Numerical Analysis of Fluid Flow and Heat Transfer in Micro-Channel Heat Sinks with Double-Layered Complex Structure
Abstract
:1. Introduction
2. Model Design
2.1. Physical Model
2.2. Mathematical Model
2.3. Data Processing
3. Results and Discussion
3.1. Validation of Numerical Methods
3.2. Flow Resistance Character Analysis
3.3. Heat Transfer Analysis
3.4. Overall Performance Evaluation
4. Conclusions
- (1)
- The effect of the matrix and slot subchannel arrangement on fluid flow and heat transfer is significant. The double-layered matrix micro heat sinks (especially DL-IM) has the lowest average base surface temperature and pressure drop, and also the highest Nusselt number and secondary flow intensity, which shows the best overall thermal performance.
- (2)
- In DL-M and DL-IM, the coolant flows along the subchannel and then changes the flow direction into the other layer subchannel, in which more intense flow and stronger disturbance are induced.
- (3)
- In DL-IM, the coolant can be fully mixed in the interlinked intersection area of different layers in the matrix subchannel, thus vortices are easily formed and mass and heat transfer are significantly enhanced.
Author Contributions
Funding
Conflicts of Interest
References
- Dewan, A.; Srivastave, P. A review of heat transfer enhancement through flow disruption in a microchannel. J. Therm. Sci. 2015, 24, 203–214. [Google Scholar] [CrossRef]
- Vafai, K.; Zhu, L. Analysis of two-layered micro-channel heat sink concept in electronic cooling. Int. J. Heat Mass Transf. 1999, 42, 2287–2297. [Google Scholar] [CrossRef]
- Wei, X.; Joshi, Y. Stacked microchannel heat sinks for liquid cooling of microelectronic components. J. Electron. Packag. 2004, 126, 60–66. [Google Scholar] [CrossRef]
- Wei, X.; Joshi, Y.; Patterson, M.K. Experimental and numerical study of a stacked microchannel heat sink for liquid cooling of microelectronic devices. J. Heat Transf. 2007, 129, 1432–1444. [Google Scholar] [CrossRef]
- Levac, M.L.J.; Soliman, H.M.; Ormiston, S.J. Three-dimensional analysis of fluid flow and heat transfer in single- and two-layered micro-channel heat sinks. Heat Mass Transf. 2011, 47, 1375–1383. [Google Scholar] [CrossRef]
- Wu, J.M.; Zhao, J.Y.; Tseng, K.J. Parametric study on the performance of double-layered microchannels heat sink. Energy Convers. Manag. 2014, 80, 550–560. [Google Scholar] [CrossRef]
- Radwan, A.; Ookawara, S.; Mori, S.; Ahmed, M. Uniform cooling for concentrator photovoltaic cells and electronic chips by forced convective boiling in 3D-printed monolithic double-layer microchannel heat sink. Energy Convers. Manag. 2018, 166, 356–371. [Google Scholar] [CrossRef]
- Ling, W.S.; Zhou, W.; Yu, W. Experimental investigation on thermal and hydraulic performance of microchannels with interlaced configuration. Energy Convers. Manag. 2018, 174, 439–452. [Google Scholar] [CrossRef]
- Zuo, W.; Jia, E.; Han, D.D. Numerical investigations on thermal performance of double-layer four-channel micro combustors for micro-thermophotovoltaic system. Energy Convers. Manag. 2017, 150, 343–355. [Google Scholar] [CrossRef]
- Wu, Z.; Sundén, B. On further enhancement of single-phase and flow boiling heat transfer in micro/mini channels, Renew. Sustain. Energy Rev. 2014, 40, 11–27. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, P.P.; Garg, H. Numerical analysis of trapezoidal shape double layer microchannels heat sink. Int. J. Mech. Ind. Eng. 2013, 3, 10–15. [Google Scholar]
- Xie, G.N.; Liu, Y.Q.; Zhang, W.L.; Sunden, B. Computational study and optimization of laminar heat transfer and pressure loss of double-layer microchannels for chip liquid cooling. ASME J. Therm. Sci. Eng. 2013, 5, 011004. [Google Scholar] [CrossRef]
- Zhai, Y.L.; Xia, G.D.; Liu, X.F.; Wang, J. Characteristics of entropy generation and heat transfer in double-layered micro heat sinks with complex structure. Energy Convers. Manag. 2015, 103, 477–486. [Google Scholar] [CrossRef]
- Zhai, Y.L.; Li, Z.H.; Wu, H.; Xu, J.X. Analysis of field synergy principle and the relationship between secondary flow and heat transfer in double-layered microchannels with cavities and ribs. Int. J. Heat Mass Transf. 2016, 101, 190–197. [Google Scholar] [CrossRef]
- Pouzesh, A.; Hajmohammadi, M.R.; Poozesh, S. Investigations on the internal shape of constructal cavities intruding a heat generating body. Therm. Sci. 2015, 19, 609–618. [Google Scholar] [CrossRef]
- Hajmohammadi, M.R.; Poozesh, S.; Nourazar, S.S. Constructal design of multiple heat sources in a square-shaped fin. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2012, 226, 324–336. [Google Scholar] [CrossRef]
- Hajmohammadi, M.R.; Poozesh, S.; Hosseini, R. Radiation effect on constructal design analysis of a TY-shaped assembly of fins. J. Therm. Sci. Technol. 2012, 7, 677–692. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, F.; Sunden, B.; Xie, G. Laminar thermal performance of microchannel heat sinks with constructal vertical Y-shaped bifurcation plates. Appl. Therm. Eng. 2014, 73, 185–195. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Z.; Xie, G.; Sunden, B. Numerical analysis of constructal water-cooled microchannel heat sinks with multiple bifurcations in the entrance region. Numer. Heat Transf. Part A 2015, 67, 632–650. [Google Scholar] [CrossRef]
- Zhang, C.P.; Lian, Y.F.; Hsu, C.H.; Teng, J.T.; Liu, S.; Chang, Y.J.; Greif, R. Investigations of thermal and flow behavior of bifurcations and bends in fractal-like microchannel networks: Secondary flow and recirculation flow. Int. J. Heat Mass Transf. 2015, 85, 723–731. [Google Scholar] [CrossRef]
- Chai, L.; Xia, G.D.; Zhou, M.Z. Numerical simulation of fluid flow and heat transfer in a microchannel heat sink with offset fan-shaped reentrant cavities in sidewall. Int. Commun. Heat Mass Transf. 2011, 38, 577–584. [Google Scholar] [CrossRef]
- Xie, G.N.; Chen, Z.Y.; Sunden, B.; Zhang, W. Numerical predictions of the flow and thermal performance of water-cooled single-layer and double-layer wavy microchannel heat sinks. Numer. Heat Transf. Part A 2013, 63, 201–225. [Google Scholar] [CrossRef]
- Zhai, Y.L.; Li, Z.H.; Wang, H. Thermodynamic analysis of the effect of channel geometry on heat transfer in double-layered microchannel heat sinks. Energy Convers. Manag. 2017, 143, 431–439. [Google Scholar] [CrossRef]
- Bu, S.; Yang, Z.P.; Zhang, W.B.; Liu, H.N.; Sun, H.O. Research on the thermal performance of matrix cooling channel with response surface methodology. Appl. Therm. Eng. 2016, 109, 75–86. [Google Scholar] [CrossRef]
- Bu, S.; Yang, L.F.; Qiu, H.H.; Luan, Y.G.; Sun, H.O. Effect of sidewall slots and pin fins on the performance of latticework cooling channel for turbine blades. Appl. Therm. Eng. 2017, 117, 275–288. [Google Scholar] [CrossRef]
- Bejan, A. Convection Heat Transfer (Third Edition); John Wiley & Sons Inc: Hoboken, NJ, USA, 2004. [Google Scholar]
- Qu, W.L.; Mudawar, I. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int. J. Heat Mass Transf. 2002, 45, 2549–2565. [Google Scholar] [CrossRef]
- Zhai, Y.L.; Zhong, G.J.; Li, Z.H. Effect of structure on heat transfer performance in double-layered microchannel heat sinks. J. Aerosp. Power 2018, 33, 565–571. [Google Scholar]
Nomenclature | |||
---|---|---|---|
Ach | contact area between solid and fluid (m2) | Se | intensity of the secondary flow |
cpf | specific heat capacity | um | average velocity of the coolant (m/s) |
Dh | hydrodynamic diameter (mm) | W | micro heat sinks width (m) |
f | frication factor | ∆P | pressure drop (Pa) |
h | heat transfer coefficient | Greek symbols | |
H | micro heat sinks height (mm) | μ | dynamic viscosity (N/m2·s) |
Hch | top or bottom layer microchannel height (mm) | λ | thermal conductivity (W/(m·K)) |
Wch | microchannel width (mm) | ρ | Density (kg/m3) |
H’ch | slot microchannel height (mm) | ω | Vorticity (s−1) |
Hb | height of substrate (mm) | Subscripts | |
L | micro heat sinks length (mm) | b | bottom |
Nu | Nusselt number | f | fluid |
pp | pumping power (W) | s | solid |
Q | heat input (W) | in | inlet |
mass flow rate (kg/m3) | out | outlet | |
volume flow rate(m3/s) | 0 | reference value |
Microchannel | L | W | H | Hch1 | Hch2 | H’ch2 | Hs | Hb | Wch | Wb |
---|---|---|---|---|---|---|---|---|---|---|
DL-R | 3 | 1.5 | 0.6 | 0.2 | 0.2 | – | 0.05 | 0.15 | 0.1 | 0.2 |
DL-T | 3 | 1.5 | 0.6 | 0.2 | 0.2 | – | 0.05 | 0.15 | 0.1 | 0.2 |
DL-M | 3 | 1.5 | 0.6 | 0.2 | 0.2 | 0.45 | 0.05 | 0.15 | 0.1 | 0.2 |
DL-IM | 3 | 1.5 | 0.6 | 0.2 | 0.2 | 0.45 | 0.05 | 0.15 | 0.1 | 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhang, M.; Wang, Z.; Chen, J.; Sun, H.; Sun, H. Numerical Analysis of Fluid Flow and Heat Transfer in Micro-Channel Heat Sinks with Double-Layered Complex Structure. Micromachines 2020, 11, 146. https://doi.org/10.3390/mi11020146
Liu X, Zhang M, Wang Z, Chen J, Sun H, Sun H. Numerical Analysis of Fluid Flow and Heat Transfer in Micro-Channel Heat Sinks with Double-Layered Complex Structure. Micromachines. 2020; 11(2):146. https://doi.org/10.3390/mi11020146
Chicago/Turabian StyleLiu, Xiaogang, Meng Zhang, Zhongyi Wang, Juhui Chen, Haiou Sun, and Haifeng Sun. 2020. "Numerical Analysis of Fluid Flow and Heat Transfer in Micro-Channel Heat Sinks with Double-Layered Complex Structure" Micromachines 11, no. 2: 146. https://doi.org/10.3390/mi11020146
APA StyleLiu, X., Zhang, M., Wang, Z., Chen, J., Sun, H., & Sun, H. (2020). Numerical Analysis of Fluid Flow and Heat Transfer in Micro-Channel Heat Sinks with Double-Layered Complex Structure. Micromachines, 11(2), 146. https://doi.org/10.3390/mi11020146