. 2017. "Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins" Toxins 9, no. 6: 193. https://doi.org/10.3390/toxins9060193
APA StyleKalb, S. R., Baudys, J., Smith, T. J., Smith, L. A., & Barr, J. R. (2017). Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins. Toxins, 9(6), 193. https://doi.org/10.3390/toxins9060193