A Focus on Two Electrokinetics Issues
Abstract
:1. Introduction
2. The Poisson–Nernst–Planck (PNP) Equations
Poisson–Boltzmann Equation as the Static Limit of the PNP Equations
3. Holistic Approach to the Poisson–Boltzmann Equation
3.1. Charge-Conserved Poisson–Boltzmann Equation
3.2. The Chemical Potential Transform
3.3. Surface Potential Trap
- (1)
- It should be charge-neutral, so that the trap does not add or subtract charges from the system.
- (2)
- It should attract charges of a definite sign and repel those with the opposite sign.
- (3)
- It should have a small spatial footprint so as to model the thin surface charge layer. That is, the force exerted by the potential trap on the attracted (surface) charges exists only within a small region of space close to the solid boundary. The bulk ions only feel the electrostatic attraction/repulsion of the surface charges inside the trap, but not those from the trap itself.
3.3.1. Form of the Surface Potential Trap
3.3.2. Making the Potential Trap Selective in Terms of the Types of Ions
3.3.3. The Modified form of the CCPB and the Chemical Potential Transform
3.4. Re-Derivation of the Poisson–Boltzmann Equation
3.5. Evaluation of the Surface Charge Density and the Zeta Potential
3.6. Predictions of the Holistic Approach
3.6.1. Prediction 1: Isoelectronic Point for the Surface Charge Density
3.6.2. Prediction 2: Surface Reactivity
3.7. Holistic Approach as a Platform for Further Investigations of Charged Interfacial Physics
4. Electrophoresis and the Electrophoretic Drag Coefficient
4.1. A Heuristic Understanding of the Electrophoresis Phenomenon
4.2. The Smoluchowski Argument
4.3. Issues Concerning the Electrophoretic Drag Coefficient
4.3.1. The Force Measurement
4.3.2. The Relevant Surface at Which the Hydrodynamic Drag Should Be Evaluated
4.4. An Analysis of the Optical Tweezer Experiment
4.5. Features of the Inner Flow Field
4.6. The Electro-Hydrodynamic Vorticity Source in the Inner Flow Field
4.7. Stokes Drag vs. Electrophoretic Drag on the Interface of the Inner/Outer Flow Fields
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Cardenas, A.E.; Coalson, R.D.; Kurnikova, M.G. Three-dimensional Poisson-Nernst-Planck theory studies: Influence of membrane electrostatics on gramicid in a channel conductance. Biophys. J. 2000, 79, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Coalson, R.D.; Kurnikova, M.G. Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. Nanobiosci. 2005, 4, 81–93. [Google Scholar] [CrossRef]
- Graf, P.; Kurnikova, M.G.; Coalson, R.D.; Nitzan, A. Comparison of dynamic lattice Monte Carlo simulations and the dielectric self-energy: Poisson−Nernst−Planck continuum theory for model ion channels. J. Phys. Chem. B 2004, 108, 2006–2015. [Google Scholar] [CrossRef]
- Graf, P.; Nitzan, A.; Kurnikova, M.G.; Coalson, R.D. A dynamic lattice Monte Carlo model of ion transport in inhomogeneous dielectric environments: Method and implementation. J. Phys. Chem. B 2000, 104, 12324–12338. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Xu, S.; Liao, M.; Liu, C.; Sheng, P. Self-consistent approach to global charge neutrality in electrokinetics: A surface potential trap model. Phys. Rev. X 2014, 4, 011042. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Lee, H.; Hyon, Y.; Lin, T.; Liu, C. New Poisson–Boltzmann type equations: One-dimensional solutions. Nonlinearity 2010, 24, 431. [Google Scholar] [CrossRef]
- Liao, M.; Wan, L.; Xu, S.; Liu, C.; Sheng, P. The Poisson Boltzmann equation and the charge separation phenomenon at the silica-water interface: A holistic approach. Ann. Math. Sci. Appl. 2016, 1, 217–249. [Google Scholar] [CrossRef] [Green Version]
- Scales, P.J.; Grieser, F.; Healy, T.W.; White, L.R.; Chan, D.Y. Electrokinetics of the silica-solution interface: A flat plate streaming potential study. Langmuir 1992, 8, 965–974. [Google Scholar] [CrossRef]
- Bolt, G.H. Determination of the charge density of silica sols. J. Phys. Chem. 1957, 61, 1166–1169. [Google Scholar] [CrossRef]
- Kosmulski, M.; Matijevic, E. Zeta.-potentials of silica in water-alcohol mixtures. Langmuir 1992, 8, 1060–1064. [Google Scholar] [CrossRef]
- Behrens, S.H.; Grier, D.G. The charge of glass and silica surfaces. J. Chem. Phys. 2001, 115, 6716–6721. [Google Scholar] [CrossRef] [Green Version]
- Sverjensky, D.A.; Sahai, N. Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water. Geochim. Cosmochim. Acta 1996, 60, 3773–3797. [Google Scholar] [CrossRef]
- House, W.A.; Orr, D.R. Investigation of the pH dependence of the kinetics of quartz dissolution at 25 C. J. Chem. Soc. Faraday Trans. 1992, 88, 233–241. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Golubev, S.V.; Mielczarski, J.A. Kinetic evidences of the existence of positively charged species at the quartz-aqueous solution interface. J. Colloid Interface Sci. 2006, 296, 189–194. [Google Scholar] [CrossRef]
- Russel, W.B.; Russel, W.B.; Saville, D.A.; Schowalter, W.R. Colloidal Dispersions; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Hunter, R.J. Foundations of Colloid Science; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Dukhin, S.S.; Deriaguine, B.V. Surface and Colloid Science: Electrokinetic Phenomena: Translated from the Russian by A. Mistetsky and M. Zimmerman; Plenum Press: Delhi, India, 1974. [Google Scholar]
- Von Smoluchowski, M. Contribution à la théorie de l’endosmose électrique et de quelques phénomènes corrélatifs. Bull. Akad. Sci. Crac. 1903, 8, 182–200. [Google Scholar]
- Liao, M.; Wei, M.; Xu, S.; Ou-Yang, H.D.; Sheng, P. Non-Stokes drag coefficient in single-particle electrophoresis: New insights on a classical problem. Chin. Phys. B 2019, 28, 084701. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, R.W.; White, L.R. Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. Mol. Chem. Phys. 1978, 74, 1607–1626. [Google Scholar] [CrossRef]
- Morrison, F.A., Jr. Electrophoresis of a particle of arbitrary shape. J. Colloid Interface Sci. 1970, 34, 210–214. [Google Scholar] [CrossRef]
- O’Brien, R.W. The solution of the electrokinetic equations for colloidal particles with thin double layers. J. Colloid Interface Sci. 1983, 92, 204–216. [Google Scholar] [CrossRef]
- Chang, H.; Yeo, L. Electrokinetically Driven Microfluidics and Nanofluidics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Schnitzer, O.; Zeyde, R.; Yavneh, I.; Yariv, E. Weakly nonlinear electrophoresis of a highly charged colloidal particle. Phys. Fluids 2013, 25, 052004. [Google Scholar] [CrossRef]
- Todd, B.A.; Cohen, J.A. Separability of electrostatic and hydrodynamic forces in particle electrophoresis. Phys. Rev. E 2011, 84, 032401. [Google Scholar] [CrossRef]
- Lizana, L.; Grosberg, A.Y. Exact expressions for the mobility and electrophoretic mobility of a weakly charged sphere in a simple electrolyte. EPL Europhys. Lett. 2014, 104, 68004. [Google Scholar] [CrossRef]
- Valentine, M.T.; Dewalt, L.E.; Ou-Yang, H.D. Forces on a colloidal particle in a polymer solution: A study using optical tweezers. Condens. Matter 1996, 8, 9477–9482. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, C.; Sheng, P. A Focus on Two Electrokinetics Issues. Micromachines 2020, 11, 1028. https://doi.org/10.3390/mi11121028
Dai C, Sheng P. A Focus on Two Electrokinetics Issues. Micromachines. 2020; 11(12):1028. https://doi.org/10.3390/mi11121028
Chicago/Turabian StyleDai, Cheng, and Ping Sheng. 2020. "A Focus on Two Electrokinetics Issues" Micromachines 11, no. 12: 1028. https://doi.org/10.3390/mi11121028
APA StyleDai, C., & Sheng, P. (2020). A Focus on Two Electrokinetics Issues. Micromachines, 11(12), 1028. https://doi.org/10.3390/mi11121028