Recent Studies on Supercapacitors with Next-Generation Structures
Abstract
:1. Introduction
2. Classification of Supercapacitors
3. Electrical Double-Layer Capacitors (EDLCs)
3.1. Theory of the Electrochemical Double Layer
3.2. Variation of Capacitance According to Pore Size and Structure
4. Negative Capacitance for Capacity Enhancement
5. Theories of Pseudocapacitors
6. Other Next-Generation Supercapacitors
6.1. Redox Electrolyte Enhanced Supercapacitors
6.2. Piezoelectric Supercapacitors
6.3. Electrochromic Supercapacitors
6.4. Fiber Shaped Supercapacitors
6.5. Shape Memory Supercapacitors
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jo, J.; Choi, W.Y.; Park, J.-D.; Shim, J.W.; Yu, H.-Y.; Shin, C. Negative capacitance in organic/ferroelectric capacitor to implement steep switching MOS devices. Nano Lett. 2015, 15, 4553–4556. [Google Scholar] [CrossRef]
- Khan, A.I.; Chatterjee, K.; Wang, B.; Drapcho, S.; You, L.; Serrao, C.; Bakaul, S.R.; Ramesh, R.; Salahuddin, S. Negative capacitance in a ferroelectric capacitor. Nat. Mater. 2015, 14, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.; Lee, J.W.; Shin, C. Negative Capacitance FinFET With Sub-20-mV/decade Subthreshold Slope and Minimal Hysteresis of 0.48 V. IEEE Electron Device Lett. 2017, 38, 418–421. [Google Scholar] [CrossRef]
- Ko, E.; Shin, J.; Shin, C. Steep switching devices for low power applications: Negative differential capacitance/resistance field effect transistors. Nano Converg. 2018, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef] [Green Version]
- Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Miller, J.R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef] [Green Version]
- Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Xu, C.; Jiang, H.; Li, C.; Zhang, L.; Lin, J.; Shen, Z.X. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Adv. Sci. (Weinh) 2018, 5, 1700322. [Google Scholar] [CrossRef]
- Iro, Z.S. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628–10643. [Google Scholar] [CrossRef]
- Laidler, K.J. The development of the Arrhenius equation. J. Chem. Educ. 1984, 61, 494. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef]
- Wu, H.; He, D.; Wang, Y.; Fu, M.; Liu, Z.; Wang, J.; Wang, H. Graphene as the electrode material in supercapacitors. In Proceedings of the 2010 8th International Vacuum Electron Sources Conference and Nanocarbon, Nanjing, China, 14–16 October 2010; pp. 465–466. [Google Scholar]
- Hoffmann, M.; Fengler, F.P.G.; Max, B.; Schroeder, U.; Slesazeck, S.; Mikolajick, T. Negative Capacitance for Electrostatic Supercapacitors. Adv. Energy Mater. 2019, 9, 1901154. [Google Scholar] [CrossRef] [Green Version]
- Pandolfo, A.G.; Hollenkamp, A.F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatti, T.S. A review on electrochemical double-layer capacitors. Energy Convers. Manag. 2010, 51, 2901–2912. [Google Scholar] [CrossRef]
- Christen, T.; Carlen, M.W. Theory of Ragone plots. J. Power Sources 2000, 91, 210–216. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratha, S.; Samantara, A.K. Supercapacitor: Instrumentation, Measurement and Performance Evaluation Techniques; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. A 2017, 5, 12653–12672. [Google Scholar] [CrossRef]
- Senthilkumar, S.; Selvan, R.K.; Melo, J. Redox additive/active electrolytes: A novel approach to enhance the performance of supercapacitors. J. Mater. Chem. A 2013, 1, 12386–12394. [Google Scholar] [CrossRef]
- Miller, E.E.; Hua, Y.; Tezel, F.H. Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors. J. Energy Storage 2018, 20, 30–40. [Google Scholar] [CrossRef]
- Endo, M.; Takeda, T.; Kim, Y.; Koshiba, K.; Ishii, K. High power electric double layer capacitor (EDLC’s); from operating principle to pore size control in advanced activated carbons. Carbon Lett. 2001, 1, 117–128. [Google Scholar]
- Grahame, D.C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 1947, 41, 441–501. [Google Scholar] [CrossRef] [PubMed]
- Grahame, D.C. Thermodynamic Properties of the Electrical Double Layer; Amherst College: Amherst, MA, USA, 1954. [Google Scholar]
- Helmholtz, H. About electrical interfaces (translated title). Ann. Phys. Chem 1879, 7, 337. [Google Scholar] [CrossRef] [Green Version]
- Gouy, M. Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Appl. 1910, 9, 457–468. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Stone, H.A. Electrical double layers: Effects of asymmetry in electrolyte valence on steric effects, dielectric decrement, and ion–ion correlations. Langmuir 2018, 34, 11971–11985. [Google Scholar] [CrossRef]
- Chapman, D.L. LI. A contribution to the theory of electrocapillarity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1913, 25, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Bolt, G. Analysis of the validity of the Gouy-Chapman theory of the electric double layer. J. Colloid Sci. 1955, 10, 206–218. [Google Scholar] [CrossRef]
- Outhwaite, C.W.; Bhuiyan, L.B.; Levine, S. Theory of the electric double layer using a modified poisson–boltzman equation. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1980, 76, 1388–1408. [Google Scholar] [CrossRef]
- Valleau, J.; Torrie, G. The electrical double layer. III. Modified Gouy− Chapman theory with unequal ion sizes. J. Chem. Phys. 1982, 76, 4623–4630. [Google Scholar] [CrossRef]
- Stern, O. The theory of the electrolytic double-layer. Z. Elektrochem. 1924, 30, 1014–1020. [Google Scholar]
- Chan, D.Y.; Healy, T.W.; Supasiti, T.; Usui, S. Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern–Grahame layers. J. Colloid Interface Sci. 2006, 296, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Uvarov, N. Estimation of the surface potential in superionic oxide conductors using the Stern model. Solid State Ion. 2008, 179, 783–787. [Google Scholar] [CrossRef]
- Bockris, J.M.; Devanathan, M.; Müller, K. On the structure of charged interfaces. In Electrochemistry; Elsevier: Amsterdam, The Netherlands, 1965; pp. 832–863. [Google Scholar]
- Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.-L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763. [Google Scholar] [CrossRef] [Green Version]
- Simon, P.; Burke, A. Nanostructured carbons: Double-layer capacitance and more. Electrochem. Soc. Interface 2008, 17, 38. [Google Scholar]
- Barbieri, O.; Hahn, M.; Herzog, A.; Kötz, R. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 2005, 43, 1303–1310. [Google Scholar] [CrossRef]
- Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P.-L.; Gogotsi, Y.; Simon, P. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 2008, 130, 2730–2731. [Google Scholar] [CrossRef] [PubMed]
- Chmiola, J.; Largeot, C.; Taberna, P.L.; Simon, P.; Gogotsi, Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. 2008, 47, 3392–3395. [Google Scholar] [CrossRef]
- Feng, G.; Qiao, R.; Huang, J.; Sumpter, B.G.; Meunier, V. Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance. ACS Nano 2010, 4, 2382–2390. [Google Scholar] [CrossRef]
- Huang, J.; Sumpter, B.G.; Meunier, V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem. A Eur. J. 2008, 14, 6614–6626. [Google Scholar] [CrossRef]
- Huang, J.; Sumpter, B.G.; Meunier, V. Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 2008, 47, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Chang, J.; Cao, H.; Su, C.; Li, Y.; Zhang, Z.; Zhang, Y. Macropore-and micropore-dominated carbon derived from poly (vinyl alcohol) and polyvinylpyrrolidone for supercapacitor and capacitive deionization. ACS Sustain. Chem. Eng. 2017, 5, 11324–11333. [Google Scholar] [CrossRef]
- Liu, H.J.; Wang, J.; Wang, C.X.; Xia, Y.Y. Ordered Hierarchical Mesoporous/Microporous Carbon Derived from Mesoporous Titanium-Carbide/Carbon Composites and its Electrochemical Performance in Supercapacitor. Adv. Energy Mater. 2011, 1, 1101–1108. [Google Scholar] [CrossRef]
- Zhang, S.; Pan, N. Supercapacitors performance evaluation. Adv. Energy Mater. 2015, 5, 1401401. [Google Scholar] [CrossRef] [Green Version]
- Heimböckel, R.; Hoffmann, F.; Fröba, M. Insights into the influence of the pore size and surface area of activated carbons on the energy storage of electric double layer capacitors with a new potentially universally applicable capacitor model. Phys. Chem. Chem. Phys. 2019, 21, 3122–3133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoron, O.F.; Raghavan, S.; Freeze, C.R.; Stemmer, S. BaTiO3/SrTiO3 heterostructures for ferroelectric field effect transistors. Appl. Phys. Lett. 2017, 110, 232902. [Google Scholar] [CrossRef] [Green Version]
- Cheng, P.-H.; Yin, Y.-T.; Tsai, I.-N.; Lu, C.-H.; Li, L.-J.; Pan, S.C.; Shieh, J.; Shiojiri, M.; Chen, M.-J. Negative capacitance from the inductance of ferroelectric switching. Commun. Phys. 2019, 2, 32. [Google Scholar] [CrossRef] [Green Version]
- Naoi, K.; Simon, P. New materials and new configurations for advanced electrochemical capacitors. J. Electrochem. Soc. (JES) 2008, 17, 34–37. [Google Scholar]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Chen, K.; Xue, D. Materials chemistry toward electrochemical energy storage. J. Mater. Chem. A 2016, 4, 7522–7537. [Google Scholar] [CrossRef]
- Brousse, T.; Bélanger, D.; Long, J.W. To Be or Not To Be Pseudocapacitive? J. Electrochem. Soc. 2015, 162, A5185–A5189. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.-K.; Tsai, W.-T. Microstructure and pseudocapacitive performance of anodically deposited manganese oxide with various heat-treatments. J. Electrochem. Soc. 2005, 152, A2063–A2068. [Google Scholar] [CrossRef]
- Liu, M.; Gan, L.; Xiong, W.; Xu, Z.; Zhu, D.; Chen, L. Development of MnO 2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes. J. Mater. Chem. A 2014, 2, 2555–2562. [Google Scholar] [CrossRef]
- Wu, Z.-S.; Ren, W.; Wang, D.-W.; Li, F.; Liu, B.; Cheng, H.-M. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 2010, 4, 5835–5842. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Li, T.; Zhao, T.; Dang, A.; Ji, X.; Li, H.; Etesami, M. Three-dimensional graphene/MnO2 nanowalls hybrid for high-efficiency electrochemical supercapacitors. Nano 2018, 13, 1850013. [Google Scholar] [CrossRef]
- Zheng, X.; Han, Z.; Yang, W.; Qu, F.; Liu, B.; Wu, X. 3D Co3O4@ MnO2 heterostructures grown on a flexible substrate and their applications in supercapacitor electrodes and photocatalysts. Dalton Trans. 2016, 45, 16850–16858. [Google Scholar] [CrossRef] [PubMed]
- Qiu, K.; Yan, H.; Zhang, D.; Lu, Y.; Cheng, J.; Lu, M.; Wang, C.; Zhang, Y.; Liu, X.; Luo, Y. Hierarchical 3D Co3O4@ MnO2 core/shell nanoconch arrays on Ni foam for enhanced electrochemical performance. J. Solid State Electrochem. 2015, 19, 391–401. [Google Scholar] [CrossRef]
- Obodo, R.M.; Onah, E.O.; Nsude, H.E.; Agbogu, A.; Nwanya, A.C.; Ahmad, I.; Zhao, T.; Ejikeme, P.M.; Maaza, M.; Ezema, F.I. Performance Evaluation of Graphene Oxide Based Co3O4@GO, MnO2@ GO and Co3O4@ MnO2@ GO Electrodes for Supercapacitors. Electroanalysis 2020, 32, 2786–2794. [Google Scholar] [CrossRef]
- Cheng, Y.; Lu, S.; Zhang, H.; Varanasi, C.V.; Liu, J. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett. 2012, 12, 4206–4211. [Google Scholar] [CrossRef]
- Deng, L.; Hao, Z.; Wang, J.; Zhu, G.; Kang, L.; Liu, Z.-H.; Yang, Z.; Wang, Z. Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim. Acta 2013, 89, 191–198. [Google Scholar] [CrossRef]
- Liu, Q.; Nayfeh, O.; Nayfeh, M.H.; Yau, S.-T. Flexible supercapacitor sheets based on hybrid nanocomposite materials. Nano Energy 2013, 2, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Dou, H.; Yang, S.; Hao, L.; Zhang, L.; Shen, L.; Zhang, F.; Zhang, X. Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film. Electrochim. Acta 2011, 56, 9224–9232. [Google Scholar] [CrossRef]
- Ning, G.; Li, T.; Yan, J.; Xu, C.; Wei, T.; Fan, Z. Three-dimensional hybrid materials of fish scale-like polyaniline nanosheet arrays on graphene oxide and carbon nanotube for high-performance ultracapacitors. Carbon 2013, 54, 241–248. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, X.; An, H.; Wang, X.; Yi, L.; Bai, L. The preparation and performance of flocculent polyaniline/carbon nanotubes composite electrode material for supercapacitors. J. Solid State Electrochem. 2011, 15, 675–681. [Google Scholar] [CrossRef]
- Lin, H.; Li, L.; Ren, J.; Cai, Z.; Qiu, L.; Yang, Z.; Peng, H. Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor. Sci. Rep. 2013, 3, 1353. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Liu, J.; Yu, D.J.; Wicksted, J.P.; Kalkan, K.; Topal, C.O.; Flanders, B.N.; Wu, J.; Li, J. Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. J. Power Sources 2010, 195, 674–679. [Google Scholar] [CrossRef]
- Grover, S.; Shekhar, S.; Sharma, R.K.; Singh, G. Multiwalled carbon nanotube supported polypyrrole manganese oxide composite supercapacitor electrode: Role of manganese oxide dispersion in performance evolution. Electrochim. Acta 2014, 116, 137–145. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, Z.-Y.; Li, L.; Zhang, Y.; Wei, Y.-L.; Wang, L.-F.; Zhu, M.-F. Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials. Electrochim. Acta 2010, 55, 3904–3908. [Google Scholar] [CrossRef]
- Giri, S.; Ghosh, D.; Malas, A.; Das, C.K. A facile synthesis of a palladium-doped polyaniline-modified carbon nanotube composites for supercapacitors. J. Electron. Mater. 2013, 42, 2595–2605. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, Y.; Li, Y.; Li, H.; Shao, H.; Qu, L. Defective super-long carbon nanotubes and polypyrrole composite for high-performance supercapacitor electrodes. Electrochim. Acta 2012, 66, 279–286. [Google Scholar] [CrossRef]
- Xiong, S.; Yang, F.; Jiang, H.; Ma, J.; Lu, X. Covalently bonded polyaniline/fullerene hybrids with coral-like morphology for high-performance supercapacitor. Electrochim. Acta 2012, 85, 235–242. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, H.; Chen, J.; Li, G.-D.; Zhang, Y.; Chen, J.-S. Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks. Bioresour. Technol. 2008, 99, 4803–4808. [Google Scholar] [CrossRef]
- Deng, D.; Kim, B.-S.; Gopiraman, M.; Kim, I.S. Needle-like MnO2/activated carbon nanocomposites derived from human hair as versatile electrode materials for supercapacitors. RSC Adv. 2015, 5, 81492–81498. [Google Scholar] [CrossRef]
- Long, X.; Tian, L.; Wang, J.; Zhang, L.; Chen, Y.; Emin, A.; Wang, X.; Xie, W.; Liu, D.; Fu, Y. Interconnected δ-MnO2 nanosheets anchored on activated carbon cloth as flexible electrode for high-performance aqueous asymmetric supercapacitors. J. Electroanal. Chem. 2020, 877, 114656. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, G.; Wang, Z.; Yang, Y.; Shi, Z.; Gu, Z. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008, 8, 2664–2668. [Google Scholar] [CrossRef]
- Huang, M.; Mi, R.; Liu, H.; Li, F.; Zhao, X.L.; Zhang, W.; He, S.X.; Zhang, Y.X. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. J. Power Sources 2014, 269, 760–767. [Google Scholar] [CrossRef]
- Garakani, M.A.; Abouali, S.; Xu, Z.-L.; Huang, J.; Huang, J.-Q.; Kim, J.-K. Heterogeneous, mesoporous NiCo 2 O 4–MnO 2/graphene foam for asymmetric supercapacitors with ultrahigh specific energies. J. Mater. Chem. A 2017, 5, 3547–3557. [Google Scholar] [CrossRef]
- Biswas, S.; Drzal, L.T. Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem. Mater. 2010, 22, 5667–5671. [Google Scholar] [CrossRef]
- Lu, X.; Shen, C.; Zhang, Z.; Barrios, E.; Zhai, L. Core–Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes. ACS Appl. Mater. Interfaces 2018, 10, 4041–4049. [Google Scholar] [CrossRef]
- Liu, Q.; Nayfeh, M.H.; Yau, S.-T. Supercapacitor electrodes based on polyaniline–silicon nanoparticle composite. J. Power Sources 2010, 195, 3956–3959. [Google Scholar] [CrossRef]
- Zou, W.-Y.; Wang, W.; He, B.-L.; Sun, M.-L.; Yin, Y.-S. Supercapacitive properties of hybrid films of manganese dioxide and polyaniline based on active carbon in organic electrolyte. J. Power Sources 2010, 195, 7489–7493. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Xu, C.; Xu, H. The fabrication of asymmetry supercapacitor based on MWCNTs/MnO2/PPy composites. Electrochim. Acta 2019, 309, 424–431. [Google Scholar] [CrossRef]
- Yang, M.; Li, J.; Li, H.; Su, L.; Wei, J.; Zhou, Z. Mesoporous slit-structured NiO for high-performance pseudocapacitors. Phys. Chem. Chem. Phys. 2012, 14, 11048–11052. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Yang, L.; Hou, L.; Shen, L.; Zhang, X.; Lou, X.W.D. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ. Sci. 2012, 5, 7883–7887. [Google Scholar] [CrossRef]
- Qiu, K.; Lu, M.; Luo, Y.; Du, X. Engineering hierarchical nanotrees with CuCo2O4 trunks and NiO branches for high-performance supercapacitors. J. Mater. Chem. A 2017, 5, 5820–5828. [Google Scholar] [CrossRef]
- Pan, Y.; Gao, H.; Zhang, M.; Li, L.; Wang, Z. Facile synthesis of ZnCo2O4 micro-flowers and micro-sheets on Ni foam for pseudocapacitor electrodes. J. Alloys Compd. 2017, 702, 381–387. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Lee, S.-H.; Ryu, K.-S. Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance. Electrochim. Acta 2015, 182, 979–986. [Google Scholar] [CrossRef]
- Abbasi, L.; Arvand, M. Engineering hierarchical ultrathin CuCo2O4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder-free supercapacitors. Appl. Surf. Sci. 2018, 445, 272–280. [Google Scholar] [CrossRef]
- Ho, M.; Khiew, P.; Isa, D.; Tan, T.; Chiu, W.; Chia, C.H. A review of metal oxide composite electrode materials for electrochemical capacitors. Nano 2014, 9, 1430002. [Google Scholar] [CrossRef]
- Roldan, S.; Granda, M.; Menendez, R.; Santamaría, R.; Blanco, C. Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte. J. Phys. Chem. C 2011, 115, 17606–17611. [Google Scholar] [CrossRef]
- Senthilkumar, S.; Selvan, R.K.; Ponpandian, N.; Melo, J.; Lee, Y. Improved performance of electric double layer capacitor using redox additive (VO 2+/VO 2+) aqueous electrolyte. J. Mater. Chem. A 2013, 1, 7913–7919. [Google Scholar] [CrossRef]
- Roldán, S.; Blanco, C.; Granda, M.; Menéndez, R.; Santamaría, R. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew. Chem. Int. Ed. 2011, 50, 1699–1701. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xu, C.; Zhang, F.; Zheng, J.; Xu, C. Self-polarized piezoelectric thin films: Preparation, formation mechanism and application. J. Mater. Chem. C 2015, 3, 8926–8931. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Xie, Y.; Wen, X.; Wang, S.; Kim, S.J.; Song, H.-K.; Wang, Z.L. Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell. Nano Energy 2015, 14, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Jin, H.; Li, X.; Fei, L.; Zhao, Y.; Huang, H.; Chan, H.L.-W.; Wang, Y.; Chai, Y. A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J. Mater. Chem. A 2015, 3, 14963–14970. [Google Scholar] [CrossRef]
- Ramadoss, A.; Saravanakumar, B.; Lee, S.W.; Kim, Y.-S.; Kim, S.J.; Wang, Z.L. Piezoelectric-driven self-charging supercapacitor power cell. ACS Nano 2015, 9, 4337–4345. [Google Scholar] [CrossRef]
- Yang, P.; Sun, P.; Mai, W. Electrochromic energy storage devices. Mater. Today 2016, 19, 394–402. [Google Scholar] [CrossRef]
- Yang, P.; Sun, P.; Chai, Z.; Huang, L.; Cai, X.; Tan, S.; Song, J.; Mai, W. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew. Chem. 2014, 126, 12129–12133. [Google Scholar] [CrossRef]
- Cai, Z.; Li, L.; Ren, J.; Qiu, L.; Lin, H.; Peng, H. Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J. Mater. Chem. A 2013, 1, 258–261. [Google Scholar] [CrossRef]
- Yu, J.; Lu, W.; Smith, J.P.; Booksh, K.S.; Meng, L.; Huang, Y.; Li, Q.; Byun, J.H.; Oh, Y.; Yan, Y. A High Performance Stretchable Asymmetric Fiber-Shaped Supercapacitor with a Core-Sheath Helical Structure. Adv. Energy Mater. 2017, 7, 1600976. [Google Scholar] [CrossRef]
- Voit, W.; Ware, T.; Dasari, R.R.; Smith, P.; Danz, L.; Simon, D.; Barlow, S.; Marder, S.R.; Gall, K. High-strain shape-memory polymers. Adv. Funct. Mater. 2010, 20, 162–171. [Google Scholar] [CrossRef]
- Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A rubberlike stretchable active matrix using elastic conductors. Science 2008, 321, 1468–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Fang, X.; Pang, Q.; Huang, W.; Sun, J. Healable and shape editable supercapacitors based on shape memory polyurethanes. J. Mater. Chem. A 2019, 7, 17456–17465. [Google Scholar] [CrossRef]
- Ma, Y.-Y.; Yi, G.-B.; Wang, J.-C.; Wang, H.; Luo, H.-S.; Zu, X.-H. Shape-controllable and-tailorable multi-walled carbon nanotube/MnO2/shape-memory polyurethane composite film for supercapacitor. Synth. Met. 2017, 223, 67–72. [Google Scholar] [CrossRef]
Energy Storage System | Capacitors | Supercapacitors | Batteries |
---|---|---|---|
Specific energy density (Wh kg−1) | 0.01 to 0.1 | 0.1 to 50 | 10 to 200 |
Specific power density (W kg−1) | 103 to ~107 | 1 to ~106 | 10 to 100 |
Charge storage mechanism | Charge Separation | Charge Separation Charge adsorption (desorption) Intercalation (deintercalation) | Faradaic Intercalation (deintercalation) |
Storage region | Surface | Surface | Surface to bulk |
Cycling performance | Infinite | >500,000 | 500~2000 |
Charge temperature (°C) | −20 to 100 | −40 to 65 | 0 to 45 |
Discharge temperature (°C) | −20 to 100 | −40 to 65 | −20 to 60 |
Charging time (sec) | 10−6 to 10−3 | 1 to 10 | 103 to 105 |
Galvanostatic discharge curves |
Electrode Materials | Advantages | Issues and Challenges | Electrode Description |
---|---|---|---|
Activated carbons | high surface area (over 1000 m2 g−1) low cost, chemical stability, and availability | specific capacitance, conductivity | AC |
CNT/Graphene | high surface area (over 2600 m2 g−1), thermal conductivity, flexibility, chemical, thermal, mechanical stability corrosion resistance | volumetric capacitance, agglomeration, nano–micro transformation, | GO MWCNT |
Metal oxides- pseudocapacitance | high specific capacitance, porosity, adhesion, conductivity | ion accessibility, intrinsic stability, relatively high cost | MnO2, RuO2 |
Metal oxides/hydroxides-faradaic | high specific capacitance, long cycles life, high conductivity, good electrochemical reversibility, and high rate capability | stability, barren reveres, relatively high cost | Co3O4, NiO, CuO, Fe2O3, TiO2, etc. Metal hydroxides (Ni(OH)2, Co(OH)2), |
Conducting polymers | relatively high storage capacity, low cost, low environmental impact, porosity high voltage window, | conductivity, stability | PANI, PPy, PTh |
Composite | Specific Capacitance (F g−1) | Issue |
---|---|---|
NiO | 2573 | Cycling stability |
Co3O4 | 3560 | Toxicity, Cycling stability |
CuCo2O4 | 984 | Cycling stability |
V2O5 | 2120 | Low conductivity, Cycling stability |
MnO2 | 1380 | Limited thickness layer |
RuO2, xH2O | 1200–2200 | High cost, blockage of accessible surface area |
Composite | Specific Capacitance (F g−1) | Electrolyte Solution | Current Density (ic)/Scan Rate (v) | Year | Ref. |
---|---|---|---|---|---|
MnO2/porous carbon | 459 | KOH | 1.0 A g−1 | 2014 | [58] |
GO/MnO2 | 315 | 1 m Na2SO4 | 0.5 A g−1 | 2015 | [59] |
3D GR/MnO2 | 267 | 1.5 M Li2SO4 | 200 mV s−1 | 2018 | [60] |
3D Co3O4/MnO2 | 1397 | 2.0 M KOH | 1 mA cm−2 | 2016 | [61] |
3D Co3O4/MnO2 | 1184 | 1 M LiPF6 | 1.0 A g−1 | 2014 | [62] |
MnO2@GO | 1518 | 1.0 M Na2SO4 | 1.0 A g−1 | 2020 | [63] |
Co3O4/MnO2@GO | 1358 | 1.0 M Na2SO4 | 1.0 A g−1 | 2020 | [63] |
Co3O4/MnO2@GO | 1718 | 1.0 M Na2SO4 | 1.0 A g−1 | 2020 | [63] |
graphene/MnO2/CNTs | 372 | 1 m Na2SO4 | 0.5 A g−1 | 2012 | [64] |
GR/MCNTs/MnO2 | 355 | 1 m Na2SO4 | 0.3 A g−1 | 2013 | [65] |
CNT/TiO2/PANI | 477 | 0.5 M H2SO4 | 0.4 μA mm−2 | 2013 | [66] |
CNTs/PANI/GR | 569 | 1.0 M HCl | 0.1 A g−1 | 2011 | [67] |
CNTs/GO/PANI | 589 | 1.0 M H2SO4 | 0.2 A g−1 | 2013 | [68] |
CNTs/PANI | 838 | 1.0 M H2SO4 | 1 mV s−1 | 2011 | [69] |
MWCNTs/PANI | 233 | H3PO4-PVA gel | 1 A g−1 | 2013 | [70] |
MWCNTs/PPy | 427 | 1.0 M Na2SO4 | 5 mV s−1 | 2010 | [71] |
MWCNTs/PPy/MnO2 | 365 | 0.5 M Na2SO4 | 5 mV s−1 | 2014 | [72] |
MWCNTs/PANI | 560 | 0.1 M H2SO4 | 1 mV s−1 | 2010 | [73] |
MWCNTs/Pd/PANI | 920 | 1.0 M H2SO4 | 2 mV s−1 | 2013 | [74] |
d-CNTs/PPy | 587 | 0.1 M NaClO4 | 3 A g−1 | 2012 | [75] |
C60-PANI-EB | 776 | 1.0 M H2SO4 | 1 mA cm−2 | 2012 | [76] |
MnO2/AC | 324 | Na2SO4 | 0.1 A g−1 | 2008 | [77] |
MnO2/AC | 345 | KOH | 10 mA cm−2 | 2015 | [78] |
δ-MnO2/AC | 360.5 | 1M NaNO3 | 4 A g−1 | 2020 | [79] |
MnO2/CNT | 199 | 1.0 M Na2SO4 | 0.1 A g−1 | 2008 | [80] |
MnO2/CNT | 325.5 | 1 m Na2SO4 | 0.3 A g−1 | 2009 | [81] |
NiCo2O4–MnO2/GF | 2577 | 1 m Na2SO4 | 1 A g−1 | 2017 | [82] |
PPy-graphene | 165 | 1.0 M NaCl | 1 A g−1 | 2010 | [83] |
PAA@MnO2/PPy | 564 | 0.2 M FeCl3 | 10 mV s−1 | 2018 | [84] |
PAA@MnO2/PPy | 692 | 0.2 M FeCl3 | 0.5 A/g | 2018 | [84] |
PAA@ MnO2 | 288 | 0.2 M FeCl3 | 10 mV s−1 | 2018 | [84] |
PANI-Si | 409 | 0.5 M H2SO4 | 40 mA cm−2 | 2010 | [85] |
PANI/MnO2 | 1292 | 1.0 M LiClO4 | 4.0 mA cm−2 | 2010 | [86] |
MWCNTs/MnO2/PPy | 806 | 1 M Na2SO4 | 1 A g−1 | 2019 | [87] |
NiO | 1700 | 6 M Hg/HgO KOH | 2 A g−1 | 2012 | [88] |
Co3O4 | 2735 to 1471 | 2 M KOH | 2 to 10 A g−1 | 2012 | [89] |
CuCo2O4/NiO | 2219 | 1.0 M NaOH | 1 A g−1 | 2017 | [90] |
CuCo2O4 | 743 | 1.0 M NaOH | 1 A g−1 | 2017 | [90] |
NiO | 1296 | 1.0 M NaOH | 1 A g−1 | 2017 | [90] |
Composite | Specific Capacitance (F g−1) | Cycling Stability | Electrolyte Solution | Current Density (ic)/Scan Rate (v) | Year | Ref. |
---|---|---|---|---|---|---|
ZnCo2O4-Ni foam (microflowers) | 2256 | 90% capacitance retention after 2000 cycles at 10 mA cm−2 | 1 M KOH | 2 mA cm−2 | 2017 | [91] |
ZnCo2O4-Ni foam (microflowers) | 1700 | 1 M KOH | 30 mA cm−2 | 2017 | [91] | |
ZnCo2O4-Ni foam (nanosheets) | 2037 | 80% capacitance retention after 2000 cycles at 10 mA cm−2 | 1 M KOH | 2 mA cm−2 | 2017 | [91] |
ZnCo2O4-Ni foam (nanosheets) | 719 | 1 M KOH | 30 mA cm−2 | 2017 | [91] | |
CuCo2O4 (nanobelts) | 809 | 127% capacitance retention after 1800 cycles at 2 mA cm−2 | 2.0 M KOH | 0.667A g−1 | 2015 | [92] |
CuCo2O4-Ni foam (nanosheets) | 1330 | 70% capacitance retention after 5000 cycles at 2 A g−1 | 3 M KOH | 2 A g−1 | 2018 | [93] |
CuCo2O4-Ni foam (nanosheets) | 938 | 3 M KOH | 60 A g−1 | 2018 | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, J.; Shin, C. Recent Studies on Supercapacitors with Next-Generation Structures. Micromachines 2020, 11, 1125. https://doi.org/10.3390/mi11121125
Sung J, Shin C. Recent Studies on Supercapacitors with Next-Generation Structures. Micromachines. 2020; 11(12):1125. https://doi.org/10.3390/mi11121125
Chicago/Turabian StyleSung, Juho, and Changhwan Shin. 2020. "Recent Studies on Supercapacitors with Next-Generation Structures" Micromachines 11, no. 12: 1125. https://doi.org/10.3390/mi11121125
APA StyleSung, J., & Shin, C. (2020). Recent Studies on Supercapacitors with Next-Generation Structures. Micromachines, 11(12), 1125. https://doi.org/10.3390/mi11121125