An Improved 4H-SiC MESFET with a Partially Low Doped Channel
Abstract
:1. Introduction
2. Device Structure
3. Results and Discussion
3.1. The Effect of Doping Concentration and Thickness On the Device Parameters
3.2. The Influences of Doping Concentration and Thickness on the PAE
3.3. Mechanism Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Riaz, M.; Ahmed, M.M.; Munir, U. An improved model for current voltage characteristics of submicron SiC MESFETs. Solid State Electron. 2016, 121, 54–61. [Google Scholar] [CrossRef]
- Nakashima, S.; Harima, H. Raman Investigation of SiC Polytypes. Phys. Status Solidi Appl. Res. 2015, 162, 39–64. [Google Scholar] [CrossRef]
- Kirschman, R. Status of Silicon Carbide (SiC) as a WideBandgap Semiconductor for HighTemperature Applications: A Review. Solid-State Electron. 1996, 39, 1409–1422. [Google Scholar]
- Holmes, J.; Dutta, M.; Koeck, F.A.; Brown, J.; Fox, B.; Hathwar, R.; Johnson, H.; Malakoutian, M.; Saremi, M.; Zaniewski, A.; et al. A 4.5-μm PIN diamond diode for detecting slow neutrons. Nucl. Instrum. Methods Phys. Res. A 2018, 903, 297–301. [Google Scholar] [CrossRef]
- Saremi, M.; Hathwar, R.; Dutta, M. Analysis of the reverse I-V characteristics of diamond-based PIN diodes. Appl. Phys. Lett. 2017, 111, 043507. [Google Scholar] [CrossRef]
- Aminbeidokhti, A.; Dimitrijev, S.; Kumar Hanumanthappa, A. Gate-Voltage Independence of Electron Mobility in Power AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2016, 63, 1013–1019. [Google Scholar] [CrossRef]
- Aminbeidokhti, A.; Dimitrijev, S.; Han, J. The Power Law of Phonon-Limited Electron Mobility in the 2-D Electron Gas of AlGaN/GaN Heterostructure. IEEE Trans. Electron Devices 2016, 63, 2214–2218. [Google Scholar] [CrossRef]
- Yakimova, R.; Syväjarvi, M.; Iakimov, T.; Jacobsson, H.; Kakanakova-Georgieva, A.; Råback, P.; Janzén, E. Growth of silicon carbide: Process-related defects. Appl. Surf. Sci. 2001, 184, 27–36. [Google Scholar] [CrossRef]
- Jia, H.J.; Yang, Z.H.; Ma, P.M. A novel 4H-SiC MESFET with localized high-doped P-buffer layer. In Proceedings of the IEEE International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, China, 25–28 October 2016; pp. 1086–1088. [Google Scholar]
- Jia, H.J.; Zhu, S.W.; Hu, M. An improved DRBL AlGaN/GaN HEMT with high power added efficiency. Mater. Sci. Semicond. Process. 2019, 89, 212–215. [Google Scholar] [CrossRef]
- Jia, H.J.; Hu, M.; Zhu, S.W. An Improved UU-MESFET with High Power Added Efficiency. Micromachines 2018, 9, 573. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.L.; Tin, C.C.; Zhang, G.H.; Yoon, S.F.; Ahn, J. Improved performance of SiC MESFETs using double-recessed structure. Microelectron. Eng. 2005, 83, 92–95. [Google Scholar] [CrossRef]
- Horiuchi, T.; Homma, T.; Murao, Y.; Okumura, K. An asymmetric sidewall process for high performance LDD MOSFET. IEEE Trans. Electron Devices 1994, 41, 186–190. [Google Scholar] [CrossRef]
- Synopsys Inc. Dessis User Guide, User Manuals, Version ISE TCAD 10.0; Synopsys Inc.: Mountain View, CA, USA, 2004. [Google Scholar]
- Angilent Technologies. ADS Documentation, User Manuals, Version ADS2015; Angilent Technologies: Santa Clara, CA, USA, 2015. [Google Scholar]
- Lee, T.H. The Design of CMOS Radio-Frequency Integrated Circuits; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Tao, Y.; Bai, S. 107W CW SiC MESFET with 48.1% PAE. In Proceedings of the IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Chengdu, China, 29–31 October 2013. [Google Scholar]
Parameters | DR 4H-SiC MESFET | PLDC 4H-SiC MESFET |
---|---|---|
Idsat (mA/mm) | 448.00 | 319.90 |
Vb (V) | 125.35 | 130.20 |
gm (mS/mm) | 59.30 | 49.30 |
Vt (V) | −7.52 | −6.49 |
Cgs (pF/mm) | 0.59 | 0.49 |
PAE (%) | 23.43 | 43.67 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, H.; Tong, Y.; Li, T.; Zhu, S.; Liang, Y.; Wang, X.; Zeng, T.; Yang, Y. An Improved 4H-SiC MESFET with a Partially Low Doped Channel. Micromachines 2019, 10, 555. https://doi.org/10.3390/mi10090555
Jia H, Tong Y, Li T, Zhu S, Liang Y, Wang X, Zeng T, Yang Y. An Improved 4H-SiC MESFET with a Partially Low Doped Channel. Micromachines. 2019; 10(9):555. https://doi.org/10.3390/mi10090555
Chicago/Turabian StyleJia, Hujun, Yibo Tong, Tao Li, Shunwei Zhu, Yuan Liang, Xingyu Wang, Tonghui Zeng, and Yintang Yang. 2019. "An Improved 4H-SiC MESFET with a Partially Low Doped Channel" Micromachines 10, no. 9: 555. https://doi.org/10.3390/mi10090555
APA StyleJia, H., Tong, Y., Li, T., Zhu, S., Liang, Y., Wang, X., Zeng, T., & Yang, Y. (2019). An Improved 4H-SiC MESFET with a Partially Low Doped Channel. Micromachines, 10(9), 555. https://doi.org/10.3390/mi10090555