Microfluidic High-Migratory Cell Collector Suppressing Artifacts Caused by Microstructures
Abstract
:1. Introduction
2. Microfluidic High-Migratory Cell Collector
2.1. Concept of the Microfluidic High-Migratory Cell Collector
2.2. Design of the High-Migratory Cell Collector
2.3. Fabrication Process of the Microfluidic High-Migratory Cell Collector
2.4. Experimental Setup
3. Results & Discussion
3.1. Cell Seeding Experiment for a Line Pattern
3.2. Water-Driven Balloon for Cell Detachment
3.3. Collection Experiment of High-Migratory Cancer Cells
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vaupel, P. Tumor Microenvironmental Physiology and Its Implications for Radiation Oncology. Semin. Radiat. Oncol. 2004, 14, 19–206. [Google Scholar] [CrossRef]
- Krock, B.L.; Skuli, N.; Simon, M.C. Hypoxia-Induced Angiogenesis: Good and Evil. Genes Cancer 2011, 2, 1117–1133. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Shimamoto, T.; Ozaki, N.; Takaki, S.; Kuchimaru, T.; Kizaka-Kondoh, S.; Omata, T. Investigation of The Influence of Glucose Concentration on Cancer Cells by Using a Microfluidic Gradient Generator without the Induction of Large Shear Stress. Micromachines 2016, 7, 155. [Google Scholar] [CrossRef]
- Martin, T.A.; Ye, L.; Sanders, A.J.; Lane, J.; Jiang, W.G. Cancer Invasion and Metastasis: Molecular and Cellular Perspective; Landes Bioscience: Austin, TX, USA, 2013. [Google Scholar]
- Lichtman, J.W.; Conchello, J.-A. Fluorescence Microscopy. Nat. Methods 2005, 2, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Mehling, M.; Tay, S. Microfluidic cell culture. Curr. Opin. Biotechnol. 2014, 25, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.D.; Rexius-Hall, M.L.; Elgass, L.J.; Eddington, D.T. Oxygen Control with Microfluidics. Lab Chip 2014, 22, 4305–4318. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, X.; Li, Y.; Deng, J.; Li, X.; Qu, Y.; Lu, Y.; Liu, T.; Gao, Z.; Lin, B. High-Glucose 3D INS-1 Cell Model Combined with A Microfluidic Circular Concentration Gradient Generator for High Throughput Screening of Drugs against Type 2 Diabetes. RSC Adv. 2018, 8, 25409. [Google Scholar] [CrossRef]
- Yu, I.F.; Yu, Y.H.; Chen, L.Y.; Fan, S.K.; Chou, H.Y.E.; Yang, J.T. A Portable Microfluidic Device for The Rapid Diagnosis of Cancer Metastatic Potential Which Is Programmable for Temperature and CO2. Lab Chip 2014, 14, 3621–3628. [Google Scholar] [CrossRef]
- Kaminaga, M.; Ishida, T.; Kadonosono, T.; Kizaka-Kondoh, S.; Omata, T. Uniform Cell Distribution Achieved by Using Cell Deformation in a Micropillar Array. Micromachines 2015, 6, 409–422. [Google Scholar] [CrossRef]
- Huang, L.R.; Cox, E.C.; Austin, R.H.; Sturm, J.C. Continuous Particle Separation Through Deterministic Lateral Displacement. Science 2004, 304, 987–990. [Google Scholar] [CrossRef]
- Thorsen, T.; Maerkl, S.J.; Quake, S.R. Microfluidic Larges-Scale Integration. Science 2002, 298, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Shields IV, W.; Reyes, C.D.; Lopez, G.P. Microfluidic Cell Sorting: A Review of the Advances in The Separation of Cells from Debulking to Rare Cell Isolation. Lab Chip 2015, 15, 1230–1249. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Mofrad, M.R.K. Cell Adhesion and Detachment on Gold Surfaces Modified with A Thiol-Functionalized RGD Peptide. Biomaterials 2011, 32, 7286–7296. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Baac, H.W.; Lee, K.-T.; Fouladdel, S.; Teichert, K.; Ok, J.G.; Cheng, Y.-H.; Ingram, P.N.; Hart, A.J.; Azizi, E.; et al. Selective Photomechanical Detachment and Retrieval of Divided Sister Cells from Enclosed Microfluidics for Downstream Analyses. ACS Nano 2017, 11, 4660–4668. [Google Scholar] [CrossRef] [PubMed]
- Schild, H.G. Poly(N-Isopropylacrylamide): Experiment, Theory and Application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- Irimia, D.; Charras, G.; Agrawal, N.; Mitchison, T.; Toner, M. Polar Stimulation and Constrained Cell Migration in Microfluidic Channels. Lab Chip 2007, 7, 1783–1790. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Ma, H.; Qin, J. A simple microfluidic strategy for cell migration assay in an in vitro wound-healing model. Wound Repair Regen. 2013, 21, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Sticker, D.; Lechner, S.; Jungreuthmayer, C.; Zanghellini, J.; Ertl, P. Microfluidic Migration and Wound Healing Assay Based on Mechanically Induced Injuries of Defined and Highly Reproducible Areas. Anal. Chem. 2017, 89, 2326–2333. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chen, F.; Zhang, T.; Chen, D.; Jia, X.; Wang, J.; Guo, W.; Chen, J. A Tubing-Free Microfluidic Wound Healing Assay Enabling the Quantification of Vascular Smooth Muscle Cell Migration. Sci. Rep. 2015, 5, 14049. [Google Scholar] [CrossRef]
- Lin, Y.S.; Liu, W.; Hu, C. Investigation of Cells Migration Effects in Microfluidic Chips. J. Chromatogr. Sep. Tech. 2017, 8, 1000345. [Google Scholar] [CrossRef]
- Li, J.; Lin, F. Microfluidic devices for studying chemotaxis and electrotaxis. Trends Cell Biol. 2011, 21, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.Q.; Balzer, E.M.; Dallas, M.R.; Hung, W.-C.; Stebe, K.J.; Konstantopoulos, K. Chemotaxis of Cell Populations through Confined Spaces at Single-Cell Resolution. PLoS ONE 2012, 7, e29211. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.; Kim, E.-K.; Park, J.; Suh, P.-G.; Cho, Y.-K. RhoA and Rac1 play independent roles inlysophosphatidic acid-induced ovariancancer chemotaxis. Integr. Biol. 2014, 6, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Allen, S.G.; Ingram, P.N.; Buckanovich, R.; Merajver, S.D.; Yoon, E. Single-Cell Migration Chip for Chemotaxis-based Microfluidic Selection of Heterogeneous Cell Populations. Sci. Rep. 2014, 5, 09889. [Google Scholar] [CrossRef]
- Sochol, R.D.; Higa, A.T.; Janairo, R.R.R.; Li, S.; Lin, L. Unidirectional Mechanical Cellular Stimuli via Micropost Array Gradients. Soft Matter 2011, 7, 4606–4609. [Google Scholar] [CrossRef]
- Kushiro, K.; Sakai, T.; Takai, M. Slope-Dependent Cell Motility Enhancements at the Walls of PEG-Hydrogel Microgroove Structures. Langmuir 2015, 31, 10215. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Mohammadreza, A.; Gao, W.; Merza, S.; Smith, D.; Kelbauskas, L.; Meldrum, D.R. A Minimally Invasive Method for Retrieving Single Adherent Cells of Different Types from Cultures. Sci. Rep. 2014, 4, 5424. [Google Scholar] [CrossRef]
- Tsai, H.-Y.; Vats, K.; Yates, M.X.; Benoit, D.S.W. Two-Dimensional Patterns of Poly(N-isopropylacrylamide) Microgels to Spatially Control Fibroblast Adhesion and Temperature Responsive Detachment. Langmuir 2013, 29, 12183–12193. [Google Scholar] [CrossRef]
- Takamatsu, H.; Uchida, S.; Matsuda, T. In Situ Harvesting of Adhered Target Cells Using Thermoresponsive Substrate under A Microscope: Principle and Instrumentation. J. Biotechnol. 2008, 134, 297–304. [Google Scholar] [CrossRef]
- Takayama, S.; McDonald, J.C.; Ostuni, E.; Liang, M.N.; Kenis, P.J.A.; Ismagilov, R.F.; Whitesides, G.M. Patterning Cells and Their Environments Using Multiple Laminar Fluid Flows in Capillary Networks. Proc. Natl. Acad. Sci. USA 1999, 96, 5545–5548. [Google Scholar] [CrossRef]
- Kanchanawong, P.; Shtengel, G.; Pasapera, A.M.; Ramko, E.B.; Davidson, M.W.; Hess, H.F.; Waterman, C.M. Nanoscale Architecture of Integrin-Based Cell Adhesions. Nature 2010, 468, 580–584. [Google Scholar] [CrossRef]
- Shimizu, K.; Shunori, A.; Morimoto, K.; Hashida, M.; Konishi, S. Development of a biochip with serially connected pneumatic balloons for cell-stretching culture. Sens. Actuators B Chem. 2011, 156, 486–493. [Google Scholar] [CrossRef]
- Kamble, H.; Barton, M.J.; Jun, M.; Park, S.; Nguyen, N.-T. Cell stretching devices as research tools: Engineering and biological considerations. Lab Chip 2016, 16, 3193–3203. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ojima, Y.; Horie, M.; Nagamori, E.; Fujita, H. Design and fabrication of devices for investigating cell-sheet stretch. Biochip J. 2017, 11, 173–179. [Google Scholar] [CrossRef]
- Kumar, A.; Biebuyck, H.A.; Whitesides, G.M. Patterning Self-Assembled Monolayers: Applications in Materials Science. Langmuir 1994, 10, 1498–1511. [Google Scholar] [CrossRef]
- Yamamoto, T. Study on 172-nm vacuum ultraviolet light surface modifications of polydimethylsiloxane for micro/nanofluidic applications. Surf. Interface Anal. 2011, 43, 1271–1276. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishida, T.; Shimamoto, T.; Kaminaga, M.; Kuchimaru, T.; Kizaka-Kondoh, S.; Omata, T. Microfluidic High-Migratory Cell Collector Suppressing Artifacts Caused by Microstructures. Micromachines 2019, 10, 116. https://doi.org/10.3390/mi10020116
Ishida T, Shimamoto T, Kaminaga M, Kuchimaru T, Kizaka-Kondoh S, Omata T. Microfluidic High-Migratory Cell Collector Suppressing Artifacts Caused by Microstructures. Micromachines. 2019; 10(2):116. https://doi.org/10.3390/mi10020116
Chicago/Turabian StyleIshida, Tadashi, Takuya Shimamoto, Maho Kaminaga, Takahiro Kuchimaru, Shinae Kizaka-Kondoh, and Toru Omata. 2019. "Microfluidic High-Migratory Cell Collector Suppressing Artifacts Caused by Microstructures" Micromachines 10, no. 2: 116. https://doi.org/10.3390/mi10020116
APA StyleIshida, T., Shimamoto, T., Kaminaga, M., Kuchimaru, T., Kizaka-Kondoh, S., & Omata, T. (2019). Microfluidic High-Migratory Cell Collector Suppressing Artifacts Caused by Microstructures. Micromachines, 10(2), 116. https://doi.org/10.3390/mi10020116