State of the Art and Perspectives on Silicon Photonic Switches
Abstract
:1. Introduction
2. Silicon Photonic Waveguide Switch Engines
2.1. MZI Switch Engine
2.2. MRR Switch Engine
2.3. MEMS Actuated Switch Engine
3. Silicon Photonic Waveguide Switch Fabrics
3.1. Switch Fabrics Based on MZIs
3.2. Switch Fabrics Based on MRRs
3.3. Switch Fabrics Based on MEMS Actuated Couplers
4. Key Technologies of Silicon Photonic Switch Fabrics
4.1. Switch Network Topologies
4.2. Passive Components for Low Insertion Loss
4.3. Packages and Controls
5. Discussions and Outlook
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Basch, E.B.; Egorov, R.; Gringeri, S.; Elby, S. Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 615–626. [Google Scholar] [CrossRef]
- Jensen, R.; Lord, A.; Parsons, N. Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches. In Proceedings of the 2010 European Conference on Optical Communication, Turino, Italy, 19–23 September 2010; p. Mo.2.D.2. [Google Scholar]
- Colbourne, P.D.; Collings, B. ROADM Switching Technologies. In Proceedings of the 2011 Optical Fiber Communications Conference, Los Angeles, CA, USA, 6–10 March 2011; p. OTuD1. [Google Scholar]
- Wu, C.-L.; Su, S.-P.; Lin, G.-R. All-optical modulation based on silicon quantum dot doped SiOx:Si-QD waveguide. Laser Photonics Rev. 2014, 8, 766–776. [Google Scholar] [CrossRef]
- Lin, G.-R.; Su, S.-P.; Wu, C.-L.; Lin, Y.-H.; Huang, B.-J.; Wang, H.-Y.; Tsai, C.-T.; Wu, C.-I.; Chi, Y.-C. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s. Sci. Rep. 2015, 5, 9611. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-L.; Lin, Y.-H.; Su, S.-P.; Huang, B.-J.; Tsai, C.-T.; Wang, H.-Y.; Chi, Y.-C.; Wu, C.-I.; Lin, G.-R. Enhancing Optical Nonlinearity in a Nonstoichiometric SiN Waveguide for Cross-Wavelength All-Optical Data Processing. ACS Photonics 2015, 2, 1141–1154. [Google Scholar] [CrossRef]
- Farrington, N.; Porter, G.; Radhakrishnan, S.; Bazzaz, H.H.; Subramanya, V.; Fainman, Y.; Papen, G.; Vahdat, A. Helios: A hybrid electrical/optical switch architecture for modular data centers. ACM SIGCOMM Comput. Commun. Rev. 2011, 41, 339–350. [Google Scholar]
- Wu, C.; Su, S.; Lin, G. All-Optical Data Inverter Based on Free-Carrier Absorption Induced Cross-Gain Modulation in Si Quantum Dot Doped SiOx Waveguide. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 323–331. [Google Scholar]
- Huang, B.; Wu, C.; Cheng, C.; Hsieh, C.; Syu, S.; Lin, Y.; Wang, H.; Tsai, C.; Chi, Y.; Chang, P.; et al. All-Optical Cross-Absorption-Modulation Based Gb/s Switching With Silicon Quantum Dots. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 57–69. [Google Scholar] [CrossRef]
- Su, S.-P.; Wu, C.-L.; Cheng, C.-H.; Huang, B.-J.; Wang, H.-Y.; Tsai, C.-T.; Lin, Y.-H.; Chi, Y.-C.; Shih, M.-H.; Lee, C.-K.; et al. Nonstoichiometric SiC Bus/Ring Waveguide Based All-Optical Data Format Follower and Inverter. ACS Photonics 2016, 3, 806–818. [Google Scholar] [CrossRef]
- Benner, A.F.; Kuchta, D.M.; Pepeljugoski, P.K.; Budd, R.A.; Hougham, G.; Fasano, B.V.; Marston, K.; Bagheri, H.; Seminaro, E.J.; Xu, H.; et al. Optics for High-Performance Servers and Supercomputers. In Proceedings of the 2010 Optical Fiber Communications Conference, San Diego, CA, USA, 21–25 March 2010; p. OTuH1. [Google Scholar]
- Schares, L.; Lee, B.G.; Checconi, F.; Budd, R.; Rylyakov, A.; Dupuis, N.; Petrini, F.; Schow, C.L.; Fuentes, P.; Mattes, O.; et al. A Throughput-Optimized Optical Network for Data-Intensive Computing. IEEE Micro 2014, 34, 52–63. [Google Scholar] [CrossRef]
- Wu, M.C.; Solgaard, O.; Ford, J.E. Optical MEMS for lightwave communication. J. Lightwave Technol. 2006, 24, 4433–4454. [Google Scholar] [CrossRef]
- Frisken, S.; Baxter, G.; Abakoumov, D.; Hao, Z.; Clarke, I.; Poole, S. Flexible and grid-less wavelength selective switch using LCOS technology. In Proceedings of the 2011 Optical Fiber Communications Conference, Los Angeles, CA, USA, 6–10 March 2011; p. OTuM3. [Google Scholar]
- Chiba, A.; Kawanishi, T.; Sakamoto, T.; Higuma, K.; Izutsu, M. High-extinction-ratio (>55 dB) port selection by using a high-speed LiNbO3 optical switch with intensity trimmers. In Proceedings of the 2007 Conference on Photonics in Switching, San Francisco, CA, USA, 19–22 August 2007; p. TuB1.4. [Google Scholar]
- Tanaka, S.; Jeong, S.; Yamazaki, S.; Uetake, A.; Tomabechi, S.; Ekawa, M.; Morito, K. Monolithically integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range. IEEE J. Sel. Top. Quantum Electron. 2009, 45, 1155–1162. [Google Scholar] [CrossRef]
- Earnshaw, M.P.; Soole, J.B.D.; Cappuzzo, M.; Gomez, L.; Laskowski, E.; Paunescu, A. 8 × 8 optical switch matrix using generalized Mach-Zehnder interferometers. IEEE Photonics Technol. Lett. 2003, 15, 810–812. [Google Scholar] [CrossRef]
- Cheng, Q.; Bahadori, M.; Rumley, S.; Bergman, K. Highly-scalable, low-crosstalk architecture for ring-based optical space switch fabrics. In Proceedings of the 2017 IEEE Optical Interconnects Conference, Santa Fe, NM, USA, 5–7 June 2017; pp. 41–42. [Google Scholar]
- Lee, B.G.; Dupuis, N.; Pepeljugoski, P.; Schares, L.; Budd, R.; Bickford, J.R.; Schow, C.L. Silicon photonic switch fabrics in computer communications systems. J. Lightwave Technol. 2015, 33, 768–777. [Google Scholar] [CrossRef]
- Cheng, Q.; Rumley, S.; Bahadori, M.; Bergman, K. Photonic switching in high performance datacenters [Invited]. Opt. Express 2018, 26, 16022–16043. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Zhang, L.; Poon, A.W. Silicon and hybrid silicon photonic devices for intra-datacenter applications: State of the art and perspectives [Invited]. Photonics Res. 2015, 3, B10–B27. [Google Scholar] [CrossRef]
- Yao, Z.; Wu, K.; Tan, B.X.; Wang, J.; Li, Y.; Zhang, Y.; Poon, A.W. Integrated Silicon Photonic Microresonators: Emerging Technologies. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 5900324. [Google Scholar] [CrossRef]
- Soref, R. Tutorial: Integrated-photonic switching structures. APL Photonics 2018, 3, 021101. [Google Scholar] [CrossRef] [Green Version]
- Komma, J.; Schwarz, C.; Hofmann, G.; Heinert, D.; Nawrodt, R. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 2012, 101, 041905. [Google Scholar] [CrossRef] [Green Version]
- Soref, R.; Bennett, B. Electrooptical effects in silicon. IEEE J. Sel. Top. Quantum Electron. 1987, 23, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Masood, A.; Pantouvaki, M.; Lepage, G.; Verheyen, P.; Campenhout, J.V.; Absil, P.; Thourhout, D.V.; Bogaerts, W. Comparison of heater architectures for thermal control of silicon photonic circuits. In Proceedings of the 2013 International Conference on Group IV Photonics, Seoul, Korea, 28–30 August 2013; p. ThC2. [Google Scholar]
- Fang, Q.; Song, J.F.; Liow, T.; Cai, H.; Yu, M.B.; Lo, G.Q.; Kwong, D. Ultralow Power Silicon Photonics Thermo-Optic Switch with Suspended Phase Arms. IEEE Photonics Technol. Lett. 2011, 23, 525–527. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Y.-K. Compact, low-loss and low-power 8 × 8 broadband silicon optical switch. Opt. Express 2012, 20, 18977–18985. [Google Scholar] [CrossRef] [PubMed]
- Nedeljkovic, M.; Soref, R.; Mashanovich, G.Z. Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14 mm infrared wavelength range. IEEE Photonics J. 2011, 3, 1171–1180. [Google Scholar] [CrossRef]
- Watts, M.R.; Sun, J.; DeRose, C.; Trotter, D.C.; Young, R.W.; Nielson, G.N. Adiabatic thermo-optic Mach-Zehnder switch. Opt. Lett. 2013, 38, 733–735. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Shi, Y.; He, S.; Dai, D. Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Opt. Lett. 2016, 41, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Campenhout, J.V.; Green, W.M.J.; Assefa, S.; Vlasov, Y.A. Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Opt. Express 2009, 17, 24020–24029. [Google Scholar] [CrossRef]
- Dong, P.; Liao, S.; Liang, H.; Shafiiha, R.; Feng, D.; Li, G.; Zheng, X.; Krishnamoorthy, A.V.; Asghari, M. Submilliwatt, ultrafast and broadband electro-optic silicon switches. Opt. Express 2010, 18, 25225–25231. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Murray, K.; Jayatilleka, H.; Chrostowski, L. Michelson Interferometer Thermo-Optic Switch on SOI With a 50-µW Power Consumption. IEEE Photonics Technol. Lett. 2015, 27, 2319–2322. [Google Scholar]
- Celo, D.; Goodwill, D.J.; Jiang, J.; Dumais, P.; Li, M.; Bernier, E. Thermo-optic silicon photonics with low power and extreme resilience to over-drive. In Proceedings of the 2016 Optical Interconnects Conference, San Diego, CA, USA, 9–11 May 2016; p. TuD3. [Google Scholar]
- Shoji, Y.; Kintaka, K.; Suda, S.; Kawashima, H.; Hasama, T.; Ishikawa, H. Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides. Opt. Express 2010, 18, 9071–9075. [Google Scholar] [CrossRef]
- Suzuki, K.; Cong, G.; Tanizawa, K.; Kim, S.H.; Ikeda, K.; Namiki, S.; Kawashima, H. Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. Opt. Express 2015, 23, 9086–9092. [Google Scholar] [CrossRef]
- Dupuis, N.; Lee, B.G.; Rylyakov, A.V.; Kuchta, D.M.; Baks, C.W.; Orcutt, J.S.; Gill, D.M.; Green, W.M.J.; Schow, C.L. Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 Mach-Zehnder silicon photonic switches. J. Lightwave Technol. 2015, 33, 3597–3606. [Google Scholar] [CrossRef]
- Dupuis, N.; Rylyakov, A.V.; Schow, C.L.; Kuchta, D.M.; Baks, C.W.; Orcutt, J.S.; Gill, D.M.; Green, W.M.J.; Lee, B.G. Ultralow crosstalk nanosecond-scale nested 2 × 2 Mach-Zehnder silicon photonic switch. Opt. Lett. 2016, 41, 3002–3005. [Google Scholar] [CrossRef]
- Xing, J.; Li, Z.; Yu, Y.; Yu, J. Low cross-talk 2 × 2 silicon electro-optic switch matrix with a double-gate configuration. Opt. Lett. 2013, 38, 4774–4776. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhao, S.; Zhou, L.; Li, D.; Li, Z.; Wang, M.; Li, X.; Chen, J. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Opt. Express 2016, 24, 9295–9307. [Google Scholar] [CrossRef] [PubMed]
- Vlasov, Y.; Green, W.M.J.; Xia, F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photonics 2008, 2, 242–246. [Google Scholar] [CrossRef]
- Lira, H.L.R.; Manipatruni, S.; Lipson, M. Broadband hitless silicon electro-optic switch for on-chip optical networks. Opt. Express 2009, 17, 22271–22280. [Google Scholar] [CrossRef] [PubMed]
- Poon, A.W.; Luo, X.; Xu, F.; Chen, H. Cascaded Microresonator-Based Matrix Switch for Silicon On-Chip Optical Interconnection. Proc. IEEE 2009, 97, 1216–1238. [Google Scholar] [CrossRef]
- Biberman, A.; Lira, H.L.R.; Padmaraju, K.; Ophir, N.; Chan, J.; Lipson, M.; Bergman, K. Broadband Silicon Photonic Electrooptic Switch for Photonic Interconnection Networks. IEEE Photonics Technol. Lett. 2011, 23, 504–506. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Song, J.; Feng, S.; Poon, A.W.; Liow, T.; Yu, M.; Lo, G.; Kwong, D. Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects. IEEE Photonics Technol. Lett. 2012, 24, 821–823. [Google Scholar] [CrossRef]
- Goebuchi, Y.; Hisada, M.; Kato, T.; Kokubun, Y. Optical cross-connect circuit using hitless wavelength selective switch. Opt. Express 2008, 16, 535–548. [Google Scholar] [CrossRef]
- Lu, L.; Zhou, L.; Li, X.; Chen, J. Low-power 2 × 2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers. Opt. Lett. 2014, 39, 1633–1636. [Google Scholar] [CrossRef]
- Teng, J.; Dumon, P.; Bogaerts, W.; Zhang, H.; Jian, X.; Han, X.; Zhao, M.; Morthier, G.; Baets, R. Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express 2009, 17, 14627–14633. [Google Scholar] [CrossRef] [PubMed]
- Alipour, P.; Hosseini, E.S.; Eftekhar, A.A.; Momeni, B.; Adibi, A. Athermal performance in high-Q polymer-clad silicon microdisk resonators. Opt. Lett. 2010, 35, 3462–3464. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, S.S.; Shang, K.; Guan, B.; Cheung, S.T.S.; Liao, L.; Basak, J.; Liu, H.-F.; Yoo, S.J.B. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. Opt. Express 2013, 21, 13958–13968. [Google Scholar] [CrossRef]
- Guha, B.; Cardenas, J.; Lipson, M. Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 2013, 21, 26557–26563. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Chang, E.; Amberg, P.; Shubin, I.; Lexau, J.; Liu, F.; Thacker, H.; Djordjevic, S.S.; Lin, S.; Luo, Y.; et al. A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control. Opt. Express 2014, 22, 12628–12633. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.A.; Lentine, A.L.; Trotter, D.C.; Starbuck, A.L. Control of integrated micro-resonator wavelength via balanced homodyne locking. Opt. Express 2014, 22, 11279–11289. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Poon, A.W. Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector. Opt. Express 2015, 23, 360–372. [Google Scholar] [CrossRef]
- Khope, A.S.P.; Hirokawa, T.; Netherton, A.M.; Saeidi, M.; Xia, Y.; Volet, N.; Schow, C.; Helkey, R.; Theogarajan, L.; Saleh, A.A.M.; et al. On-chip wavelength locking for photonic switches. Opt. Lett. 2017, 42, 4934–4937. [Google Scholar] [CrossRef]
- Stern, B.; Zhu, X.; Chen, C.P.; Tzuang, L.D.; Cardenas, J.; Bergman, K.; Lipson, M. On-chip mode-division multiplexing switch. Optica 2015, 2, 530–535. [Google Scholar] [CrossRef]
- Dai, D. Silicon nanophotonic integrated devices for on-chip multiplexing and switching. J. Lightwave Technol. 2017, 35, 572–587. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, T.; Jia, H.; Yang, S.; Ding, J.; Fu, X.; Zhang, L. General architectures for on-chip optical space and mode switching. Optica 2018, 5, 180–187. [Google Scholar] [CrossRef]
- Du, H.; Chau, S.F.; Zhou, G. Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators. Micromachines 2016, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Chollet, F. Devices Based on Co-Integrated MEMS Actuators and Optical Waveguide: A Review. Micromachines 2016, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Seok, T.J.; Quack, N.; Yoo, B.-W.; Wu, M.C. Large-scale silicon photonic switches with movable directional couplers. Optica 2015, 2, 370–375. [Google Scholar] [CrossRef]
- Seok, T.J.; Quack, N.; Han, S.; Muller, R.S.; Wu, M.C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica 2016, 3, 64–70. [Google Scholar] [CrossRef]
- Abe, S.; Chu, M.H.; Sasaki, T.; Hane, K. Time response of a microelectromechanical silicon photonic waveguide coupler switch. IEEE Photonics Technol. Lett. 2014, 26, 1553–1556. [Google Scholar] [CrossRef]
- Akihama, Y.; Kanamori, Y.; Hane, K. Ultra-small silicon waveguide coupler switch using gap-variable mechanism. Opt. Express 2011, 19, 23658–23663. [Google Scholar] [CrossRef]
- Takahashi, K.; Kanamori, Y.; Kokubun, Y.; Hane, K. A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator. Opt. Express 2008, 16, 14421–14428. [Google Scholar] [CrossRef]
- Briere, J.; Elsayed, M.; Saidani, M.; Bérard, M.; Beaulieu, P.-O.; Rabbani-Haghighi, H.; Nabki, F.; Ménard, M. Rotating Circular Micro-Platform with Integrated Waveguides and Latching Arm for Reconfigurable Integrated Optics. Micromachines 2017, 8, 354. [Google Scholar] [CrossRef]
- Nakamura, S.; Takahashi, S.; Sakauchi, M.; Hino, T.; Yu, M.; Lo, G. Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch. In Proceedings of the 2011 Optical Fiber Communications Conference, Los Angeles, CA, USA, 6–10 March 2011; p. OTuM2. [Google Scholar]
- Nakamura, S.; Yanagimachi, S.; Takeshita, H.; Tajima, A.; Kato, T.; Hino, T.; Fukuchi, K. Compact and Low-Loss 8 × 8 Silicon Photonic Switch Module for Transponder Aggregators in CDC-ROADM Application. In Proceedings of the 2015 Optical Fiber Communications Conference, Los Angeles, CA, USA, 22–26 March 2015; p. M2B.6. [Google Scholar]
- Tanizawa, K.; Suzuki, K.; Toyama, M.; Ohtsuka, M.; Yokoyama, N.; Matsumaro, K.; Seki, M.; Koshino, K.; Sugaya, T.; Suda, S.; et al. Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Opt. Express 2015, 23, 17599–17606. [Google Scholar] [CrossRef]
- Suzuki, K.; Konoike, R.; Hasegawa, J.; Suda, S.; Matsuura, H.; Ikeda, K.; Namiki, S.; Kawashima, H. Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-D PLC connector. In Proceedings of the 2018 Optical Fiber Communications Conference, San Diego, CA, USA, 11–15 March 2018; p. Th4B.5. [Google Scholar]
- Dupuis, N.; Lee, B.G.; Rylyakov, A.V.; Kuchta, D.M.; Baks, C.W.; Orcutt, J.S.; Gill, D.M.; Green, W.M.J.; Schow, C.L. Modeling and characterization of a nonblocking 4 × 4 Mach-Zehnder silicon photonic switch fabric. J. Lightwave Technol. 2015, 33, 4329–4337. [Google Scholar] [CrossRef]
- Lee, B.G.; Rylyakov, A.V.; Green, W.M.J.; Assefa, S.; Baks, C.W.; Rimolo-Donadio, R.; Kuchta, D.M.; Khater, M.H.; Barwicz, T.; Reinholm, C.; et al. Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic and device driver circuits. J. Lightwave Technol. 2014, 32, 743–751. [Google Scholar] [CrossRef]
- Qiao, L.; Tang, W.; Chu, T. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep. 2017, 7, 42306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, L.; Tang, W.; Chu, T. Ultra-large-scale silicon optical switches. In Proceedings of the 2016 International Conference on Group IV Photonics, Shanghai, China, 24–26 August 2016; p. WB1. [Google Scholar]
- Dumais, P.; Goodwill, D.J.; Celo, D.; Jiang, J.; Zhang, C.; Zhao, F.; Tu, X.; Zhang, C.; Yan, S.; He, J.; et al. Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. J. Lightwave Technol. 2018, 36, 233–238. [Google Scholar] [CrossRef]
- Goodwill, D.J.; Zhang, C.; Dumais, P.; Celo, D.; Jiang, J.; Tang, X.; Zhang, Z.; Zhao, F.; Tu, X.; Yan, S.; et al. Dual-core polarization diverse silicon photonic add/drop switch supporting 400 Gb/s PDM-16QAM. In Proceedings of the 2017 Optical Fiber Communications Conference, Los Angeles, CA, USA, 19–23 March 2017; p. Tu2I.3. [Google Scholar]
- DasMahapatra, P.; Stabile, R.; Rohit, A.; Williams, K.A. Optical Crosspoint Matrix Using Broadband Resonant Switches. IEEE J. Sel. Top. Quantum Electron. 2014, 20. [Google Scholar] [CrossRef]
- Yang, L.; Jia, H.; Zhao, Y.; Chen, Q. Reconfigurable non-blocking four-port optical router based on microring resonators. Opt. Lett. 2015, 40, 1129–1132. [Google Scholar] [CrossRef]
- Testa, F.; Oton, C.J.; Kopp, C.; Lee, J.-M.; Ortuno, R.; Enne, R.; Tondini, S.; Chiaretti, G.; Bianchi, A.; Pintus, P.; et al. Design and implementation of an integrated reconfigurable silicon photonics switch matrix in IRIS project. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 155–169. [Google Scholar] [CrossRef]
- Nikolova, D.; Calhoun, D.M.; Liu, Y.; Rumley, S.; Novack, A.; Baehr-Jones, T.; Hochberg, M.; Bergman, K. Modular architecture for fully non-blocking silicon photonic switch fabric. Microsyst. Nanoeng. 2017, 3, 16071. [Google Scholar] [CrossRef] [Green Version]
- Kwon, K.; Seok, T.J.; Henriksson, J.; Luo, J.; Ochikubo, L.; Jacobs, J.; Muller, R.S.; Wu, M.C. 128 × 128 Silicon Photonic MEMS Switch with Scalable Row/Column Addressing. In Proceedings of the 2018 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 13–18 May 2018; p. SF1A.4. [Google Scholar]
- Tu, X.; Li, M.; Xing, J.; Fu, H.; Geng, D. Compact PSR based on an asymmetric bi-level lateral taper in an adiabatic directional coupler. J. Lightwave Technol. 2016, 34, 985–991. [Google Scholar] [CrossRef]
- Seok, T.J.; Kopp, V.; Neugroschl, D.; Henriksson, J.; Luo, J.; Wu, M.C. High density optical packaging of high radix silicon photonic switches. In Proceedings of the 2017 Optical Fiber Communications Conference, Los Angeles, CA, USA, 19–23 March 2017; p. Th5D.7. [Google Scholar]
- Quack, N.; Seok, T.J.; Han, S.; Muller, R.S.; Wu, M.C. Scalable row/column addressing of silicon photonic MEMS switches. IEEE Photonics Technol. Lett. 2016, 28, 561–564. [Google Scholar] [CrossRef]
- Seok, T.J.; Hwang, H.Y.; Lee, J.S.; Forencich, A.; Grant, H.R.; Knutson, D.; Quack, N.; Han, S.; Muller, R.S.; Carroll, L.; et al. 12 × 12 packaged digital silicon photonic MEMS switches. In Proceedings of the 2016 Photonics Conference, Waikoloa, HI, USA, 2–6 October 2016; pp. 629–630. [Google Scholar]
- Hwang, H.Y.; Lee, J.S.; Seok, T.J.; Forencich, A.; Grant, H.R.; Knutson, D.; Quack, N.; Han, S.; Muller, R.S.; Papen, G.C.; et al. Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre. IEEE Photonics J. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Han, S.; Seok, T.J.; Yu, K.; Quack, N.; Muller, R.S.; Wu, M.C. Large-scale polarization-insensitive silicon photonic MEMS switches. J. Lightwave Technol. 2018, 36, 1824–1830. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, D.; Fu, H.; Geng, D.; Mehrvar, H.; Goodwill, D.; Bernier, E. Scalable photonic switch with crosstalk suppression for datacenters and optical networks. In Proceedings of the 2015 Optoelectronics and Communications Conference, Shanghai, China, 28 June–2 July 2015; p. WP14. [Google Scholar]
- Padmanabhan, K.; Netravali, A. Dilated Networks for Photonic Switching. IEEE Trans. Commun. 1987, 35, 1357–1365. [Google Scholar] [CrossRef]
- Matsumoto, T.; Kurahashi, T.; Konoike, R.; Tanizawa, K.; Suzuki, K.; Uetake, A.; Takabayashi, K.; Ikeda, K.; Kawashima, H.; Akiyama, S.; et al. In-line Optical Amplification for Silicon Photonics Platform by Flip-Chip Bonded InP-SOAs. In Proceedings of the 2018 Optical Fiber Communications Conference, San Diego, CA, USA, 11–15 March 2018; p. Tu2A.5. [Google Scholar]
- Budd, R.A.; Schares, L.; Lee, B.G.; Doany, F.E.; Baks, C.; Kuchta, D.M.; Schow, C.L.; Libsch, F. Semiconductor optical amplifier (SOA) packaging for scalable and gain-integrated silicon photonic switching platforms. In Proceedings of the 2015 Electronic Components and Technology Conference, San Diego, CA, USA, 26–29 May 2015; pp. 1280–1286. [Google Scholar]
- White, I.H.; Cheng, Q.; Wonfor, A.; Penty, R.V. Large port count optical router using hybrid MZI-SOA switches. In Proceedings of the 2014 International Conference on Transparent Optical Networks, Graz, Austria, 6–10 July 2014; p. Mo.D2.1. [Google Scholar]
- Sheng, Z.; Wang, Z.; Qiu, C.; Li, L.; Pang, A.; Wu, A.; Wang, X.; Zou, S.; Gan, F. A compact and low-loss MMI coupler fabricated with CMOS technology. IEEE Photonics J. 2012, 4, 2272–2277. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Yang, S.; Novack, A.; Ding, R.; Lim, A.E.-J.; Lo, G.-Q.; Baehr-Jones, T.; Hochberg, M. Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect. Opt. Express 2013, 21, 29374–29382. [Google Scholar] [CrossRef] [PubMed]
- Dumais, P.; Goodwill, D.J.; Celo, D.; Jiang, J.; Bernier, E. Three-mode synthesis of slab Gaussian beam in ultra-low-loss in-plane nanophotonic silicon waveguide crossing. In Proceedings of the 2017 International Conference on Group IV Photonics, Berlin, Germany, 23–25 August 2017; p. 97. [Google Scholar]
- Sacher, W.D.; Mikkelsen, J.C.; Huang, Y.; Mak, J.C.C.; Yong, Z.; Luo, X.; Li, Y.; Dumais, P.; Jiang, J.; Goodwill, D.; et al. Monolithically Integrated Multilayer Silicon Nitride-on-Silicon Waveguide Platforms for 3-D Photonic Circuits and Devices. Proc. IEEE 2018, 106, 2232–2245. [Google Scholar] [CrossRef]
- Sacher, W.D.; Huang, Y.; Lo, G.; Poon, J.K.S. Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightwave Technol. 2015, 33, 901–910. [Google Scholar] [CrossRef]
- Jiang, J.; Goodwill, D.J.; Dumais, P.; Celo, D.; Zhang, C.; Li, M.; Wei, Y.; Zhao, F.; Liu, W.; Tu, X.; et al. Ultra Low Loss Waveguide Transitions for Reticle-Scale Silicon Nanophotonic Routing. IEEE Photonics Technol. Lett. 2017, 29, 2099–2102. [Google Scholar] [CrossRef]
- Tu, X.; Li, M.; Jiang, J.; Goodwill, D.; Dumais, P.; Bernier, E.; Fu, H.; Geng, D. Compact low-loss adiabatic bends in silicon shallow-etched waveguides. In Proceedings of the 2016 International Conference on Group IV Photonics, Shanghai, China, 24–26 August 2016; p. ThA5. [Google Scholar]
- Tu, X.; Dumais, P.; Li, M.; Goodwill, D.; Fu, H.; Geng, D.; Bernier, E. Low polarization-dependent-loss silicon photonic trident edge coupler fabricated by 248 nm optical lithography. In Proceedings of the 2015 Asia Communications and Photonics Conference, Hong Kong, China, 19–23 November 2015; p. AS4B.3. [Google Scholar]
- Dumais, P.; Goodwill, D.J.; Kiaei, M.; Celo, D.; Jiang, J.; Zhang, C.; Zhao, F.; Tu, X.; Yan, S.; He, J.; et al. Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. In Proceedings of the 2017 Optical Fiber Communications Conference, Los Angeles, CA, USA, 19–23 March 2017; p. W4E.4. [Google Scholar]
- Bernier, E.; Dumais, P.; Goodwill, D.J.; Mehrvar, H.; Celo, D.; Jiang, J.; Zhang, C.; Zhao, F.; Tu, X.; Yan, S.; et al. Large-Scale Silicon Photonic Switch. In Proceedings of the 2018 Optical Fiber Communications Conference, San Diego, CA, USA, 11–15 March 2018; p. Th1J.1. [Google Scholar]
- Soganci, I.M.; La Porta, A.; Offrein, B.J. Flip-chip optical couplers with scalable I/O count for silicon photonics. Opt. Express 2013, 21, 16075–16085. [Google Scholar] [CrossRef] [PubMed]
- Barwicz, T.; Taira, Y. Low-cost interfacing of fibers to nanophotonic waveguides: Design for fabrication and assembly tolerances. IEEE Photonics J. 2014, 6, 1–18. [Google Scholar] [CrossRef]
- Barwicz, T.; Taira, Y.; Takenobu, S.; Boyer, N.; Janta-Polczynski, A.; Thibodeau, Y.; Kamlapurkar, S.; Engelmann, S.; Numata, H.; Bruce, R.L.; et al. Optical demonstration of a compliant polymer interface between standard fibers and nanophotonic waveguides. In Proceedings of the 2015 Optical Fiber Communications Conference, Los Angeles, CA, USA, 22–26 March 2015; pp. 1–3. [Google Scholar]
- Yang, Y.; Yu, M.; Fang, Q.; Song, J.; Tu, X.; Lo, P.G.-Q. Rusli 3D Silicon Photonics Packaging Based on TSV Interposer for High Density On-Board Optics Module. In Proceedings of the 2016 Electronic Components and Technology Conference, Las Vegas, NV, USA, 31 May–3 June 2016; pp. 483–489. [Google Scholar]
- Kurosu, T.; Inoue, T.; Suzuki, K.; Suda, S.; Namiki, S. High-capacity multi-stage operation of polarization-diversity silicon photonics 8 × 8 optical switch. J. Lightwave Technol. 2018. [Google Scholar] [CrossRef]
- Wang, S.; Dai, D. Polarization-insensitive 2 × 2 thermo-optic Mach-Zehnder switch on silicon. Opt. Lett. 2018, 43, 2531–2534. [Google Scholar] [CrossRef] [PubMed]
- Velha, P.; Sorianello, V.; Preite, M.V.; De Angelis, G.; Cassese, T.; Bianchi, A.; Testa, F.; Romagnoli, M. Wide-band polarization controller for Si photonic integrated circuits. Opt. Lett. 2016, 41, 5656–5659. [Google Scholar] [CrossRef] [PubMed]
- Sacher, W.D.; Barwicz, T.; Taylor, B.J.F.; Poon, J.K.S. Polarization rotator-splitters in standard active silicon photonics platforms. Opt. Express 2014, 22, 3777–3786. [Google Scholar] [CrossRef] [PubMed]
- Tanizawa, K.; Suzuki, K.; Ikeda, K.; Namiki, S.; Kawashima, H. Novel polarization diversity without switch duplication of a Si-wire PILOSS optical switch. Opt. Express 2016, 24, 6861–6868. [Google Scholar] [CrossRef] [PubMed]
- Rylyakov, A.V.; Schow, C.L.; Lee, B.G.; Green, W.M.J.; Assefa, S.; Doany, F.E.; Yang, M.; Campenhout, J.V.; Jahnes, C.V.; Kash, J.A.; et al. Silicon Photonic Switches Hybrid-Integrated With CMOS Drivers. IEEE J. Solid-State Circuits 2012, 47, 345–354. [Google Scholar] [CrossRef]
- Matsushita, A.; Nakamura, M.; Hamaoka, F.; Okamoto, S.; Kisaka, Y. High-spectral-efficiency 600-Gbps/carrier Transmission Using PDM-256QAM Format. J. Lightwave Technol. 2018. [Google Scholar] [CrossRef]
Ref. | Institution | Switch Engines | Scalability & Topology | On-chip Insertion Loss (dB) | Coupling Loss (dB) | Crosstalk (dB) | Switch Time | Power (W) | Size (mm2) |
---|---|---|---|---|---|---|---|---|---|
[68] | NEC | T-O MZI | 8 × 8 PILOSS | - | - | −25 | - | - | 12 × 3 |
[69] | 8 × 8 Switch & select | 4 | 1 | −35 | 150 μs | 12 × 14 | |||
[28] | Bell Labs | 8 × 8 Switch & select | 4 | 3.5 | −30 | 250 μs | 0.07 | 8 × 8 | |
[70,71] | AIST | 32 × 32 PILOSS | 8.4 | 1.4 | −35 | 30 μs | 1.9 | 25 × 11 | |
[72] | IBM | E-O MZI | 4 × 4 | 3.7 | - | −15 | 5 ns | 0.05 | 0.165 |
[73] | 8 × 8 Double Layer | - | - | - | - | 0.675 | |||
[41] | SJTU | 16 × 16 Benes | 14 | 5 | −10 | 3.2 ns | 1.2 | 10.7 × 4.4 | |
[74] | CAS | T-O MZI | 32 × 32 | 18.5 | 5 | −15 | 1.2 ns | 0.54 | 12.1 × 5.2 |
[75] | E-O MZI | 64 × 64 Benes | 12 | −30 | - | - | 21.7 × 9.6 | ||
[76] | Huawei | T-O MZI | 32 × 32 | 13 | 3.2 | −20 | 1.4 ms 70 μs | 1 20 | 12 × 12 |
[77] | 16 × 16 Hybrid Dilated Benes | 22 | 4.5 | - | - | - | 12.5 × 12.5 | ||
[44] | HKUST | E-O MRR | 5 × 5 Cross-bar | - | - | −11 | 1.3 ns | - | 0.1 × 0.1 |
[78] | TU/e | T-O MRR | 8 × 7 Cross-bar | 22 | 6 | −20 | 17 μs | - | - |
[79] | CAS | 4 × 4 | - | - | −13 | 25 μs | - | - | |
[80] | Ericsson | 48 × 8 Cross-bar | ~3 | 3.2 | −23 | 4 μs | - | 8.4 × 7.8 | |
[81] | Columbia University | T-O MRR | 8 × 8 Switch & select | 10 | - | −39 | 20 μs | - | - |
[63] | UC | MEMS | 64 × 64 | 3.7 | 6.5 | −60 | <1 μs | 40V | 8.6 × 8.6 |
[82] | Berkeley | 128 × 128 Cross-bar | 22.7 | - | 25V | 16 × 17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, X.; Song, C.; Huang, T.; Chen, Z.; Fu, H. State of the Art and Perspectives on Silicon Photonic Switches. Micromachines 2019, 10, 51. https://doi.org/10.3390/mi10010051
Tu X, Song C, Huang T, Chen Z, Fu H. State of the Art and Perspectives on Silicon Photonic Switches. Micromachines. 2019; 10(1):51. https://doi.org/10.3390/mi10010051
Chicago/Turabian StyleTu, Xin, Chaolong Song, Tianye Huang, Zhenmin Chen, and Hongyan Fu. 2019. "State of the Art and Perspectives on Silicon Photonic Switches" Micromachines 10, no. 1: 51. https://doi.org/10.3390/mi10010051
APA StyleTu, X., Song, C., Huang, T., Chen, Z., & Fu, H. (2019). State of the Art and Perspectives on Silicon Photonic Switches. Micromachines, 10(1), 51. https://doi.org/10.3390/mi10010051