Thermal Impedance Characterization Using Optical Measurement Assisted by Multi-Physics Simulation for Multi-Chip SiC MOSFET Module
Abstract
:1. Introduction
2. Motivation and Proposed Approach
3. Experiment and Estimation by FEM Simulations
3.1. Junction Temperature Measurement
3.2. Finite Element Method (FEM) Simulation
4. Thermal Impedance Extraction and Validation
4.1. Cooling Curve Compensation
4.2. Conventional Method (Reference)
4.3. Comparison Thermal Resistance
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, H.; Tolbert, L.M. Efficiency impact of silicon carbide power electronics for modern wind turbine full scale frequency converter. IEEE Trans. Ind. Electron. 2010, 58, 21–28. [Google Scholar] [CrossRef]
- Yoon, S.W.; Glover, M.D.; Shiozaki, K. Nickel–tin transient liquid phase bonding toward high-temperature operational power electronics in electrified vehicles. IEEE Trans. Power Electron. 2012, 28, 2448–2456. [Google Scholar] [CrossRef]
- Han, T.J.; Preston, J.; Ouwerkerk, D. 6.6 kW on-vehicle charger with a hybrid Si IGBTs and SiC SBDs based booster power module. J. Power Electron. 2013, 13, 584–591. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.A.; Melloch, M.R.; Singh, R.; Agarwal, A.; Palmour, J.W. Status and prospects for SiC power MOSFETs. IEEE Trans. Electron Devices 2002, 49, 658–664. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, X.; Wu, X.; Shi, C.; Zhang, J.; Zhang, Y. Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules. IEEE Trans. Power Electron. 2018, 34, 1181–1196. [Google Scholar] [CrossRef]
- Mantooth, H.A.; Glover, M.D.; Shepherd, P. Wide bandgap technologies and their implications on miniaturizing power electronic systems. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 374–385. [Google Scholar] [CrossRef]
- Fabre, J.; Ladoux, P. Parallel connection of 1200-V/100-A SiC-MOSFET half-bridge modules. IEEE Trans. Ind. Appl. 2015, 52, 1669–1676. [Google Scholar] [CrossRef]
- Imaizumi, M.; Miura, N. Characteristics of 600 1200, and 3300 V planar SiC-MOSFETs for energy conversion applications. IEEE Trans. Electron Devices 2014, 62, 390–395. [Google Scholar] [CrossRef]
- Kang, M.; Yu, S.; Xing, D.; Liu, T.; Salemi, A.; Booth, K.; Zhu, S.; White, M.H.; Agarwal, A.K. Body Diode Reliability of Commercial SiC Power MOSFETs. In Proceedings of the 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Raleigh, NC, USA, 29–31 October 2019. [Google Scholar]
- Yin, S.; Liu, Y.; Liu, Y.; Tseng, K.J.; Pou, J.; Simanjorang, R. Comparison of SiC voltage source inverters using synchronous rectification and freewheeling diode. IEEE Trans. Ind. Electron. 2017, 65, 1051–1061. [Google Scholar] [CrossRef]
- Lhommeau, T.; Perpiñà, X.; Martin, C.; Meuret, R.; Mermet-Guyennet, M.; Karama, M. Thermal fatigue effects on the temperature distribution inside IGBT modules for zone engine aeronautical applications. Microelectron. Reliab. 2007, 47, 1779–1783. [Google Scholar] [CrossRef]
- Ceccarelli, L.; Kotecha, R.M.; Bahman, A.S.; Iannuzzo, F.; Mantooth, H. Mission-profile-based lifetime prediction for a SiC MOSFET power module using a multi-step condition-mapping simulation strategy. IEEE Trans. on Power Electron. 2019, 34, 9698–9708. [Google Scholar] [CrossRef]
- Lee, H.; Smet, V.; Tummala, R. A Review of SiC Power Module Packaging Technologies: Challenges, Advances, and Emerging Issues. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 239–255. [Google Scholar] [CrossRef]
- Sugiura, K.; Iwashige, T.; Tsuruta, K.; Chen, C.; Nagao, S.; Funaki, T.; Suganuma, K. Reliability evaluation of SiC power module with sintered Ag die attach and stress-relaxation structure. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 609–615. [Google Scholar] [CrossRef]
- Luo, H.; Iannuzzo, F.; Baker, N.; Blaabjerg, F.; Li, W.; He, X. Study of current density influence on bond wire degradation rate in SiC MOSFET modules. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 1622–1632. [Google Scholar] [CrossRef]
- Gonzalez, J.O.; Alatise, O.; Hu, J.; Ran, L.; Mawby, P.A. An investigation of temperature-sensitive electrical parameters for SiC power MOSFETs. IEEE Trans. Power Electron. 2016, 32, 7954–7966. [Google Scholar] [CrossRef] [Green Version]
- Avenas, Y.; Dupont, L.; Khatir, Z. Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters—A review. IEEE Trans. Power Electron. 2011, 27, 3081–3092. [Google Scholar] [CrossRef] [Green Version]
- Degrenne, N.; Brandelero, J.; Kawahara, C.; Mollov, S. A Review on the Application of On-line Von (On-State Voltage) Sensing for Junction Temperature Estimation of Power Semiconductor Modules. In Proceedings of the CIPS 2020, 11th International Conference on Integrated Power Electronics Systems, Berlin, Germany, 24–26 March 2020; VDE: Frankfurt, Germany, 2020. [Google Scholar]
- Kalker, S.; van der Broeck, C.H.; De Doncker, R.W. Online Junction-Temperature Sensing of SiC MOSFETs with Minimal Calibration Effort. In Proceedings of the PCIM Europe digital days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Virtual, Germany, 7–8 July 2020; VDE: Frankfurt, Germany, 2020. [Google Scholar]
- Niu, H.; Lorenz, R.D. Sensing power MOSFET junction temperature using gate drive turn-on current transient properties. IEEE Trans. Ind. Appl. 2015, 52, 1677–1687. [Google Scholar] [CrossRef]
- Berthou, M.; Godignon, P.; Millan, J. Monolithically integrated temperature sensor in silicon carbide power MOSFETs. IEEE Trans. Power Electron. 2013, 29, 4970–4977. [Google Scholar] [CrossRef]
- Kempiak, C.; Lindemann, A.; Idaka, S.; Thal, E. Comparative Study of Determining Junction Temperature of SiC MOSFETs during Power Cycling Tests by A Tj Sensor and The VSD (T)-Method. In Proceedings of the CIPS 2020; 11th International Conference on Integrated Power Electronics Systems, Berlin, Germany, 24–26 March 2020; VDE: Frankfurt, Germany, 2020. [Google Scholar]
- Kim, M.K.; Yoon, S.W. Miniature piezoelectric sensor for in-situ temperature monitoring of silicon and silicon carbide power modules operating at high temperature. IEEE Trans. Ind. Appl. 2018, 54, 1614–1621. [Google Scholar] [CrossRef]
- Choi, U.M.; Blaabjerg, F.; Jørgensen, S. Power cycling test methods for reliability assessment of power device modules in respect to temperature stress. IEEE Trans. Power Electron. 2017, 33, 2531–2551. [Google Scholar] [CrossRef] [Green Version]
- Mentor Graphics. T3Ster—Thermal Transient Tester—Technical Information; Mentor Graphics: Wilsonville, OR, USA, 2013; Available online: https://www.mentor.com/products/mechanical/micred/ (accessed on 1 November 2020).
- Szekely, V. Identification of RC networks by deconvolution: Chances and limits. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1998, 45, 244–258. [Google Scholar] [CrossRef]
- Lasance, C.J.M.; Poppe, A. (Eds.) Thermal Management for LED Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Hu, B.; Gonzalez, J.O.; Ran, L.; Ren, H.; Zeng, Z.; Lai, W.; Gao, B.; Alatise, O.; Lu, H.; Bailey, C.; et al. Failure and reliability analysis of a SiC power module based on stress comparison to a Si device. IEEE Trans. Device Mater. Rel. 2017, 17, 727–737. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Luo, F.; Kang, Y. A review of SiC power module packaging: Layout, material system and integration. Cpss Trans. Power Electron. Appl. 2017, 2, 170–186. [Google Scholar] [CrossRef]
- Li, J.; Castellazzi, A.; Eleffendi, M.A.; Gurpinar, E.; Johnson, C.M.; Mills, L. A physical RC network model for electrothermal analysis of a multichip SiC power module. IEEE Trans. Power Electron. 2017, 33, 2494–2508. [Google Scholar] [CrossRef] [Green Version]
- ECPE Guideline AQG 324—Qualification of Power Modules for Use in Power Electronic Converter Units in Motor Vehicles. Release 2.1/2019. 2019. Available online: https://www.ecpe.org/research/working-groups/automotive-aqg-324/ (accessed on 1 November 2020).
Tj Measurement or Estimation Method | TSEPs | Integrated Sensor or External Equipment |
Forward voltage of body diode [16,17] | Integrated Sensors [21,22,23] (resistive, diode, piezoelectric sensors) | |
Gate threshold voltage [17] | Infrared(IR) Camera | |
On-state voltage [18,19] | Thermocouple | |
Switching time delay, turn-on current transient [19,20] | Fiber optic temperature sensor [24] |
Test Equipment | Specifications and Main Functions |
---|---|
Thermal optics | Temperature range: −40 to 250 °C, resolution: 0.05 °C |
Signal conditioner | Sampling rate: 1 kHz |
Power source | Power supply current: ~1500 A |
Customized jig | Aluminum profile and aluminum tube for guiding the fiber optics |
Material | Material Properties | ||
---|---|---|---|
Density [kg/m3] | Thermal Conductivity [W/m·K] | Specific Heat [J/kg·K] | |
Silicon Carbide | 3210 | 370 | 750 |
SAC Solder | 7400 | 50 | 150 |
Alumina | 3950 | 25 | 730 |
Copper | 8850 | 400 | 385 |
AlSiC | 3010 | 200 | 741 |
Aluminum | 2700 | 238 | 880 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-K.; Yoon, S.W. Thermal Impedance Characterization Using Optical Measurement Assisted by Multi-Physics Simulation for Multi-Chip SiC MOSFET Module. Micromachines 2020, 11, 1060. https://doi.org/10.3390/mi11121060
Kim M-K, Yoon SW. Thermal Impedance Characterization Using Optical Measurement Assisted by Multi-Physics Simulation for Multi-Chip SiC MOSFET Module. Micromachines. 2020; 11(12):1060. https://doi.org/10.3390/mi11121060
Chicago/Turabian StyleKim, Min-Ki, and Sang Won Yoon. 2020. "Thermal Impedance Characterization Using Optical Measurement Assisted by Multi-Physics Simulation for Multi-Chip SiC MOSFET Module" Micromachines 11, no. 12: 1060. https://doi.org/10.3390/mi11121060
APA StyleKim, M. -K., & Yoon, S. W. (2020). Thermal Impedance Characterization Using Optical Measurement Assisted by Multi-Physics Simulation for Multi-Chip SiC MOSFET Module. Micromachines, 11(12), 1060. https://doi.org/10.3390/mi11121060