Reliable Nanofabrication of Single-Crystal Diamond Photonic Nanostructures for Nanoscale Sensing
Abstract
:1. Introduction
2. Sample Pre-Treatment
3. Deposition of Adhesion Layer and HSQ Mask Structuring
4. Selective ICP-RIE of Adhesion Layer and SCD Structuring
5. Final Devices and Device Characterization
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atatüre, M.; Englund, D.; Vamivakas, N.; Lee, S.Y.; Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 2018, 3, 38. [Google Scholar] [CrossRef]
- Casola, F.; van der Sar, T.; Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 2018, 3, 17088. [Google Scholar] [CrossRef]
- Kucsko, G.; Maurer, P.; Yao, N.; Kubo, M.; Noh, H.; Lo, P.; Park, H.; Lukin, M. Nanometre-scale thermometry in a living cell. Nature 2013, 500, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Teissier, J.; Barfuss, A.; Appel, P.; Neu, E.; Maletinsky, P. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett. 2014, 113, 020503. [Google Scholar] [CrossRef] [PubMed]
- Dolde, F.; Doherty, M.W.; Michl, J.; Jakobi, I.; Naydenov, B.; Pezzagna, S.; Meijer, J.; Neumann, P.; Jelezko, F.; Manson, N.B.; et al. Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond. Phys. Rev. Lett. 2014, 112, 097603. [Google Scholar] [CrossRef] [PubMed]
- Maletinsky, P.; Hong, S.; Grinolds, M.; Hausmann, B.; Lukin, M.; Walsworth, R.; Loncar, M.; Yacoby, A. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 2012, 7, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Neumann, P.; Kolesov, R.; Naydenov, B.; Beck, J.; Rempp, F.; Steiner, M.; Jacques, V.; Balasubramanian, G.; Markham, M.L.; Twitchen, D.J.; et al. Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 2010, 6, 249–253. [Google Scholar] [CrossRef]
- Kurtsiefer, C.; Mayer, S.; Zarda, P.; Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 2000, 85, 290–293. [Google Scholar] [CrossRef]
- Babinec, T.; Hausmann, B.; Khan, M.; Zhang, Y.; Maze, J.; Hemmer, P.; Loncar, M. A diamond nanowire single-photon source. Nat. Nanotechnol. 2010, 5, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Gruber, A.; Dräbenstedt, A.; Tietz, C.; Fleury, L.; Wrachtrup, J.; von Borczyskowski, C. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 1997, 276, 2012–2014. [Google Scholar] [CrossRef]
- Zaitsev, A. Optical Properties of Diamond: A Data Handbook; Springer: Berlin, Germany, 2001. [Google Scholar]
- Hausmann, B.J.; Khan, M.; Zhang, Y.; Babinec, T.M.; Martinick, K.; McCutcheon, M.; Hemmer, P.R.; Loncar, M. Fabrication of diamond nanowires for quantum information processing applications. Diam. Relat. Mater. 2010, 19, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Grigorescu, A.; Hagen, C. Resists for sub-20-nm electron beam lithography with a focus on HSQ: State of the art. Nanotechnology 2009, 20, 292001. [Google Scholar] [CrossRef] [PubMed]
- Neu, E.; Appel, P.; Ganzhorn, M.; Miguel-Sanchez, J.; Lesik, M.; Mille, V.; Jacques, V.; Tallaire, A.; Achard, J.; Maletinsky, P. Photonic nano-structures on (111)-oriented diamond. Appl. Phys. Lett. 2014, 104, 153108. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, P.; Challier, M.; Neu, E. Optimized single-crystal diamond scanning probes for high sensitivity magnetometry. New J. Phys. 2018, 20, 125001. [Google Scholar] [CrossRef]
- Appel, P.; Neu, E.; Ganzhorn, M.; Barfuss, A.; Batzer, M.; Gratz, M.; Tschöpe, A.; Maletinsky, P. Fabrication of all diamond scanning probes for nanoscale magnetometry. Rev. Sci. Instrum. 2016, 87, 063703. [Google Scholar] [CrossRef] [Green Version]
- Lillie, S.E.; Broadway, D.A.; Dontschuk, N.; Zavabeti, A.; Simpson, D.A.; Teraji, T.; Daeneke, T.; Hollenberg, L.C.; Tetienne, J.P. Magnetic noise from ultrathin abrasively deposited materials on diamond. Phys. Rev. Mater. 2018, 2, 116002. [Google Scholar] [CrossRef]
- Xie, L.; Zhou, T.X.; Stöhr, R.J.; Yacoby, A. Crystallographic orientation dependent reactive ion etching in single crystal diamond. Adv. Mater. 2018, 30, 1705501. [Google Scholar] [CrossRef]
- Volpe, P.N.; Muret, P.; Omnes, F.; Achard, J.; Silva, F.; Brinza, O.; Gicquel, A. Defect analysis and excitons diffusion in undoped homoepitaxial diamond films after polishing and oxygen plasma etching. Diam. Relat. Mater. 2009, 18, 1205–1210. [Google Scholar] [CrossRef] [Green Version]
- Naamoun, M.; Tallaire, A.; Silva, F.; Achard, J.; Doppelt, P.; Gicquel, A. Etch-pit formation mechanism induced on HPHT and CVD diamond single crystals by H2/O2 plasma etching treatment. Phys. Stat. Solidi 2012, 209, 1715–1720. [Google Scholar] [CrossRef]
- Challier, M.; Sonusen, S.; Barfuss, A.; Rohner, D.; Riedel, D.; Koelbl, J.; Ganzhorn, M.; Appel, P.; Maletinsky, P.; Neu, E. Advanced fabrication of single-crystal diamond membranes for quantum technologies. Micromachines 2018, 9, 148. [Google Scholar] [CrossRef]
- Radtke, M.; Nelz, R.; Render, L.; Neu, E. Plasma treatments and photonic nanostructures for shallow nitrogen vacancy centers in diamond. arXiv 2019. submitted. [Google Scholar]
- De Oliveira, F.F.; Momenzadeh, S.A.; Wang, Y.; Konuma, M.; Markham, M.; Edmonds, A.M.; Denisenko, A.; Wrachtrup, J. Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 2015, 107, 073107. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Kawashima, H.; Makino, T.; Ogura, M.; Traoré, A.; Ozawa, N.; Yamasaki, S. Estimation of inductively coupled plasma etching damage of boron-doped diamond using X-Ray photoelectron spectroscopy. Phys. Status Solidi (A) 2017, 214, 1700233. [Google Scholar] [CrossRef]
- Krueger, A.; Lang, D. Functionality is key: Recent progress in the surface modification of nanodiamond. Adv. Funct. Mater. 2012, 22, 890–906. [Google Scholar] [CrossRef]
- Challier, M.; Nelz, R.; Kiendl, B.; Slablab, A.; Radtke, M.; Mueller, F.; Krueger, A.; Neu, E. Wet Chemical Fluorine Treatment of Diamond: Towards Hydrophobic Diamond Nano-Devices for Single NV Sensing. Neu, E. Saarland University, Saarbrücken, Germany. Unpublished work. 2019. [Google Scholar]
- dAgostino, R.; Flamm, D.L. Plasma etching of Si and SiO2 in SF6 mixtures. J. Appl. Phys. 1981, 52, 162–167. [Google Scholar] [CrossRef]
- Morshed, M.; Daniels, S. Electron density and optical emission measurements of SF6 /O2 plasmas for silicon etch processes. Plasma Sci. Technol. 2012, 14, 316–320. [Google Scholar] [CrossRef]
- Nelz, R.; Fuchs, P.; Opaluch, O.; Sonusen, S.; Savenko, N.; Podgursky, V.; Neu, E. Color center fluorescence and spin manipulation in single crystal, pyramidal diamond tips. Appl. Phys. Lett. 2016, 109, 193105. [Google Scholar] [CrossRef] [Green Version]
- Nelz, R.; Görlitz, J.; Herrmann, D.; Slablab, A.; Challier, M.; Radtke, M.; Fischer, M.; Gsell, S.; Schreck, M.; Becher, C.; et al. Toward wafer-scale diamond nano-and quantum technologies. Apl. Mater. 2019, 7, 011108. [Google Scholar] [CrossRef]
- Nelz, R.; Radtke, M.; Slablab, A.; Kianinia, M.; Li, C.; Xu, Z.Q.; Bradac, C.; Aharonovich, I.; Neu, E. Near-field energy transfer between a luminescent 2D material and color centers in diamond. arXiv 2019, 1907, 12248. [Google Scholar]
- Rondin, L.; Tetienne, J.P.; Hingant, T.; Roch, J.F.; Maletinsky, P.; Jacques, V. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 2014, 77, 056503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangtawesin, S.; Dwyer, B.L.; Srinivasan, S.; Allred, J.J.; Rodgers, L.V.; De Greve, K.; Stacey, A.; Dontschuk, N.; O’Donnell, K.M.; Hu, D.; et al. Origins of diamond surface noise probed by correlating single spin measurements with surface spectroscopy. Phys. Rev. 2019, 9, 031052. [Google Scholar] [CrossRef]
Plasma | ICP Power | RF Power | Gas Flux | Etch Rate | Pressure |
---|---|---|---|---|---|
W | W | sccm | nm/min | Pa | |
SF6 pulse | 300 | 100 | SF6:25 | Si: 1072 HSQ: 52 | 1.3 |
O2 plasma | 500 | 200 | O2: 50 | 104 | 1.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radtke, M.; Nelz, R.; Slablab, A.; Neu, E. Reliable Nanofabrication of Single-Crystal Diamond Photonic Nanostructures for Nanoscale Sensing. Micromachines 2019, 10, 718. https://doi.org/10.3390/mi10110718
Radtke M, Nelz R, Slablab A, Neu E. Reliable Nanofabrication of Single-Crystal Diamond Photonic Nanostructures for Nanoscale Sensing. Micromachines. 2019; 10(11):718. https://doi.org/10.3390/mi10110718
Chicago/Turabian StyleRadtke, Mariusz, Richard Nelz, Abdallah Slablab, and Elke Neu. 2019. "Reliable Nanofabrication of Single-Crystal Diamond Photonic Nanostructures for Nanoscale Sensing" Micromachines 10, no. 11: 718. https://doi.org/10.3390/mi10110718
APA StyleRadtke, M., Nelz, R., Slablab, A., & Neu, E. (2019). Reliable Nanofabrication of Single-Crystal Diamond Photonic Nanostructures for Nanoscale Sensing. Micromachines, 10(11), 718. https://doi.org/10.3390/mi10110718