Dynamic Analysis of an Underwater Cable-Driven Manipulator with a Fluid-Power Buoyancy Regulation System
Abstract
:1. Introduction
2. Mechanical Structure and Working Principle
2.1. Overall Structure of the Manipulator
2.2. Structure of a Section
2.3. Working Principle of Buoyancy Regulation System (BRS)
3. Modeling
3.1. Kinematics
3.2. Dynamics
- The links and the joints are assumed as rigid body;
- The deformation and the mass of the cables are neglected;
- The tension is equal at every point on the same cable. The cable only transmits tension but not pressure, that is: we always have .
- The inertial force and moment of inertia generated by the movement of the first (k − 1)-th sections from the base (it should be noted that , etc. mentioned in this section are all vectors in frame {O2k−1}. If there is a vector in the ground coordinate system, it needs to be transformed to frame {O2k−1} using the transformation matrix);
- Gravity ;
- Buoyancy ;
- The supporting force and torque from the former section;
- The reaction torque and reaction force of the supporting force from the latter section;
- Pressures generated by the cables (due to bending) passing through the proximal wiring disk and the distal wiring disk, which are and ;
- The friction force generated by the cable passing through proximal and distal wiring disks, which are and ;
- The resultant force (approximately equal to the pulling force, explained later) of the pulling force, frictional force and other forces caused by the cable connected to the proximal wiring disk;
- The water resistance .
- Moment of inertia:
- Moment of gravity:
- Moment of buoyancy:
- The torque from the former section ( does not produce a torque to O);
- The reaction torque and the torque of reaction force :
- Since the mass of each point on the cable is negligible, the resultant force of friction and pressure on the point is equal to the resultant force of the cable tension on both sides of the point. We call this resultant force the deformation force. For cable Li,j, the deformation forces on the proximal wiring disk of the k-th section are:
- 7.
- Similar to 6., the resultant force of one cable controlling this section can be approximated as the cable tension at this point. Then the torques of cable tensions are:
- 8.
- Moment of water resistance:
- Cd: the drag coefficient;
- Re: the Reynolds number that reflect the flow characteristics;
- v: the relative velocity of spherical underwater robot to the fluid;
- S: the cross-sectional area;
- ρ: the density of the fluid.
4. Solution and Discussion
4.1. Solution
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, Y.; Lee, Y.; Chae, J.; Choi, H.-T.; Yeu, T. A Study on the Development of Underwater Robot Control System for Autonomous Grasping. J. Korea Robot. Soc. 2020, 15, 39–47. [Google Scholar] [CrossRef]
- Bemfica, J.; Melchiorri, C.; Moriello, L.; Palli, G.; Scarcia, U. A three-fingered cable-driven gripper for underwater applications. In Proceedings of the 2014 IEEE international conference on robotics and automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 2469–2474. [Google Scholar]
- Manjunatha, M.; Selvakumar, A.A.; Godeswar, V.P.; Manimaran, R. A low cost underwater robot with grippers for visual inspection of external pipeline surface. Procedia Comput. Sci. 2018, 133, 108–115. [Google Scholar] [CrossRef]
- Kumar, S.; Rastogi, V.; Gupta, P. Recent Developments in Modeling and Control of Underwater Robot Manipulator: A Review. Indian J. Sci. Technol. 2016, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Chutia, S.; Kakoty, N.M.; Deka, D. A review of underwater robotics, navigation, sensing techniques and applications. In Proceedings of the Advances in Robotics, IIT Delhi, New Delhi, 28 June–2 July 2017; pp. 1–6. [Google Scholar]
- Huang, H.; Tang, Q.; Li, J.; Zhang, W.; Bao, X.; Zhu, H.; Wang, G. A review on underwater autonomous environmental perception and target grasp, the challenge of robotic organism capture. Ocean Eng. 2020, 195, 106644. [Google Scholar] [CrossRef]
- Wu, Y.; Ta, X.; Xiao, R.; Wei, Y.; An, D.; Li, D. Survey of underwater robot positioning navigation. Appl. Ocean Res. 2019, 90, 101845. [Google Scholar] [CrossRef]
- Mazumdar, A.; Lozano, M.; Fittery, A.; Asada, H.H. A compact, maneuverable, underwater robot for direct inspection of nuclear power piping systems. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 2818–2823. [Google Scholar]
- Shen, Z.; Zhong, H.; Xu, E.; Zhang, R.; Yip, K.C.; Chan, L.L.; Chan, L.L.; Pan, J.; Wang, W.; Wang, Z. An Underwater Robotic Manipulator with Soft Bladders and Compact Depth-Independent Actuation. Soft Robot. 2020, 7, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, Y.; Zhu, K.; Chen, B.; Wu, H. Structure design and control research of a novel underwater cable-driven manipulator for autonomous underwater vehicles. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2020, 234, 170–180. [Google Scholar] [CrossRef]
- Robotics, O. Snake-arm robots access the inaccessible. Nucl. Technol. Int. 2008, 1, 92–94. [Google Scholar]
- Endo, G.; Horigome, A.; Takata, A. Super dragon: A 10-m-long-coupled tendon-driven articulated manipulator. IEEE Robot. Autom. Lett. 2019, 4, 934–941. [Google Scholar] [CrossRef]
- Burgner-Kahrs, J.; Rucker, D.C.; Choset, H. Continuum robots for medical applications: A survey. IEEE Trans. Robot. 2015, 31, 1261–1280. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Yi, B.-J. A 4-DOF flexible continuum robot using a spring backbone. In Proceedings of the 2009 International Conference on Mechatronics and Automation, Jilin, China, 9–12 August 2009; pp. 1249–1254. [Google Scholar]
- Nahar, D.; Yanik, P.M.; Walker, I.D. Robot tendrils: Long, thin continuum robots for inspection in space operations. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–8. [Google Scholar]
- Dong, X.; Axinte, D.; Palmer, D.; Cobos, S.; Raffles, M.; Rabani, A.; Kell, J. Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines. Robot. Comput.-Integr. Manuf. 2017, 44, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yan, F.; Zhu, K.; Chen, B.; Wu, H. A new practical robust control of cable-driven manipulators using time-delay estimation. Int. J. Robust Nonlinear Control 2019, 29, 3405–3425. [Google Scholar] [CrossRef]
- Kang, R.; Branson, D.T.; Guglielmino, E.; Caldwell, D.G. Dynamic modeling and control of an octopus inspired multiple continuum arm robot. Comput. Math. Appl. 2012, 64, 1004–1016. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Gao, B.; Zhao, J. Kinematic and static analysis of a cable-driven parallel robot with a flexible link spine. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 31–36. [Google Scholar]
- Tonapi, M.M.; Godage, I.S.; Walker, I.D. Next generation rope-like robot for in-space inspection. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014; pp. 1–13. [Google Scholar]
- Kim, B.S.; Kim, M.K.; Cho, Y.; Hamed, E.E.; Gillette, M.U.; Cha, H.; Miljkovic, N.; Aakalu, V.K.; Kang, K.; Son, K.-N. Electrothermal soft manipulator enabling safe transport and handling of thin cell/tissue sheets and bioelectronic devices. Sci. Adv. 2020, 6, eabc5630. [Google Scholar] [CrossRef]
- Tamadon, I.; Soldani, G.; Dario, P.; Menciassi, A. Novel robotic approach for minimally invasive aortic heart valve surgery. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, Hawaii, 17–21 July 2018; pp. 3656–3659. [Google Scholar]
- Ranzani, T.; Gerboni, G.; Cianchetti, M.; Menciassi, A. A bioinspired soft manipulator for minimally invasive surgery. Bioinspiration Biomim. 2015, 10, 035008. [Google Scholar] [CrossRef]
- Ip, B.C.; Cui, F.; Tripathi, A.; Morgan, J.R. The bio-gripper: A fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing. Biofabrication 2016, 8, 025015. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Ambe, Y.; Ando, H.; Konyo, M.; Tadakuma, K.; Maruyama, S.; Tadokoro, S. A mechanical approach to suppress the oscillation of a long continuum robot flying with water jets. IEEE Robot. Autom. Lett. 2019, 4, 4346–4353. [Google Scholar] [CrossRef]
- Endo, G.; Hagiwara, T.; Nakamura, Y.; Nabae, H.; Suzumori, K. A proposal of super long reach articulated manipulator with gravity compensation using thrusters. In Proceedings of the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, New Zealand, 9–12 July 2018; pp. 1414–1419. [Google Scholar]
- Takeichi, M.; Suzumori, K.; Endo, G.; Nabae, H. Development of a 20-m-long Giacometti arm with balloon body based on kinematic model with air resistance. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 2710–2716. [Google Scholar]
- Shang, W.; Zhang, B.; Zhang, B.; Zhang, F.; Cong, S. Synchronization control in the cable space for cable-driven parallel robots. IEEE Trans. Ind. Electron. 2018, 66, 4544–4554. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, F.; Chen, J.; Ju, F.; Chen, B. A new adaptive time-delay control scheme for cable-driven manipulators. IEEE Trans. Ind. Inform. 2018, 15, 3469–3481. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, S.; Chen, B.; Wu, H. A new continuous fractional-order nonsingular terminal sliding mode control for cable-driven manipulators. Adv. Eng. Softw. 2018, 119, 21–29. [Google Scholar] [CrossRef]
- Giorelli, M.; Renda, F.; Calisti, M.; Arienti, A.; Ferri, G.; Laschi, C. A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 3819–3824. [Google Scholar]
- Webster III, R.J.; Jones, B.A. Design and kinematic modeling of constant curvature continuum robots: A review. Int. J. Robot. Res. 2010, 29, 1661–1683. [Google Scholar] [CrossRef]
- Xu, W.; Liu, T.; Li, Y. Kinematics, dynamics, and control of a cable-driven hyper-redundant manipulator. IEEE/ASME Trans. Mechatron. 2018, 23, 1693–1704. [Google Scholar] [CrossRef]
- Renda, F.; Giorelli, M.; Calisti, M.; Cianchetti, M.; Laschi, C. Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans. Robot. 2014, 30, 1109–1122. [Google Scholar] [CrossRef]
- Xu, G.; Shen, X.; Yu, K. Modeling and Hydrodynamic Performance for a deep ocean manipulator based on Numerical Approach. JCP 2013, 8, 1192–1199. [Google Scholar] [CrossRef]
- Lau, D.; Oetomo, D.; Halgamuge, S.K. Generalized modeling of multilink cable-driven manipulators with arbitrary routing using the cable-routing matrix. IEEE Trans. Robot. 2013, 29, 1102–1113. [Google Scholar] [CrossRef]
- Hassan, M.; Khajepour, A. Analysis of bounded cable tensions in cable-actuated parallel manipulators. IEEE Trans. Robot. 2011, 27, 891–900. [Google Scholar] [CrossRef]
- Kundu, P.K.; Cohen, I.M.; Dowling, D. Fluid Mechanics, 4th ed.; Academic Press: Boston, MA, USA, 2008; pp. 421–472. ISBN 9780123737359. [Google Scholar]
Characteristics | Value |
---|---|
Size (L × W × H) | 1012 mm × 116 mm × 116 mm |
Weight (moving parts) | 2.55 kg |
Maximum payload | 4.5 kg |
Load-to-weight ratio 1 | 1.76 |
Joint rotation range | ±30° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; You, Z.; Song, W.; Zhu, S. Dynamic Analysis of an Underwater Cable-Driven Manipulator with a Fluid-Power Buoyancy Regulation System. Micromachines 2020, 11, 1042. https://doi.org/10.3390/mi11121042
Wang T, You Z, Song W, Zhu S. Dynamic Analysis of an Underwater Cable-Driven Manipulator with a Fluid-Power Buoyancy Regulation System. Micromachines. 2020; 11(12):1042. https://doi.org/10.3390/mi11121042
Chicago/Turabian StyleWang, Tong, Zihao You, Wei Song, and Shiqiang Zhu. 2020. "Dynamic Analysis of an Underwater Cable-Driven Manipulator with a Fluid-Power Buoyancy Regulation System" Micromachines 11, no. 12: 1042. https://doi.org/10.3390/mi11121042
APA StyleWang, T., You, Z., Song, W., & Zhu, S. (2020). Dynamic Analysis of an Underwater Cable-Driven Manipulator with a Fluid-Power Buoyancy Regulation System. Micromachines, 11(12), 1042. https://doi.org/10.3390/mi11121042