A Wireless Implantable System for Facilitating Gastrointestinal Motility
Abstract
:1. Introduction
2. Wireless Implantable GI Modulation System
2.1. Microelectronic Design
2.2. Heterogeneous Packaging and System Integration
3. Experiment Results and Discussion
3.1. Electrode Characterization
3.2. Stimulation-Parameter Identification
3.3. System Bench-Top Test
3.4. Preliminary In Vivo Chronic Test
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peery, A.F.; Crockett, S.D.; Murphy, C.C.; Lund, J.L.; Dellon, E.S.; Williams, J.L.; Jensen, E.T.; Shaheen, N.J.; Barritt, A.S.; Lieber, S.R. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018. Gastroenterology 2018, 156, 254–272. [Google Scholar] [CrossRef] [PubMed]
- Sanders, K. Regulation of smooth muscle excitation and contraction. Neurogastroenterol. Motil. 2008, 20, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Huizinga, J.D.; Lammers, W.J. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G1–G8. [Google Scholar] [CrossRef] [PubMed]
- Valentin, N.; Acosta, A.; Camilleri, M. Early investigational therapeutics for gastrointestinal motility disorders: from animal studies to Phase II trials. Expert Opin. Investig. Drugs 2015, 24, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Sanders, K.M.; Koh, S.D.; Ward, S.M. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu. Rev. Physiol. 2006, 68, 307–343. [Google Scholar] [CrossRef]
- Goyal, R.K.; Hirano, I. The enteric nervous system. New Engl. J. Medicine 1996, 334, 1106–1115. [Google Scholar] [CrossRef]
- Furness, J.B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 286. [Google Scholar] [CrossRef]
- McCallum, R.W.; Chen, J.D.Z.; Lin, Z.; Schirmer, B.D.; Williams, R.D.; Ross, R.A. Gastric pacing improves emptying and symptoms in patients with gastroparesis. Gastroenterology 1998, 114, 456–461. [Google Scholar] [CrossRef]
- Lin, Z.; Sarosiek, I.; Forster, J.; Ross, R.A.; Chen, J.D.; McCallum, R.W. Two-channel gastric pacing in patients with diabetic gastroparesis. Neurogastroenterol. Motil 2011, 23, 912-e396. [Google Scholar] [CrossRef]
- Yin, J.; Chen, J.D. Excitatory effects of synchronized intestinal electrical stimulation on small intestinal motility in dogs. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G1190–G1195. [Google Scholar] [CrossRef] [Green Version]
- Dubrovsky, G.; Lo, Y.-K.; Wang, P.-M.; Wu, M.-D.; Huynh, N.; Liu, W.; Dunn, J.C. Intestinal electrical stimulation to increase the rate of peristalsis. J. Surgical Res. 2019, 236, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, Y.; Yao, S.; Zhang, Y.; Liu, L.; Guo, X.; Chen, W.; Chen, Y.; Du, Y. Implantable colonic electrical stimulation improves gastrointestinal transit and defecation in a canine constipation model. Neuromodulation: Technol. Neural Interface 2016, 19, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Sallam, H.; Chen, J. Colonic electrical stimulation: potential use for treatment of delayed colonic transit. Colorectal Dis. 2013, 15, e244–e249. [Google Scholar] [CrossRef] [PubMed]
- Volkmann, J.; Herzog, J.; Kopper, F.; Deuschl, G. Introduction to the programming of deep brain stimulators. Mov. Disord.: Off. J. Mov. Disord. Soc. 2002, 17, S181–S187. [Google Scholar] [CrossRef] [PubMed]
- Hershey, B.; Valencia, C.; Yearwood, T.L. Pulse width programming in spinal cord stimulation: a clinical study. Pain Physician 2010, 13, 321–335. [Google Scholar]
- Mertens, A.; Raedt, R.; Gadeyne, S.; Carrette, E.; Boon, P.; Vonck, K. Recent advances in devices for vagus nerve stimulation. Expert Rev. Med. Devices 2018, 15, 527–539. [Google Scholar] [CrossRef]
- Liu, S.; Chen, J. Colonic electrical stimulation regulates colonic transit via the nitrergic pathway in rats. Digestive diseases and sciences 2006, 51, 502–505. [Google Scholar] [CrossRef]
- Sevcencu, C.; Rijkhoff, N.J.; Sinkjaer, T. Colon emptying induced by sequential electrical stimulation in rats. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 516–523. [Google Scholar] [CrossRef]
- McCallum, R.W.; Snape, W.; Brody, F.; Wo, J.; Parkman, H.P.; Nowak, T. Gastric electrical stimulation with Enterra therapy improves symptoms from diabetic gastroparesis in a prospective study. Clin. Gastroenterol. Hepatol. 2010, 8, 947–954. [Google Scholar] [CrossRef]
- Rodríguez, L.; Rodriguez, P.; Gómez, B.; Ayala, J.C.; Oxenberg, D.; Perez-Castilla, A.; Netto, M.G.; Soffer, E.; Boscardin, W.J.; Crowell, M.D. Two-year results of intermittent electrical stimulation of the lower esophageal sphincter treatment of gastroesophageal reflux disease. Surgery 2015, 157, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.-K.; Wang, P.-M.; Dubrovsky, G.; Wu, M.-D.; Chan, M.; Dunn, J.C.; Liu, W. A wireless implant for gastrointestinal motility disorders. Micromachines 2018, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.-K.; Kuan, Y.-C.; Culaclii, S.; Kim, B.; Wang, P.-M.; Chang, C.-W.; Massachi, J.A.; Zhu, M.; Chen, K.; Gad, P. A fully integrated wireless SoC for motor function recovery after spinal cord injury. IEEE Transactions on Biomedical Circuits and Systems 2017, 11, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Kendir, G.A.; Liu, W.; Wang, G.; Sivaprakasam, M.; Bashirullah, R.; Humayun, M.S.; Weiland, J.D. An optimal design methodology for inductive power link with class-E amplifier. IEEE Trans. Circuits Syst. I: Regul. Pap. 2005, 52, 857–866. [Google Scholar] [CrossRef]
- Wang, G.; Liu, W.; Sivaprakasam, M.; Zhou, M.; Weiland, J.D.; Humayun, M.S. A wireless phase shift keying transmitter with Q-independent phase transition time. In Proceedings of the Engineering in Medicine and Biology Society, Shanghai, China, 17–18 January 2006; pp. 5238–5241. [Google Scholar]
- Chang, C.-W.; Lo, Y.-K.; Gad, P.; Edgerton, R.; Liu, W. Design and fabrication of a multi-electrode array for spinal cord epidural stimulation. In Proceedings of the Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 6834–6837. [Google Scholar]
- Liu, W.; Wang, P.-M.; Lo, Y.-K. Towards closed-loop neuromodulation: a wireless miniaturized neural implant SoC. In Proceedings of the SPIE Defense+ Security, Anaheim, CA, USA, 9–13 April 2017; pp. 1019414–1019418. [Google Scholar]
- Lin, X.; Hayes, J.; Peters, L.; Chen, J. Entrainment of intestinal slow waves with electrical stimulation using intraluminal electrodes. Ann. Biomed. Eng. 2000, 28, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.-K.; Chang, C.-W.; Liu, W. Bio-impedance characterization technique with implantable neural stimulator using biphasic current stimulus. In Proceedings of the Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 474–477. [Google Scholar]
- Massachi, J.; Lo, Y.-K.; Wang, P.-M.; Liu, W. A Wireless Platform to Support Pre-Clinical Trial of Neural Implant for Spinal Cord Injury. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5487–5490. [Google Scholar]
Electrochemical Property | Saline | Intestinal Fluid |
---|---|---|
Cyclic voltammogram | ||
Electrochemical window (V) | [−0.9, 1] | [−0.9, 1] |
Charge storage capacity (μC) | 9.19 | 10.68 |
Electrochemical Impedance Spectroscopy (EIS) | ||
Magnitude@ 1 kHz (kΩ) | 2.61 | 6.39 |
Phase@ 1 kHz (°) | –52.1 | –53.9 |
Randles cell model characterization | ||
RS (kΩ) | 1.63 | 3.69 |
RCT (kΩ) | 2.12 | 4.7 |
Cdl (nF) | 13.73 | 6.32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.-M.; Dubrovsky, G.; Dunn, J.C.Y.; Lo, Y.-K.; Liu, W. A Wireless Implantable System for Facilitating Gastrointestinal Motility. Micromachines 2019, 10, 525. https://doi.org/10.3390/mi10080525
Wang P-M, Dubrovsky G, Dunn JCY, Lo Y-K, Liu W. A Wireless Implantable System for Facilitating Gastrointestinal Motility. Micromachines. 2019; 10(8):525. https://doi.org/10.3390/mi10080525
Chicago/Turabian StyleWang, Po-Min, Genia Dubrovsky, James C.Y. Dunn, Yi-Kai Lo, and Wentai Liu. 2019. "A Wireless Implantable System for Facilitating Gastrointestinal Motility" Micromachines 10, no. 8: 525. https://doi.org/10.3390/mi10080525
APA StyleWang, P. -M., Dubrovsky, G., Dunn, J. C. Y., Lo, Y. -K., & Liu, W. (2019). A Wireless Implantable System for Facilitating Gastrointestinal Motility. Micromachines, 10(8), 525. https://doi.org/10.3390/mi10080525