Bio-Compatibility and Bio-Insulation of Implantable Electrode Prosthesis Ameliorated by A-174 Silane Primed Parylene-C Deposited Embedment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacture Electrode Prosthesis
2.2. Saline Soaking Test
2.3. Cytotoxicity Evaluation of Bio-Compatibility Test
2.4. Hemolysis Evaluation of Bio-Compatibility Test
2.5. Irritation Evaluation of Bio-Compatibility Test
2.6. Bio-insulated Evaluation of Implantation Test
2.7. Hypersensitivity Evaluation of Implantation Test
2.8. Statistical Analysis
3. Results
3.1. Electrode Prosthesis with Parylene-C Coating and Accelerated Fatigue Examination
3.2. Cytotoxicity Examination of Electrode Prosthesis
3.3. Hemolysis Examination of Electrode Prosthesis
3.4. Irritation Examination of Electrode Prosthesis
3.5. Bio-Insulation Examination of Electrode Prosthesis through Subcutaneous Implantation
3.6. Hypersensitivity Examination of Electrode Prosthesis through Subcutaneous Implantation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reportlinker. Global Neurostimulation Devices Market by Devices by Applications by Region, Industry Analysis and Forecast, 2020–2026. Available online: https://www.globenewswire.com/news-release/2020/06/12/2047484/0/en/The-Global-Neurostimulation-Devices-Market-size-is-expected-to-reach-10-5-billion-by-2026-rising-at-a-market-growth-of-12-5-CAGR-during-the-forecast-period.html (accessed on 28 June 2020).
- Jiang, X.; Sui, X.; Lu, Y.; Yan, Y.; Zhou, C.; Li, L.; Ren, Q.; Chai, X. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. J. Neuroeng. Rehabil. 2013, 10, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Singh, A.; He, J.P.; Massia, S.; Kim, B.; Raupp, G. Polyimide based neural implants with stiffness improvement. Sens. Actuators B Chem. 2004, 102, 67–72. [Google Scholar] [CrossRef]
- Liaw, D.J.; Wang, K.L.; Huang, Y.C.; Lee, K.R.; Lai, J.Y.; Ha, C.S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974. [Google Scholar] [CrossRef]
- Zorman, C.A. Silicon carbide as a material for biomedical microsystems. In Proceedings of the 2009 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS, Rome, Italy, 1–3 April 2009; pp. 1–7. [Google Scholar]
- Bonaventura, G.; Iemmolo, R.; La Cognata, V.; Zimbone, M.; La Via, F.; Fragala, M.E.; Barcellona, M.L.; Pellitteri, R.; Cavallaro, S. Biocompatibility between Silicon or Silicon Carbide surface and Neural Stem Cells. Sci. Rep. 2019, 9, 11540. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.Y.; Yadav, V.G.; De Leo, S.; Mohedas, A.; Rajalingam, B.; Chen, C.L.; Selvarasah, S.; Dokmeci, M.R.; Khademhosseini, A. Cell and protein compatibility of parylene-C surfaces. Langmuir 2007, 23, 11718–11725. [Google Scholar] [CrossRef]
- Driesche, S.V.D.; Habben, C.; Bödecker, A.; Lang, W.; Vellekoop, M.J. A Simple Method to Allow Parylene-C Coatings on Gold Substrates. Proceedings 2017, 1, 299. [Google Scholar] [CrossRef] [Green Version]
- Li, F.W.; Xue, M.Q.; Ma, X.L.; Zhang, M.N.; Cao, T.B. Facile Patterning of Reduced Graphene Oxide Film into Microelectrode Array for Highly Sensitive Sensing. Anal. Chem. 2011, 83, 6426–6430. [Google Scholar] [CrossRef]
- Bernard, M.; Jubeli, E.; Pungente, M.D.; Yagoubi, N. Biocompatibility of polymer-based biomaterials and medical devices—Regulations, in vitro screening and risk-management. Biomater. Sci. 2018, 6, 2025–2053. [Google Scholar] [CrossRef]
- Stang, K.; Krajewski, S.; Neumann, B.; Kurz, J.; Post, M.; Stoppelkamp, S.; Fennrich, S.; Avci-Adali, M.; Armbruster, D.; Schlensak, C.; et al. Hemocompatibility testing according to ISO 10993-4: Discrimination between pyrogen- and device-induced hemostatic activation. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 42, 422–428. [Google Scholar] [CrossRef]
- Center for Devices and Radiological Health. Use of International Standard ISO 10993-1, “Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing within a Risk Management Process”; FDA-2013-D-0350; Center for Devices and Radiological, Ed.; Food and Drug Administration (FDA), CDRH, White Oak Campus: Silver Spring, MD, USA, 2016.
- Cakirbay Tanis, M.; Akay, C.; Sevim, H. Cytotoxicity of long-term denture base materials. Int. J. Artif. Organs 2018, 41, 677–683. [Google Scholar] [CrossRef]
- Kandarova, H.; Bendova, H.; Letasiova, S.; Coleman, K.P.; De Jong, W.H.; Jirova, D. Evaluation of the medical devices benchmark materials in the controlled human patch testing and in the RhE in vitro skin irritation protocol. Toxicol. In Vitro 2018, 50, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Rawlinson, J.; Hallab, N. Stainless steel wear debris of a scoliotic growth guidance system has little local and systemic effect in an animal model. J. Orthop. Res. 2018, 36, 1980–1990. [Google Scholar] [CrossRef] [PubMed]
- Feeney, R.; Kounaves, S.P. Microfabricated ultramicroelectrode arrays: Developments, advances, and applications in environmental analysis. Electroanalysis 2000, 12, 677–684. [Google Scholar] [CrossRef]
- del Campo, F.J.; Abad, L.; Illa, X.; Prats-Alfonso, E.; Borrise, X.; Cirera, J.M.; Bai, H.Y.; Tsai, Y.C. Determination of heterogeneous electron transfer rate constants at interdigitated nanoband electrodes fabricated by an optical mix-and-match process. Sens. Actuators B Chem. 2014, 194, 86–95. [Google Scholar] [CrossRef]
- Winslow, B.D.; Christensen, M.B.; Yang, W.K.; Solzbacher, F.; Tresco, P.A. A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex. Biomaterials 2010, 31, 9163–9172. [Google Scholar] [CrossRef]
- Xie, X.; Rieth, L.; Williams, L.; Negi, S.; Bhandari, R.; Caldwell, R.; Sharma, R.; Tathireddy, P.; Solzbacher, F. Long-term reliability of Al2O3 and Parylene C bilayer encapsulated Utah electrode array based neural interfaces for chronic implantation. J. Neural Eng. 2014, 11, 026016. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Kane, S.; Cogan, S.; Lorach, H.; Galambos, L.; Huie, P.; Mathieson, K.; Kamins, T.; Harris, J.; Palanker, D. SiC protective coating for photovoltaic retinal prosthesis. J. Neural Eng. 2016, 13, 046016. [Google Scholar] [CrossRef]
- Weiland, J.D.; Liu, W.; Humayun, M.S. Retinal prosthesis. Annu. Rev. Biomed. Eng. 2005, 7, 361–401. [Google Scholar] [CrossRef]
- Depan, D.; Misra, R.D.K. The development, characterization, and cellular response of a novel electroactive nanostructured composite for electrical stimulation of neural cells. Biomater. Sci. 2014, 2, 1727–1739. [Google Scholar] [CrossRef]
- Weiland, J.D.; Humayun, M.S. Retinal prosthesis. IEEE Trans. Biomed. Eng. 2014, 61, 1412–1424. [Google Scholar] [CrossRef] [Green Version]
- Polikov, V.S.; Tresco, P.A.; Reichert, W.M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 2005, 148, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hassler, C.; von Metzen, R.P.; Ruther, P.; Stieglitz, T. Characterization of parylene C as an encapsulation material for implanted neural prostheses. J. Biomed. Mater. Res. B 2010, 93, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Lecomte, A.; Degache, A.; Descamps, E.; Dahan, L.; Bergaud, C. In vitro and in vivo biostability assessment of chronically-implanted Parylene C neural sensors. Sens. Actuators B Chem. 2017, 251, 1001–1008. [Google Scholar] [CrossRef]
- Li, J.; Kang, L.; Yu, Y.; Long, Y.; Jeffery, J.J.; Cai, W.; Wang, X. Study of Long-Term Biocompatibility and Bio-Safety of Implantable Nanogenerators. Nano Energy 2018, 51, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Ibnabddjalil, M.; Loh, I.H.; Chu, C.C.; Blumenthal, N.; Alexander, H.; Turner, D. Effect of surface plasma treatment on the chemical, physical, morphological, and mechanical properties of totally absorbable bone internal fixation devices. J. Biomed. Mater. Res. 1994, 28, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, C.P.; Graham, E.S.; Delivopoulos, E.; Dragunow, M.; Murray, A.F. First human hNT neurons patterned on parylene-C/silicon dioxide substrates: Combining an accessible cell line and robust patterning technology for the study of the pathological adult human brain. J. Neurosci. Methods 2010, 194, 154–157. [Google Scholar] [CrossRef]
- de la Oliva, N.; Mueller, M.; Stieglitz, T.; Navarro, X.; Del Valle, J. On the use of Parylene C polymer as substrate for peripheral nerve electrodes. Sci. Rep. 2018, 8, 5965. [Google Scholar] [CrossRef]
- Liu, X.Y.; Liu, C.; Sakamoto, K.; Yasuda, T.; Xiong, P.; Liang, L.J.; Yang, T.Z.; Kanehara, M.; Takeya, J.; Minari, T. Homogeneous dewetting on large-scale microdroplet arrays for solution-processed electronics. NPG Asia Mater. 2017, 9, e409. [Google Scholar] [CrossRef] [Green Version]
Well | Percent Rounding | Percent Lysis | Grade | Reactivity |
---|---|---|---|---|
Negative control | 0 | 0 | 0 | None |
Positive Control | 100 | 100 | 4 | Severe |
Reagent Control | 0 | 0 | 0 | None |
Parylene C-Silicon Wafer | 0 | 0 | 0 | None |
Polyimide-Silicon Wafer | 0 | 0 | 0 | None |
Sample | Hemolytic Index |
---|---|
Blank | 0.01 |
Negative Control | 0 |
Positive Control | 98.48 |
Parylene C-Silicon Wafer | 0.09 |
Polyimide-Silicon Wafer | 0.31 |
Extracted Solution | Mean of Tested Material (ED + ER) (A) | Mean of Controlled Solution (ED + ER) (B) | Difference of Mean (Tested-Controlled, A-B) (C) |
---|---|---|---|
Normal saline | 0.00 | 0.00 | 0.00 |
Sesame oil | 0.2 | 0.15 | 0.05 |
Chip no. | Resistance (DC-R, MΩ) |
---|---|
1 | 3.134 |
4 | ∞ |
6 | ∞ |
13 | ∞ |
18 | 1.568 |
20 | ∞ |
29 | 2.486 |
30 | ∞ |
Sample | Test Sample | Controlled Sample | ||||
---|---|---|---|---|---|---|
Animal | #1 | #2 | #3 | #1 | #2 | #3 |
Score | ||||||
Polymorphonuclear cells | 0 | 4 | 1 | 2 | 0 | 0 |
Lymphocytes | 4 | 5 | 4 | 4 | 4 | 4 |
Plasma cells | 0 | 0 | 0 | 0 | 0 | 0 |
Macrophages | 4 | 4 | 4 | 4 | 4 | 4 |
Giant cells | 1 | 1 | 0 | 0 | 0 | 1 |
Necrosis | 0 | 0 | 0 | 0 | 0 | 0 |
Subtotal (×2) | 18 | 28 | 18 | 20 | 16 | 18 |
Neovascularization | 0 | 0 | 0 | 0 | 0 | 0 |
Fibrosis | 4 | 4 | 4 | 4 | 4 | 4 |
Fatty infiltrate | 0 | 0 | 0 | 0 | 0 | 0 |
Subtotal | 4 | 4 | 4 | 4 | 4 | 4 |
Total | 22 | 32 | 22 | 24 | 20 | 22 |
Group total a | 22 + 32 + 22 = 76 | 24 + 20 + 22 = 66 | ||||
Average b | Test-Control = 76/12 – 66/12 = 6.33 – 5.5 = 0.83 | |||||
Traumatic necrosis | 0/12 | 0/12 | ||||
Foreign body debris | 0/12 | 0/12 | ||||
No. sites examined | 12 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Lou, W.-S.; Chen, J.-C.; Weng, K.-Y.; Shih, M.-C.; Hung, Y.-W.; Chen, Z.-Y.; Wang, M.-C. Bio-Compatibility and Bio-Insulation of Implantable Electrode Prosthesis Ameliorated by A-174 Silane Primed Parylene-C Deposited Embedment. Micromachines 2020, 11, 1064. https://doi.org/10.3390/mi11121064
Lin C-Y, Lou W-S, Chen J-C, Weng K-Y, Shih M-C, Hung Y-W, Chen Z-Y, Wang M-C. Bio-Compatibility and Bio-Insulation of Implantable Electrode Prosthesis Ameliorated by A-174 Silane Primed Parylene-C Deposited Embedment. Micromachines. 2020; 11(12):1064. https://doi.org/10.3390/mi11121064
Chicago/Turabian StyleLin, Chin-Yu, Wan-Shiun Lou, Jyh-Chern Chen, Kuo-Yao Weng, Ming-Cheng Shih, Ya-Wen Hung, Zhu-Yin Chen, and Mei-Chih Wang. 2020. "Bio-Compatibility and Bio-Insulation of Implantable Electrode Prosthesis Ameliorated by A-174 Silane Primed Parylene-C Deposited Embedment" Micromachines 11, no. 12: 1064. https://doi.org/10.3390/mi11121064
APA StyleLin, C. -Y., Lou, W. -S., Chen, J. -C., Weng, K. -Y., Shih, M. -C., Hung, Y. -W., Chen, Z. -Y., & Wang, M. -C. (2020). Bio-Compatibility and Bio-Insulation of Implantable Electrode Prosthesis Ameliorated by A-174 Silane Primed Parylene-C Deposited Embedment. Micromachines, 11(12), 1064. https://doi.org/10.3390/mi11121064