Fabrication, Characterization, and Application of Large-Scale Uniformly Hybrid Nanoparticle-Enhanced Raman Spectroscopy Substrates
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. SERS Substrate Preparation
2.3. Raman Characterization of SERS Substrate
2.4. FDTD Simulation
3. Results and Discussion
3.1. NERS Substrate Characteristics
3.2. SERS Spectra Analysis and Performance
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Xu, S.C.; Man, B.Y.; Jiang, S.Z.; Wang, J.H.; Wei, J.; Xu, S.D.; Liu, H.P.; Gao, S.B.; Liu, H.L.; Li, Z.H.; et al. Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced raman scattering substrate for label-free detection of adenosine. ACS Appl. Mater. Interfaces 2015, 7, 10977–10987. [Google Scholar] [CrossRef]
- Chen, S.N.; Li, X.; Zhao, Y.Y.; Chang, L.M.; Qi, J.Y. Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced raman scattering. Carbon 2015, 81, 767–772. [Google Scholar] [CrossRef]
- Kiraly, B.; Yang, S.; Huang, T.J. Multifunctional porous silicon nanopillar arrays: antireflection superhydrophobicity, photoluminescence, and surface-enhanced raman scattering. Nanotechnology 2013, 24, 245704. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.R.; Leitch, J.J.; Zhou, C.Q.; Mirza, J.; Li, S.B.; Tian, X.D.; Huang, Y.F.; Tian, Z.Q.; Baron, J.Y.; Choi, Y.; et al. Quantitative SHINERS analysis of temporal changes in the passive layer at a gold electrode surface in a thiosulfate solution. Anal. Chem. 2015, 87, 3791. [Google Scholar] [CrossRef]
- Song, L.; Chen, Z.; Bian, X.; Zhou, L.Y.; Ding, D.; Liang, H.; Zou, Y.X.; Wang, S.S.; Chen, L.; Yang, C.; et al. Alkyne-functionalized superstable graphitic silver nanoparticles for Raman imaging. J. Am. Chem. Soc. 2014, 136, 13558. [Google Scholar] [CrossRef]
- Guerrini, L.; Graham, D. Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced raman spectroscopy applications. Chem. Soc. Rev. 2012, 41, 7085–7107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jiang, S.Z.; Yang, C.; Yang, C.; Li, C.H.; Huo, Y.Y.; Liu, X.Y.; Liu, A.H.; Wei, Q.; Gao, S.S.; et al. Gold@Silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS. Sci. Rep. 2016, 6, 25243. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Zheng, M.; Xiang, Q.; Hu, H.; Duan, H. Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array. Opt. Express 2016, 24, 20613–20620. [Google Scholar] [CrossRef]
- Baumberg, J.J.; Kelf, A.T.; Sugawara, Y.; Cintra, S.; Abdelsalam, M.E.; Bartlett, P.N.; Russell, A.E. Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals. Nano Lett. 2005, 5, 2262–2267. [Google Scholar] [CrossRef]
- Lin, D.; Wu, Z.; Li, S.; Zhao, W.; Ma, C.; Wang, J.; Jiang, Z.; Zhong, Z.; Zheng, Y.; Yang, X. Large-area au-nanoparticle-functionalized si nanorod arrays for spatially uniform surfaceenhanced raman spectroscopy. ACS Nano 2017, 11, 1478–1487. [Google Scholar] [CrossRef]
- Bassi, B.; Albini, B.; Agostino, A.D.; Dacarro, G.; Pallavicini, P.; Galinetto, P.; Taglietti, A. Robust, reproducible, recyclable SERS substrates: Monolayers of gold nanostars grafted on glass and coated with a thin silica layer. Nanotechnology 2019, 30, 025302. [Google Scholar] [CrossRef]
- Shin, K.; Ryu, K.; Lee, H.; Kim, K.; Chung, H.; Sohna, D. Au nanoparticle-encapsulated hydrogel substrates for robust and reproducible SERS measurement. Analyst 2013, 138, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Liu, L.; Dai, Z.G.; Liu, J.H.; Yang, S.L.; Zhou, L.; Xiao, X.H.; Jiang, C.Z.; Roy, V. Low-cost, disposable, flexible and highly reproducible screen printed sers substrates for the detection of various chemicals. Sci. Rep. 2015, 5, 10208. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Wi, J.S.; Oh, A.; Na, H.K.; Lee, J.J.; Lee, K.; Lee, T.G.; Haam, S. Highly robust, uniform and ultra-sensitive surface-enhanced Raman scattering substrates for microRNA detection fabricated by using silver nanostructures grown in gold nanobowls. Nanoscale 2018, 10, 3680–3687. [Google Scholar] [CrossRef]
- Levenson, M.D.; Viswanathan, N.; Simpson, R.A. Improving resolution in photolithography with a phase-shifting mask. IEEE T. Electron Dev. 1982, 29, 1828–1836. [Google Scholar] [CrossRef]
- Vieu, C.; Carcenac, F.; Pepin, A.; Chen, Y.; Mejias, M.; Lebib, A.; Ferlazzo, L.; Couraud, L.; Launois, H. Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 2000, 164, 111–117. [Google Scholar] [CrossRef]
- Wouters, D.; Schubert, U.S. Nanolithography and nanochemistry: Probe-related patterning techniques and chemical modification for nanometer-sized devices. Angew. Chem. Int. Ed. 2004, 43, 2480. [Google Scholar] [CrossRef]
- Wu, L.; Wang, W.L.; Zhang, W.; Su, H.L.; Liu, Q.L.; Gu, J.J.; Deng, T.; Zhang, D. Highly sensitive, reproducible and uniform SERS substrates with a high density of three-dimensionally distributed hotspots: gyroid-structured Au periodic metallic materials. NPG Asia Mater. 2018, 10, e462. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Duan, G.T.; Liu, G.Q.; Cai, W.P. Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: Fabrication and applications. Chem. Soc. Rev. 2013, 8, 3614–3627. [Google Scholar] [CrossRef] [PubMed]
- Dridi, H.; Haji, L.; Moadhen, A. Rough SERS substrate based on gold coated porous silicon layer prepared on the silicon backside surface. Superlattices Microstruct. 2017, 104, 266–270. [Google Scholar] [CrossRef]
- Dick, L.A.; Adam, D.; McFarland, A.D.; Christy, L.; Haynes, C.L.; Van Duyne, R.P. Metal film over nanosphere (MFON) electrodes for surface-enhanced raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 2002, 106, 853–860. [Google Scholar] [CrossRef]
- Yi, Z.; Niu, G.; Luo, J.; Kang, X.L.; Yao, W.T.; Zhang, W.B.; Yi, Y.; Yi, Y.; Ye, X.; Duan, T. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate. Sci. Rep. 2016, 6, 32314. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Xu, Z.; Li, K.; Fang, F.; Wang, L. Fabrication of a Au–polystyrene sphere substrate with three-dimensional nanofeatures for surface-enhanced Raman spectroscopy. Appl. Surf. Sci. 2015, 355, 1168–1174. [Google Scholar] [CrossRef]
- Culp, S.J.; Beland, F.A. Malachite green: A toxicological review. Int. J. Toxicol. 1996, 15, 219–238. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, W.; Pei, L.; Lai, K.; Rasco, B.A.; Huang, Y. Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering. Food Chem. 2015, 169, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Stead, S.L.; Ashwin, H.; Johnston, B.H.; Dallas, A.; Kazakov, S.A.; Tarbin, J.A.; Sharman, M.; Kay, J.; Keely, B.J. An RNA-aptamer-based assay for the detection and analysis of malachite greenand leucomalachite green residues in fish tissue. Anal. Chem. 2010, 82, 2652–2660. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, K.; Zhou, J.; Wang, X.; Rasco, B.A.; Huang, Y. A novel approach to determine leucomalachite green and malachite green in fish fillets with surface-enhanced Raman spectroscopy (SERS) and multivariate analyses. J. Raman Spectrosc. 2012, 43, 1208–1213. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Meng, J.; Chen, S.; Panneerselvam, R.; Li, C.; Jamali, S.; Li, X.; Yang, Z.; Lia, J.; et al. A facile method for the synthesis of large-size Ag nanoparticles as efficient SERS substrates. J. Raman Spectrosc. 2016, 47, 662–667. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H.; Lu, L.; Ai, K.; Zhang, G.; Cheng, X. Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced raman spectroscopy. Adv. Funct. Mater. 2008, 18, 2348–2355. [Google Scholar] [CrossRef]
- Liu, J. Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Phys. Chem. Chem. Phys. 2012, 14, 10485–10496. [Google Scholar] [CrossRef]
- Dai, Z.; Li, Y.; Duan, G.; Jia, L.; Cai, W. Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface. ACS Nano 2012, 6, 6706–6716. [Google Scholar] [CrossRef]
- Retsch, M.; Zhou, Z.; Rivera, S.; Kappl, M.; Zhao, X.S.; Jonas, U.; Li, Q. Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface. Macromol. Chem. Phys. 2009, 210, 230–241. [Google Scholar] [CrossRef]
- Soleimani-Amiri, S.; Gholizadeh, A.; Rajabali, S.; Sanaee, Z.; Mohajerzadeh, S. Formation of Si nanorods and hollow nanostructures using high precision plasma-treated nanosphere lithography. RSC Adv. 2014, 4, 12701. [Google Scholar] [CrossRef]
- Vogel, N.; Goerres, S.; Landfester, K.; Weiss, C.K. A convenient method to produce close- and non-close-packed monolayers using direct assembly at the air–water interface and subsequent plasma-induced size reduction. Macromol. Chem. Phys. 2011, 212, 1719–1734. [Google Scholar] [CrossRef]
- Luo, L.; Chen, L.; Zhang, M.; He, Z.; Zhang, W.; Yuan, G.; Zhang, W.; Lee, S. Surface-enhanced raman scattering from uniform gold and silver nanoparticle-coated substrates. J. Phys. Chem. C 2009, 113, 9191–9196. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, X.; Zhou, H.; Shao, M.; Zapien, J.; Wong, N.; Lee, S. A high-efficiency surface-enhanced raman scattering substrate based on silicon nanowires array decorated with silver nanoparticles. J. Phys. Chem. C 2010, 114, 1969–1975. [Google Scholar] [CrossRef]
- Shao, M.-W.; Zhang, M.-L.; Wong, N.-B.; Ma, D.D.-D.; Wang, H.; Chen, W.; Lee, S.-T. Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy. Appl. Phys. Lett. 2008, 93, 233118. [Google Scholar] [CrossRef]
- Jin, Y.; Ma, P.; Liang, F.; Gao, D.; Wang, X. Determination of malachite green in environmental water using cloud point extraction coupled with surface-enhanced Raman scattering. Anal. Methods 2013, 5, 5609–5614. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, S.; Xu, W.; Zhao, B.; Ozaki, Y. In situ nucleation and growth of silver nanoparticles in membrane materials: a controllable roughened SERS substrate with high reproducibility. J. Raman Spectrosc. 2009, 40, 31–37. [Google Scholar] [CrossRef]
- Yi, Z.; Luo, J.; Tan, X.; Yi, Y.; Yao, W.; Kang, X.; Ye, X.; Zhu, W.; Duan, T.; Yi, Y.; et al. Mesoporous gold sponges: electric charge-assisted seed mediated synthesis and application as surface-enhanced Raman scattering substrates. Sci. Rep. 2015, 5, 16137. [Google Scholar] [CrossRef] [Green Version]
- Cen, Q.; He, Y.; Xu, M.; Wang, J.; Wang, Z. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol. J. Chem. Phys. 2015, 142, 114201. [Google Scholar] [PubMed]
- Sivashanmugan, K.; Liao, J.D.; Liu, B.H.; Yao, C.K.; Luo, S.C. Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green. Sens. Actuators B 2015, 207, 430–436. [Google Scholar] [CrossRef]
- Gu, G.H.; Suh, J.S. Silver nanorods used to promote SERS as a quantitative analytical tool. J. Raman Spectrosc. 2009, 41, 624–627. [Google Scholar] [CrossRef]
SERS Peak Position (cm−1) | Assignment | Reference |
---|---|---|
798 | Ring C–H out-of-plane bending (γ(C–H)ring) | [25,41] |
1175 | In-plane vibrations of ring C–H (δ(C–H)ring) | [42] |
1218 | C–H rocking (δ(C–H)ring) | [38] |
1365 | N-phenyl stretching | [43] |
1398 | N-phenyl stretching, δ(C–H) ring and (ν(C–C)ring) | [38] |
1617 | Ring C–C stretching (ν(C–C)ring) | [27] |
- | Wavenumber (cm−1) | |||||
---|---|---|---|---|---|---|
NERS substrate | 798 | 1175 | 1218 | 1365 | 1398 | 1617 |
ordered (%) | 13.84 | 9.48 | 9.99 | 8.27 | 6.86 | 6.64 |
disordered (%) | 50.2 | 38.52 | 33.65 | 50.17 | 58.26 | 63.77 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Q.; Liu, C.; Liu, L.; Meng, Q.; Wei, S.; Ming, A.; Zhang, J.; Wang, Y.; Wu, L.; Zhu, X.; et al. Fabrication, Characterization, and Application of Large-Scale Uniformly Hybrid Nanoparticle-Enhanced Raman Spectroscopy Substrates. Micromachines 2019, 10, 282. https://doi.org/10.3390/mi10050282
Qi Q, Liu C, Liu L, Meng Q, Wei S, Ming A, Zhang J, Wang Y, Wu L, Zhu X, et al. Fabrication, Characterization, and Application of Large-Scale Uniformly Hybrid Nanoparticle-Enhanced Raman Spectroscopy Substrates. Micromachines. 2019; 10(5):282. https://doi.org/10.3390/mi10050282
Chicago/Turabian StyleQi, Qi, Chunhui Liu, Lintao Liu, Qingyi Meng, Shuhua Wei, Anjie Ming, Jing Zhang, Yanrong Wang, Lidong Wu, Xiaoli Zhu, and et al. 2019. "Fabrication, Characterization, and Application of Large-Scale Uniformly Hybrid Nanoparticle-Enhanced Raman Spectroscopy Substrates" Micromachines 10, no. 5: 282. https://doi.org/10.3390/mi10050282
APA StyleQi, Q., Liu, C., Liu, L., Meng, Q., Wei, S., Ming, A., Zhang, J., Wang, Y., Wu, L., Zhu, X., Wei, F., & Yan, J. (2019). Fabrication, Characterization, and Application of Large-Scale Uniformly Hybrid Nanoparticle-Enhanced Raman Spectroscopy Substrates. Micromachines, 10(5), 282. https://doi.org/10.3390/mi10050282