F-Shaped Tunnel Field-Effect Transistor (TFET) for the Low-Power Application
Abstract
:1. Introduction
2. Influences of Design Parameters
2.1. Length of Tunnel Region (LT)
2.2. Source Thickness (TS)
2.3. Space Above and Below Source (TE)
3. Optimized F-Shaped TFET
4. Comparison with L-Shaped TFET
5. Device Fabrication
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Wang, P.F.; Hilsenbeck, K.; Nirschl, T.; Oswald, M.; Stepper, C.; Weis, M.; Schmitt-Landsiedel, D.; Hansch, W. Complementary tunneling transistor for low power application. Solid State Electron. 2004, 4, 2281–2286. [Google Scholar] [CrossRef]
- Ionescu, A.M.; Riel, H. Tunnel field-effect transistors as energy efficient electronic switches. Nature 2011, 479, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Gnani, E.; Gnudi, A.; Reggiani, S.; Baccarani, G. Drain-conductance optimization in nanowire TFETs by means of a physics-based analytical model. Solid State Electron. 2013, 84, 96–102. [Google Scholar] [CrossRef]
- Choi, W.Y.; Park, B.G.; Lee, J.D.; Liu, T.J.K. Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 2007, 28, 743–745. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, R.; Zhan, Z.; Qiu, Y.; Jiang, W.; Wu, C.; Wang, Y. A novel Si tunnel FET with 36 mV/dec subthreshold slope based on junction depleted-modulation through striped gate configuration. In Proceedings of the 2012 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 10–12 December 2012; pp. 187–190. [Google Scholar]
- Avci, U.E.; Morris, D.H.; Young, I.A. Tunnel field-effect transistors: Prospects and challenges. IEEE J. Electron. Devices Soc. 2015, 3, 88–95. [Google Scholar] [CrossRef]
- Ilatikhameneh, H.; Klimeck, G.; Appenzeller, J.; Rahman, R. Design rules for high performance tunnel transistors from 2-D materials. IEEE J. Electron Devices Soc. 2016, 4, 260–265. [Google Scholar] [CrossRef]
- Villalon, A.; Carval, G.L.; Martinie, S.; Royer, C.L.; Jaud, M.A.; Cristoloveanu, S. Further insights in TFET operation. IEEE Trans. Electron Devices 2014, 61, 2893–2898. [Google Scholar] [CrossRef]
- Toh, E.H.; Wang, G.H.; Chan, L.; Sylvester, D.; Heng, C.H.; Samudra, G.S.; Yeo, Y.C. Device design and scalability of a double-gate tunneling field-effect transistor with silicon-germanium source. Jpn. J. Appl. Phys. 2008, 47, 2593–2597. [Google Scholar] [CrossRef]
- Conzatti, F.; Pala, M.G.; Esseni, D.; Bano, E.; Selmi, L. Strain-induced performance improvements in InAs nanowire tunnel FETs. IEEE Trans. Electron Devices 2012, 59, 2085–2092. [Google Scholar] [CrossRef]
- Fahad, H.M.; Hussain, M.M. High-performance silicon nanotube tunneling FET for ultralow-power logic applications. IEEE Trans. Electron Devices 2013, 60, 1034–1039. [Google Scholar] [CrossRef]
- Imenabadi, R.M.; Saremi, M.; Vandenberghe, W.G. A novel PNPN-like Z-shaped tunnel field-effect transistor with improved ambipolar behavior and RF performance. IEEE Trans. Electron Devices 2017, 64, 4752–4758. [Google Scholar] [CrossRef]
- Choi, W.Y.; Lee, W. Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Electron Devices 2010, 57, 2317–2319. [Google Scholar] [CrossRef]
- Richter, S.; Sandow, C.; Nichau, A.; Trellenkamp, S.; Schmidt, M.; Luptak, R.; Bourdelle, K.K.; Zhao, Q.T.; Mantl, S. Ω-gated silicon and strained silicon nanowire array tunneling FETs. IEEE Electron Device Lett. 2012, 33, 1535–1537. [Google Scholar] [CrossRef]
- Cao, W.; Yao, C.J.; Jiao, G.F.; Huang, D.; Yu, H.Y.; Li, M.F. Improvement in reliability of tunneling field-effect transistor with p-n-i-n structure. IEEE Trans. Electron Devices 2011, 58, 2122–2126. [Google Scholar] [CrossRef]
- Abdi, D.B.; Kumar, M.J. In-built N+ pocket p-n-p-n tunnel field-effect transistor. IEEE Electron Device Lett. 2014, 35, 1170–1172. [Google Scholar] [CrossRef]
- Kao, K.H.; Verhulst, A.S.; Vandenberghe, W.G.; Soree, B.; Magnus, W.; Leonelli, D.; Groesenken, G.; De Meyer, K. Optimization of gate-on-source-only tunnel FETs with counter-doped pockets. IEEE Trans. Electron Devices 2012, 59, 2070–2077. [Google Scholar] [CrossRef]
- Mallik, A.; Chattopadhyay, A.; Guin, S.; Karmakar, A. Impact of a spacer-drain overlap on the characteristics of a silicon tunnel field-effect transistor based on vertical tunneling. IEEE Trans. Electron Devices 2013, 60, 935–942. [Google Scholar] [CrossRef]
- Anghel, C.; Chilagani, P.; Amara, A.; Vladimirescu, A. Tunnel field effect transistor with increased on current, low-k spacer and high-k dielectric. Appl. Phys. Lett. 2010, 96, 122104. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, J.H.; Liu, T.J.K.; Choi, W.Y.; Park, B.G. Demonstration of L-shaped tunnel field-effect transistors. IEEE Trans. Electron Devices 2016, 63, 1774–1778. [Google Scholar] [CrossRef]
- Avci, U.E.; Rios, R.; Kuhn, K.; Young, I.A. Comparison of performance, switching energy and process variations for the TFET and MOSFET in logic. In Proceedings of the 2011 Symposium on VLSI Technology-Digest of Technikal Papers, Kyoto, Japan, 14–16 June 2011; pp. 124–125. [Google Scholar]
- Senale-Rodriguez, B.; Lu, Y.; Pay, P.; Jena, D.; Seabaugh, A.; Xing, H.; Barboni, L.; Silveira, F. Perspectives of TFETs for low power analog ICs. In Proceedings of the 2012 IEEE Subthreshold Microelectronics Conference (SubVT), Waltham, MA, USA, 9–10 October 2012; pp. 1–3. [Google Scholar]
- ATLAS. User’s Manual; SILVACO International: Santa Clara, CA, USA, 2009. [Google Scholar]
- Kim, S.W.; Choi, W.Y.; Sun, M.C.; Kim, H.W.; Park, B.G. Design guideline of Si-based L-shaped tunneling field-effect transistors. Jpn. J. Appl. Phys. 2012, 51, 06FE09-1–06FE09-4. [Google Scholar] [CrossRef]
- Fossum, J.G.; Yang, J.W.; Trivedi, V.P. Suppression of corner effects in triple-gate MOSFETs. IEEE Electron Device Lett. 2003, 24, 745–747. [Google Scholar] [CrossRef]
Abbreviations | Parameter | Value |
---|---|---|
LG | Gate length | 20 nm |
LT | Lateral length of tunnel region | Variable |
TOX | Gate oxide thickness | 2 nm |
TG | Gate thickness | 2TE + TS |
TE | Space above and below source | Variable |
TS | Source thickness | Variable |
NS | P-type source doping concentration | 1020 cm−3 |
ND | N-type drain doping concentration | 1018 cm−3 |
NB | P-type body doping concentration | 1015 cm−3 |
WFN | Gate work function | 4.05 eV |
W | Channel width | 1 μm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, S.; Oh, J.; Kang, S.; Kim, Y.; Kim, J.H.; Kim, G.; Kim, S. F-Shaped Tunnel Field-Effect Transistor (TFET) for the Low-Power Application. Micromachines 2019, 10, 760. https://doi.org/10.3390/mi10110760
Yun S, Oh J, Kang S, Kim Y, Kim JH, Kim G, Kim S. F-Shaped Tunnel Field-Effect Transistor (TFET) for the Low-Power Application. Micromachines. 2019; 10(11):760. https://doi.org/10.3390/mi10110760
Chicago/Turabian StyleYun, Seunghyun, Jeongmin Oh, Seokjung Kang, Yoon Kim, Jang Hyun Kim, Garam Kim, and Sangwan Kim. 2019. "F-Shaped Tunnel Field-Effect Transistor (TFET) for the Low-Power Application" Micromachines 10, no. 11: 760. https://doi.org/10.3390/mi10110760
APA StyleYun, S., Oh, J., Kang, S., Kim, Y., Kim, J. H., Kim, G., & Kim, S. (2019). F-Shaped Tunnel Field-Effect Transistor (TFET) for the Low-Power Application. Micromachines, 10(11), 760. https://doi.org/10.3390/mi10110760