Endothelial Cell Activation in an Embolic Ischemia-Reperfusion Injury Microfluidic Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microfluidic Device
2.2. Cell Culture
2.3. Clot Fabrication
2.4. Thromblysis
2.5. Immunofluorescence
2.6. Image Acquisition and Quantification
2.7. Statistical Analysis
3. Results
3.1. Establishing Embolic Vascular Occlusion in the Device
3.2. Endothelial Activation upon Vascular Occlusion
3.3. Restoration of Flow via Thrombolysis
3.4. Endothelial Cell Activation upon Reperfusion
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Federation, H. Global Atlas on Cardiovascular Disease Prevention and Control; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Maxwell, S.R.; Lip, G.Y. Reperfusion injury: A review of the pathophysiology, clinical manifestations and therapeutic options. Int. J. Cardiol. 1997, 58, 95–117. [Google Scholar] [CrossRef]
- Hausenloy, D.J.; Yellon, D.M.; Hausenloy, D.J.; Yellon, D.M. Myocardial ischemia-reperfusion injury: A neglected therapeutic target Find the latest version: Review series Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J. Clin. Investig. 2013, 123, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Eltzschig, H.K.; Eckle, T. review Ischemia and reperfusion—From mechanism to translation. Nat. Med. 2011, 11, 1391–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, A.; Bonney, M.; Bonney, S.; Weitzel, L.; Koeppen, M.; Eckle, T. Myocardial ischemia reperfusion injury: From basic science to clinical bedside. Semin. Cardiothorac. Vasc. Anesth. 2012, 16, 123–132. [Google Scholar] [CrossRef]
- Khan, A.; Waqar, K.; Shafique, A.; Irfan, R.; Gul, A. Vitro and In Vivo Animal Models: The Engineering Towards Understanding Human Diseases and Therapeutic Interventions; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Traystman, R.J. Animal Models of Focal and Global Cerebral Ischemia. ILAR J. 2003, 44, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Black, S.C. In vivo models of myocardial ischemia and reperfusion injury. J. Pharmacol. Toxicol. Methods 2000, 43, 153–167. [Google Scholar] [CrossRef]
- Cowled, P.A.; Khanna, A.; Laws, P.E.; Field, J.B.; Fitridge, R.A. Simvastatin Plus Nitric Oxide Synthase Inhibition Modulates Remote Organ Damage Following Skeletal Muscle Ischemia-Reperfusion Injury. J. Investig. Surg. 2008, 21, 119–126. [Google Scholar] [CrossRef]
- Stalenhoef, A.F.H. The benefit of statins in non-cardiac vascular surgery patients. YMVA 2009, 49, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Benam, K.H.; Dauth, S.; Hassell, B.; Herland, A.; Jain, A.; Jang, K.J.; Karalis, K.; Kim, H.J.; MacQueen, L.; Mahmoodian, R.; et al. Engineered In Vitro Disease Models. Annu. Rev. Pathol. 2015, 10, 195–262. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.N.; Ingber, D.E. Microfluidic organs-on-chips. Nat. Biotechnol. 2014, 32, 760–772. [Google Scholar] [CrossRef]
- Abaci, H.E.; Shen, Y.; Tan, S.; Gerecht, S. Recapitulating physiological and pathological shear stree and oxygen to model vasculature in health and disease. Sci. Rep. 2014, 4, 1–9. [Google Scholar]
- Khanal, G.; Chung, K.; Solis-Wever, X.; Johnson, B.; Pappas, D. Ischemia/reperfusion injury of primary porcine cardiomyocytes in a low-shear microfluidic culture and analysis device. Analyst 2011, 136, 3519–3526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burne-Taney, M.J.; Rabb, H. The role of adhesion molecules and T cells in ischemic renal injury. Curr. Opin. Nephrol. Hypertens. 2003, 12, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Weisel, J.W.; Litvinov, R.I. Fibrin Formation, Structure and Properties; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Silva, C.F.; Weaver, J.P.; Gounis, M.J. Mechanical Characterization of Thromboemboli in Acute Ischemic Stroke and Laboratory Embolus Analogs. Am. J. Neuroradiol. 2011, 32, 1237–1244. [Google Scholar]
- Shamay, Y.; Paulin, D.; Ashkenasy, G.; David, A. E-selectin binding peptide-polymer-drug conjugates and their selective cytotoxicity against vascular endothelial cells. Biomaterials 2009, 30, 6460–6468. [Google Scholar] [CrossRef] [PubMed]
- Collard, C.D.; Gelman, S. Prevention of Ischemia—Reperfusion Injury. Anesthesiology 2001, 94, 1133–1138. [Google Scholar]
- Loukogeorgakis, S.P.; Panagiotido, A.T.; Yellon, D.M.; Deanfield, J.E.; MacAllister, R.J. Postconditioning Protects Against Endothelial Ischemia-Reperfusion Injury in the Human Forearm. Circulation 2006, 113, 1015–1019. [Google Scholar] [CrossRef]
- Tavares, J.C.; Nicola, M. Adhesion Molecules and Endothelium. In Endothelium and Cardiovascular Diseases; Academic Press: Cambridge, MA, USA, 2018; pp. 189–201. [Google Scholar]
- Parekh, R.B.; Edge, C.J. Selectins-glycoprotein targets for therapeutic intervention in inflammation. Trends Biotechnol. 1994, 12, 339–345. [Google Scholar] [CrossRef]
- Lawson, C.; Wolf, S. ICAM-1 signaling in endothelial cells. Pharmacol. Rep. 2009, 61, 22–32. [Google Scholar] [CrossRef]
- Sethi, G.; Sung, B.; Aggarwal, B.B. TNF: A master switch for inflammation to cancer. Front. Biosci. 2008, 13, 5094–5107. [Google Scholar] [CrossRef] [Green Version]
- Cesarman-Maus, G.; Hajjar, K.A. Molecular mechanisms of fibrinolysis. Br. J. Haematol. 2005, 129, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Adeoye, O.; Hornung, R.; Khatri, P.; Kleindorfer, D. Recombinant Tissue-Type Plasminogen Activator Use for Ischemic Stroke in the United States A Doubling of Treatment Rates Over the Course of 5 Years. Stroke 2011, 42, 1952–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piebalgs, A.; Gu, B.; Roi, D.; Lobotesis, K.; Thom, S.; Xu, X.Y. Computational Simulations of Thrombolytic Therapy in Acute Ischaemic Stroke. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trepels, T.; Zeiher, A.M.; Fichtlscherer, S. The Endothelium and Inflammation. Endothelium 2006, 13, 423–429. [Google Scholar] [CrossRef]
- Neri, M.; Riezzo, I.; Pascale, N.; Pomara, C.; Turillazzi, E. Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists. Mediat. Inflamm. 2017, 2017, 14. [Google Scholar] [CrossRef]
- Chin, L.K.; Yu, J.Q.; Fu, Y.; Yu, T.; Liu, A.Q.; Luo, K.Q. Production of reactive oxygen species in endothelial cells under different pulsatile shear stresses and glucose concentrations. Lab Chip 2011, 11, 1856–1863. [Google Scholar] [CrossRef]
- Frost, T.S.; Jiang, L.; Lynch, R.M.; Zohar, Y. Permeability of Epithelial/Endothelial Barriers in Transwells and Microfluidic Bilayer Devices. Micromachines 2019, 10, 533. [Google Scholar] [CrossRef] [Green Version]
- Ferrero, M.E.; Bertelli, A.E.; Fulgenzi, A.; Pellegatta, F.; Corsi, M.M.; Bonfrate, M.; Ferrara, F.; De Caterina, R.; Giovannini, L.; Bertelli, A. Activity in vitro of resveratrol on granulocyte and monocyte adhesion to endothelium. Am. J. Clin. Nutr. 1998, 68, 1208–1214. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Baker, D.; Skommer, J.; Sewell, M.; Wlodkowic, D. Real-time 2D visualization of metabolic activities in zebrafish embryos using a microfluidic technology. Cytom. Part A. 2015, 87, 446–450. [Google Scholar] [CrossRef]
- Abaci, H.E.; Devendra, R.; Soman, R.; Drazer, G.; Gerecht, S. Microbioreactors to manipulate oxygen tension and shear stress in the microenvironment of vascular stem and progenitor cells. Biotechnol. Appl. Biochem. 2012, 59, 97–105. [Google Scholar] [CrossRef]
- Yeon, J.H.; Park, J. Microfluidic Cell Culture Systems for Cellular Analysis Microfluidic Cell Culture Systems for Cellular Analysis. BioChip J. 2007, 1, 17–27. [Google Scholar]
- Thiele, J.R.; Goerendt, K.; Stark, G.B.; Eisenhardt, S.U. Real-time digital imaging of leukocyte-endothelial interaction in ischemia-reperfusion injury (IRI) of the rat cremaster muscle. J. Vis. Exp. 2012, 66, e3973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhood, A.; McGuire, G.M.; Manning, A.M.; Miyasaka, M.; Smith, C.W.; Jaeschke, H. Intercellular adhesion molecule 1 (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion injury in rat liver. J. Leukoc. Biol. 1995, 57, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Kang, S.; Vlachos, P.P.; Lee, Y.W. A novel in vitro ischemia/reperfusion injury model. Arch. Pharm. Res. 2009, 32, 421–429. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemcovsky Amar, D.; Epshtein, M.; Korin, N. Endothelial Cell Activation in an Embolic Ischemia-Reperfusion Injury Microfluidic Model. Micromachines 2019, 10, 857. https://doi.org/10.3390/mi10120857
Nemcovsky Amar D, Epshtein M, Korin N. Endothelial Cell Activation in an Embolic Ischemia-Reperfusion Injury Microfluidic Model. Micromachines. 2019; 10(12):857. https://doi.org/10.3390/mi10120857
Chicago/Turabian StyleNemcovsky Amar, Danielle, Mark Epshtein, and Netanel Korin. 2019. "Endothelial Cell Activation in an Embolic Ischemia-Reperfusion Injury Microfluidic Model" Micromachines 10, no. 12: 857. https://doi.org/10.3390/mi10120857
APA StyleNemcovsky Amar, D., Epshtein, M., & Korin, N. (2019). Endothelial Cell Activation in an Embolic Ischemia-Reperfusion Injury Microfluidic Model. Micromachines, 10(12), 857. https://doi.org/10.3390/mi10120857