Fabrication of Tapered Circular Depressed-Cladding Waveguides in Nd:YAG Crystal by Femtosecond-Laser Direct Inscription
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tapered Depressed-Cladding Waveguides: The Concept and Design Parameters
2.2. Laser Inscription
2.3. Optical Characterization
2.4. Parameters Determination
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Osellame, R.; Cerullo, G.; Ramponi, R. Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials; Springer: Berlin/Heidelberg, Germany, 2012; Volume 123, ISBN 9783642233654. [Google Scholar]
- Choudhury, D.; Macdonald, J.R.; Kar, A.K. Ultrafast laser inscription: Perspectives on future integrated applications. Laser Photonics Rev. 2014, 8, 827–846. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.M.; Miura, K.; Sugimoto, N.; Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 1996, 21, 1729. [Google Scholar] [CrossRef] [PubMed]
- Burghoff, J.; Nolte, S.; Tünnermann, A. Origins of waveguiding in femtosecond laser-structured LiNbO3. Appl. Phys. A Mater. Sci. Process. 2007, 89, 127–132. [Google Scholar] [CrossRef]
- Okhrimchuk, A.G.; Mezentsev, V.; Shestakov, A.V.; Bennion, I. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond pulses. Opt. Express 2012, 20, 3832–3843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; de Aldana, J.R.V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev. 2014, 8, 251–275. [Google Scholar] [CrossRef]
- Kifle, E.; Loiko, P.; Vázquez de Aldana, J.R.; Romero, C.; Ródenas, A.; Choi, S.Y.; Bae, J.E.; Rotermund, F.; Zakharov, V.; Veniaminov, A.; et al. Passively Q-switched femtosecond-laser-written thulium waveguide laser based on evanescent field interaction with carbon nanotubes. Photonics Res. 2018, 6, 971. [Google Scholar] [CrossRef]
- Jia, Y.; Vázquez De Aldana, J.R.; Romero, C.; Ren, Y.; Lu, Q.; Chen, F. Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation. Appl. Phys. Express 2012, 5, 072701. [Google Scholar] [CrossRef]
- Ajates, J.G.; Vázquez de Aldana, J.R.; Chen, F.; Ródenas, A. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides. Opt. Mater. Express 2018, 8, 1890. [Google Scholar] [CrossRef]
- Ajates, J.G.; Romero, C.; Castillo, G.R.; Chen, F.; Vázquez de Aldana, J.R. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals. Opt. Mater. 2017, 72, 220–225. [Google Scholar] [CrossRef]
- Li, L.; Nie, W.; Li, Z.; Romero, C.; Rodriguez-Beltrán, R.I.; Vázquez de Aldana, J.R.; Chen, F. Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band. Opt. Express 2017, 25, 24236. [Google Scholar] [CrossRef] [PubMed]
- Lifante, G. Integrated Photonics: Fundamentals; John Wiley & Sons: New York, NY, USA, 2003; ISBN 978-0-470-84868-5. [Google Scholar]
- Snyder, A.W.; Love, J.D. Optical Waveguide Theory; Springer: Boston, MA, USA, 1983; ISBN 978-0-412-24250-2. [Google Scholar]
- Gross, S.; Riesen, N.; Love, J.D.; Withford, M.J. Three-dimensional ultra-broadband integrated tapered mode multiplexers. Laser Photonics Rev. 2014, 8, L81–L85. [Google Scholar] [CrossRef]
- Heilmann, R.; Greganti, C.; Gräfe, M.; Nolte, S.; Walther, P.; Szameit, A. Tapering of femtosecond laser-written waveguides. Appl. Opt. 2018, 57, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Chen, F.; Vázquez de Aldana, J.R.; Jaque, D. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: A promising prototype for integrated lasers. Opt. Lett. 2013, 38, 3294. [Google Scholar] [CrossRef] [PubMed]
- Kenny, R.P.; Birks, T.A.; Oakley, K.P. Control of optical fibre taper shape. Electron. Lett. 1991, 27, 1654–1656. [Google Scholar] [CrossRef]
- Love, J.D.; Henry, W.M. Quantifying Loss Minimisation in Single-Mode Fibre Tapers. Electron. Lett. 1986, 22, 912–914. [Google Scholar] [CrossRef]
- Okamura, Y.; Yoshinaka, S.; Yamamoto, S. Measuring mode propagation losses of integrated optical waveguides: A simple method. Appl. Opt. 1983, 22, 3892. [Google Scholar] [CrossRef] [PubMed]
Input Light | R = 24 µm | R = 12 µm | R = 6 µm | Tap. 2:1 | Tap. 4:1 |
---|---|---|---|---|---|
633 nm (V) | 1 | 0.75 | 0.11 | 0.26 | 0.12 |
633 nm (H) | 1 | 0.80 | 0.12 | 0.32 | 0.13 |
850 nm (V) | 1 | 0.31 | 0.06 | 0.06 | 0.04 |
850 nm (H) | 1 | 0.76 | 0.23 | 0.14 | 0.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, C.; García Ajates, J.; Chen, F.; Vázquez de Aldana, J.R. Fabrication of Tapered Circular Depressed-Cladding Waveguides in Nd:YAG Crystal by Femtosecond-Laser Direct Inscription. Micromachines 2020, 11, 10. https://doi.org/10.3390/mi11010010
Romero C, García Ajates J, Chen F, Vázquez de Aldana JR. Fabrication of Tapered Circular Depressed-Cladding Waveguides in Nd:YAG Crystal by Femtosecond-Laser Direct Inscription. Micromachines. 2020; 11(1):10. https://doi.org/10.3390/mi11010010
Chicago/Turabian StyleRomero, Carolina, Javier García Ajates, Feng Chen, and Javier R. Vázquez de Aldana. 2020. "Fabrication of Tapered Circular Depressed-Cladding Waveguides in Nd:YAG Crystal by Femtosecond-Laser Direct Inscription" Micromachines 11, no. 1: 10. https://doi.org/10.3390/mi11010010
APA StyleRomero, C., García Ajates, J., Chen, F., & Vázquez de Aldana, J. R. (2020). Fabrication of Tapered Circular Depressed-Cladding Waveguides in Nd:YAG Crystal by Femtosecond-Laser Direct Inscription. Micromachines, 11(1), 10. https://doi.org/10.3390/mi11010010