Optical Frequency Combs in Quadratically Nonlinear Resonators
Abstract
:1. Introduction
2. Intracavity Second Harmonic Generation
3. Time-Domain Model for Quadratic Combs
4. Combs in Optical Parametric Oscillators
5. Single Envelope Equation
6. Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
cw | Continuous wave |
DFG | Difference frequency generation |
FF | Fundamental frequency |
FFT | Fast Fourier transform |
FSR | Free spectral range |
FWM | Four-wave mixing |
GVD | Group velocity dispersion |
MI | Modulation instability |
OFC | Optical frequency comb |
OPO | Optical parametric oscillator |
SH | Second harmonic |
SHG | Second harmonic generation |
TH | Third harmonic |
References
- Jones, D.J.; Diddams, S.A.; Ranka, J.K.; Stentz, A.J.; Windeler, R.S.; Hall, J.L.; Cundiff, S.T. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 2000, 288, 635–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holzwarth, R.; Udem, T.; Hänsch, T.W.; Knight, J.C.; Wadsworth, W.J.; Russell, P.S.J. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 2000, 85, 2264–2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.L. Nobel Lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 2006, 78, 1279–1295. [Google Scholar] [CrossRef] [Green Version]
- Hansch, T.W. Nobel Lecture: Passion for precision. Rev. Mod. Phys. 2006, 78, 1297–1309. [Google Scholar] [CrossRef] [Green Version]
- Newbury, N.R. Searching for applications with a fine-tooth comb. Nat. Photonics 2011, 5, 186–188. [Google Scholar] [CrossRef]
- Predehl, K.; Grosche, G.; Raupach, S.M.F.; Droste, S.; Terra, O.; Alnis, J.; Legero, T.; Hansch, T.W.; Udem, T.; Holzwarth, R.; et al. A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place. Science 2012, 336, 441–444. [Google Scholar] [CrossRef]
- Clivati, C.; Cappellini, G.; Livi, L.F.; Poggiali, F.; de Cumis, M.S.; Mancini, M.; Pagano, G.; Frittelli, M.; Mura, A.; Costanzo, G.A.; et al. Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination. Opt. Express 2016, 24, 11865–11875. [Google Scholar] [CrossRef] [Green Version]
- Insero, G.; Borri, S.; Calonico, D.; Pastor, P.C.; Clivati, C.; D’Ambrosio, D.; De Natale, P.; Inguscio, M.; Levi, F.; Santambrogio, G. Measuring molecular frequencies in the 1–10 μm range at 11-digits accuracy. Sci. Rep. 2017, 7, 12780. [Google Scholar] [CrossRef] [Green Version]
- Di Sarno, V.; Aiello, R.; De Rosa, M.; Ricciardi, I.; Mosca, S.; Notariale, G.; De Natale, P.; Santamaria, L.; Maddaloni, P. Lamb-dip spectroscopy of buffer-gas-cooled molecules. Optica 2019, 6, 436–441. [Google Scholar] [CrossRef]
- Steinmetz, T.; Wilken, T.; Araujo-Hauck, C.; Holzwarth, R.; Haensch, T.W.; Pasquini, L.; Manescau, A.; D’Odorico, S.; Murphy, M.T.; Kentischer, T.; et al. Laser frequency combs for astronomical observations. Science 2008, 321, 1335–1337. [Google Scholar] [CrossRef]
- McCracken, R.A.; Charsley, J.M.; Reid, D.T. A decade of astrocombs: recent advances in frequency combs for astronomy. Opt. Express 2017, 25, 15058–15078. [Google Scholar] [CrossRef]
- Obrzud, E.; Rainer, M.; Harutyunyan, A.; Anderson, M.H.; Liu, J.; Geiselmann, M.; Chazelas, B.; Kundermann, S.; Lecomte, S.; Cecconi, M.; et al. A microphotonic astrocomb. Nat. Photonics 2018, 13, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Adler, F.; Thorpe, M.J.; Cossel, K.C.; Ye, J. Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology and Applications. Annu. Rev. Anal. Chem. 2010, 3, 175–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keilmann, F.; Gohle, C.; Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 2004, 29, 1542–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picqué, N.; Hansch, T.W. Frequency comb spectroscopy. Nat. Photonics 2019, 13, 146–157. [Google Scholar] [CrossRef]
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-infrared frequency combs. Nat. Photonics 2012, 6, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Rieker, G.B.; Giorgetta, F.R.; Swann, W.C.; Kofler, J.; Zolot, A.M.; Sinclair, L.C.; Baumann, E.; Cromer, C.; Petron, G.; Sweeney, C.; et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 2014, 1, 290–298. [Google Scholar] [CrossRef]
- Yu, M.; Okawachi, Y.; Griffith, A.G.; Picqué, N.; Lipson, M.; Gaeta, A.L. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 2018, 9, 1869. [Google Scholar] [CrossRef] [Green Version]
- Pfeifle, J.; Brasch, V.; Lauermann, M.; Yu, Y.; Wegner, D.; Herr, T.; Hartinger, K.; Schindler, P.; Li, J.; Hillerkuss, D.; et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics 2014, 8, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Kemal, J.N.; Pfeifle, J.; Marin-Palomo, P.; Pascual, M.D.G.; Wolf, S.; Smyth, F.; Freude, W.; Koos, C. Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator. Opt. Express 2016, 24, 25432–25445. [Google Scholar] [CrossRef] [Green Version]
- Marin-Palomo, P.; Kemal, J.N.; Karpov, M.; Kordts, A.; Pfeifle, J.; Pfeiffer, M.H.P.; Trocha, P.; Wolf, S.; Brasch, V.; Anderson, M.H.; et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 2017, 546, 274–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roslund, J.; de Araújo, R.M.; Jiang, S.; Fabre, C.; Treps, N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics 2014, 8, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Dutt, A.; Luke, K.; Manipatruni, S.; Gaeta, A.L.; Nussenzveig, P.; Lipson, M. On-Chip Optical Squeezing. Phys. Rev. Appl. 2015, 3, 044005. [Google Scholar] [CrossRef] [Green Version]
- Reimer, C.; Kues, M.; Roztocki, P.; Wetzel, B.; Grazioso, F.; Little, B.E.; Chu, S.T.; Johnston, T.; Bromberg, Y.; Caspani, L.; et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 2016, 351, 1176–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imany, P.; Jaramillo-Villegas, J.A.; Odele, O.D.; Kyunghun, H.A.N.; Leaird, D.E.; Lukens, J.M.; Lougovski, P.; Minghao, Q.I.; Weiner, A.M. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Opt. Express 2018, 26, 1825–1840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kues, M.; Reimer, C.; Lukens, J.M.; Munro, W.J.; Weiner, A.M.; Moss, D.J.; Morandotti, R. Quantum optical microcombs. Nat. Photonics 2019, 13, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Del’Haye, P.; Schliesser, A.; Arcizet, O.; Wilken, T.; Holzwarth, R.; Kippenberg, T.J. Optical frequency comb generation from a monolithic microresonator. Nature 2007, 450, 1214–1217. [Google Scholar] [CrossRef] [Green Version]
- Kippenberg, T.J.; Holzwarth, R.; Diddams, S.A. Microresonator-based optical frequency combs. Science 2011, 332, 555–559. [Google Scholar] [CrossRef]
- Pasquazi, A.; Peccianti, M.; Razzari, L.; Moss, D.J.; Coen, S.; Erkintalo, M.; Chembo, Y.K.; Hansson, T.; Wabnitz, S.; Del’Haye, P.; et al. Micro-combs: A novel generation of optical sources. Phys. Rep. 2018, 729, 1–81. [Google Scholar] [CrossRef]
- Gaeta, A.L.; Lipson, M.; Kippenberg, T.J. Photonic-chip-based frequency combs. Nat. Photonics 2019, 13, 158–169. [Google Scholar] [CrossRef]
- Maddaloni, P.; Malara, P.; Gagliardi, G.; De Natale, P. Mid-infrared fibre-based optical comb. New J. Phys. 2006, 8, 262. [Google Scholar] [CrossRef]
- Sun, J.H.; Gale, B.J.S.; Reid, D.T. Composite frequency comb spanning 0.4–2.4 μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator. Opt. Lett. 2007, 32, 1414–1416. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.T.; Plettner, T.; Vodopyanov, K.L.; Urbanek, K.; Digonnet, M.; Byer, R.L. Self-phase-locked degenerate femtosecond optical parametric oscillator. Opt. Lett. 2008, 33, 1896–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambetta, A.; Ramponi, R.; Marangoni, M. Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator. Opt. Lett. 2008, 33, 2671–2673. [Google Scholar] [CrossRef]
- Adler, F.; Cossel, K.C.; Thorpe, M.J.; Hartl, I.; Fermann, M.E.; Ye, J. Phase-stabilized, 15 W frequency comb at 2.8–4.8 μm. Opt. Lett. 2009, 34, 1330–1332. [Google Scholar] [CrossRef]
- Galli, I.; Cappelli, F.; Cancio, P.; Giusfredi, G.; Mazzotti, D.; Bartalini, S.; De Natale, P. High-coherence mid-infrared frequency comb. Opt. Express 2013, 21, 28877–28885. [Google Scholar] [CrossRef]
- Diddams, S.A.; Ma, L.S.S.; Ye, J.; Hall, J.L. Broadband optical frequency comb generation with a phase-modulated parametric oscillator. Opt. Lett. 1999, 24, 1747–1749. [Google Scholar] [CrossRef] [Green Version]
- Kourogi, M.; Nakagawa, K.; Ohtsu, M. Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J. Quantum Electron. 1993, 29, 2693–2701. [Google Scholar] [CrossRef]
- Ulvila, V.; Phillips, C.R.; Halonen, L.L.; Vainio, M. Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities. Opt. Lett. 2013, 38, 4281–4284. [Google Scholar] [CrossRef]
- Ulvila, V.; Phillips, C.R.; Halonen, L.L.; Vainio, M. High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator. Opt. Express 2014, 22, 10535–10543. [Google Scholar] [CrossRef]
- Ostrovskii, L.A. Self-action of Light in Crystals. JETP Lett. 1967, 5, 272–275. [Google Scholar]
- Desalvo, R.; Hagan, D.J.; Sheik-Bahae, M.; Stegeman, G.; Van Stryland, E.W.; Vanherzeele, H. Self-focusing and self-defocusing by cascaded second-order effects in KTP. Opt. Lett. 1992, 17, 28–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegeman, G.I. χ(2) cascading: Nonlinear phase shifts. Quantum Semiclass. Opt. 1999, 9, 139–153. [Google Scholar] [CrossRef]
- Schiller, S.; Byer, R.L. Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator. J. Opt. Soc. Am. B 1993, 10, 1696–1707. [Google Scholar] [CrossRef]
- Schiller, S.; Breitenbach, G.; Paschotta, R.R.; Mlynek, J. Subharmonic-pumped continuous-wave parametric oscillator. Appl. Phys. Lett. 1996, 68, 3374–3376. [Google Scholar] [CrossRef] [Green Version]
- Schneider, K.; Schiller, S. Multiple conversion and optical limiting in a subharmonic-pumped parametric oscillator. Opt. Lett. 1997, 22, 363–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, A.G.; Lam, P.K.; Taubman, M.S.; Marte, M.A.M.; Schiller, S.; McClelland, D.E.; Bachor, H.A. Classical and quantum signatures of competing χ(2) nonlinearities. Phys. Rev. A 1997, 55, 4511–4515. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, I.; Mosca, S.; Parisi, M.; Maddaloni, P.; Santamaria, L.; De Natale, P.; De Rosa, M. Frequency comb generation in quadratic nonlinear media. Phys. Rev. A 2015, 91, 063839. [Google Scholar] [CrossRef] [Green Version]
- Mosca, S.; Ricciardi, I.; Parisi, M.; Maddaloni, P.; Santamaria, L.; De Natale, P.; De Rosa, M. Direct generation of optical frequency combs in χ(2) nonlinear cavities. Nanophotonics 2016, 5, 316–331. [Google Scholar] [CrossRef]
- Leo, F.; Hansson, T.; Ricciardi, I.; De Rosa, M.; Coen, S.; Wabnitz, S.; Erkintalo, M. Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation. Phys. Rev. Lett. 2016, 116, 033901. [Google Scholar] [CrossRef]
- Leo, F.; Hansson, T.; Ricciardi, I.; De Rosa, M.; Coen, S.; Wabnitz, S.; Erkintalo, M. Frequency-comb formation in doubly resonant second-harmonic generation. Phys. Rev. A 2016, 93, 043831. [Google Scholar] [CrossRef] [Green Version]
- Hansson, T.; Leo, F.; Erkintalo, M.; Coen, S.; Ricciardi, I.; De Rosa, M.; Wabnitz, S. Singly resonant second-harmonic-generation frequency combs. Phys. Rev. A 2017, 95, 013805. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V.E.; Ostrovsky, L.A. Modulation instability: The beginning. Phys. D Nonlinear Phenom. 2009, 238, 540–548. [Google Scholar] [CrossRef]
- Mosca, S.; Parisi, M.; Ricciardi, I.; Leo, F.; Hansson, T.; Erkintalo, M.; Maddaloni, P.; De Natale, P.; Wabnitz, S.; De Rosa, M. Modulation Instability Induced Frequency Comb Generation in a Continuously Pumped Optical Parametric Oscillator. Phys. Rev. Lett. 2018, 121, 093903. [Google Scholar] [CrossRef] [Green Version]
- Hansson, T.; Leo, F.; Erkintalo, M.; Anthony, J.; Coen, S.; Ricciardi, I.; De Rosa, M.; Wabnitz, S. Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities. J. Opt. Soc. Am. B 2016, 33, 1207–1215. [Google Scholar] [CrossRef] [Green Version]
- Drever, R.W.P.; Hall, J.L.; Kowalski, F.V.; Hough, J.; Ford, G.M.; Munley, A.J.; Ward, H. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 1983, 31, 97–105. [Google Scholar] [CrossRef]
- Ricciardi, I.; De Rosa, M.; Rocco, A.; Ferraro, P.; De Natale, P. Cavity-enhanced generation of 6 W cw second-harmonic power at 532 nm in periodically-poled MgO:LiTaO3. Opt. Express 2010, 18, 10985–10994. [Google Scholar] [CrossRef]
- De Rosa, M.; Conti, L.; Cerdonio, M.; Pinard, M.; Marin, F. Experimental Measurement of the Dynamic Photothermal Effect in Fabry-Perot Cavities for Gravitational Wave Detectors. Phys. Rev. Lett. 2002, 89, 237402. [Google Scholar] [CrossRef] [Green Version]
- Carmon, T.; Yang, L.; Vahala, K.J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 2004, 12, 4742–4750. [Google Scholar] [CrossRef] [Green Version]
- Chembo, Y.K.; Yu, N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A 2010, 82, 033801. [Google Scholar] [CrossRef] [Green Version]
- Chembo, Y.K.; Strekalov, D.V.; Yu, N. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. Phys. Rev. Lett. 2010, 104, 103902. [Google Scholar] [CrossRef] [PubMed]
- Haelterman, M.; Trillo, S.; Wabnitz, S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 1992, 91, 401–407. [Google Scholar] [CrossRef]
- Leo, F.; Coen, S.; Kockaert, P.; Gorza, S.P.; Emplit, P.; Haelterman, M. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics 2010, 4, 471–476. [Google Scholar] [CrossRef]
- Coen, S.; Randle, H.G.; Sylvestre, T.; Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 2013, 38, 37–39. [Google Scholar] [CrossRef] [Green Version]
- Coen, S.; Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 2013, 38, 1790–1792. [Google Scholar] [CrossRef] [Green Version]
- Hansson, T.; Modotto, D.; Wabnitz, S. On the numerical simulation of Kerr frequency combs using coupled mode equations. Opt. Commun. 2014, 312, 134–136. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, G.P. Nonlinear Fiber Optics, 3rd ed.; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Weideman, J.; Herbst, B. Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM 1986, 23, 485–507. [Google Scholar] [CrossRef]
- Godey, C.; Balakireva, I.V.; Coillet, A.; Chembo, Y.K. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 2014, 89, 063814. [Google Scholar] [CrossRef] [Green Version]
- Khurgin, J.B.; Dikmelik, Y.; Hugi, A.; Faist, J. Coherent frequency combs produced by self frequency modulation in quantum cascade lasers. Appl. Phys. Lett. 2014, 104, 081118. [Google Scholar] [CrossRef] [Green Version]
- Cappelli, F.; Consolino, L.; Campo, G.; Galli, I.; Mazzotti, D.; Campa, A.; de Cumis, M.S.; Pastor, P.C.; Eramo, R.; Rösch, M.; et al. Retrieval of phase relation and emission profile of quantum cascade laser frequency combs. Nat. Photonics 2019, 13, 562–568. [Google Scholar] [CrossRef]
- Breunig, I. Three-wave mixing in whispering gallery resonators. Laser Photonics Rev. 2016, 10, 569–587. [Google Scholar] [CrossRef]
- Strekalov, D.V.; Marquardt, C.; Matsko, A.B.; Schwefel, H.G.L.; Leuchs, G. Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 2016, 18, 123002. [Google Scholar] [CrossRef] [Green Version]
- Ikuta, R.; Asano, M.; Tani, R.; Yamamoto, T.; Imoto, N. Frequency comb generation in a quadratic nonlinear waveguide resonator. Opt. Express 2018, 26, 15551–15558. [Google Scholar] [CrossRef] [PubMed]
- Stefszky, M.; Ulvila, V.; Abdallah, Z.; Silberhorn, C.; Vainio, M. Towards optical-frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators. Phys. Rev. A 2018, 98, 053850. [Google Scholar] [CrossRef] [Green Version]
- Hendry, I.; Trainor, L.S.; Xu, Y.; Coen, S.; Murdoch, S.G.; Schwefel, H.G.L.; Erkintalo, M. Experimental observation of internally-pumped parametric oscillation and quadratic comb generation in a χ(2) whispering-gallery-mode microresonator. arXiv 2019, arXiv:1912.02804. [Google Scholar] [CrossRef]
- Szabados, J.; Puzyrev, D.N.; Minet, Y.; Reis, L.; Buse, K.; Villois, A.; Skryabin, D.V.; Breunig, I. Frequency comb generation via cascaded second-order nonlinearities in microresonators. arXiv 2019, arXiv:1912.00945. [Google Scholar]
- Levy, J.S.; Foster, M.A.; Gaeta, A.L.; Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 2011, 19, 11415–11421. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.; Stoll, R.; Guo, X.; Fischer, D.; Tang, H.X. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica 2014, 1, 396–399. [Google Scholar] [CrossRef]
- Pu, M.; Ottaviano, L.; Semenova, E.; Yvind, K. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 2016, 3, 823–826. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, M.; Yu, M.; Zhu, R.; Hu, H.; Lončar, M. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 2019, 10, 978. [Google Scholar] [CrossRef]
- Zhang, M.; Buscaino, B.; Wang, C.; Shams-Ansari, A.; Reimer, C.; Zhu, R.; Kahn, J.M.; Lončar, M. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 2019, 568, 373–377. [Google Scholar] [CrossRef]
- Xue, X.; Leo, F.; Xuan, Y.; Jaramillo-Villegas, J.A.; Wang, P.H.; Leaird, D.E.; Erkintalo, M.; Qi, M.; Weiner, A.M. Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. Light Sci. Appl. 2016, 6, e16253. [Google Scholar] [CrossRef]
- Fürst, J.U.; Strekalov, D.V.; Elser, D.; Aiello, A.; Andersen, U.L.; Marquardt, C.; Leuchs, G. Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator. Phys. Rev. Lett. 2010, 105, 263904. [Google Scholar] [CrossRef] [Green Version]
- Fürst, J.U.; Strekalov, D.V.; Elser, D.; Lassen, M.; Andersen, U.L.; Marquardt, C.; Leuchs, G. Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator. Phys. Rev. Lett. 2010, 104, 153901. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; Fürst, J.U.; Strekalov, D.V.; Yu, N. Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators. Appl. Phys. Lett. 2013, 103, 181107. [Google Scholar] [CrossRef] [Green Version]
- Meisenheimer, S.K.; Fürst, J.U.; Werner, C.; Beckmann, T.; Buse, K.; Breunig, I. Broadband infrared spectroscopy using optical parametric oscillation in a radially-poled whispering gallery resonator. Opt. Express 2015, 23, 24042–24047. [Google Scholar] [CrossRef]
- Mohageg, M.; Strekalov, D.; Savchenkov, A.; Matsko, A.; Ilchenko, V.; Maleki, L. Calligraphic poling of Lithium Niobate. Opt. Express 2005, 13, 3408–3419. [Google Scholar] [CrossRef] [Green Version]
- Guarino, A.; Poberaj, G.; Rezzonico, D.; Degl’Innocenti, R.; Günter, P. Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics 2007, 1, 407–410. [Google Scholar] [CrossRef]
- Wang, C.; Burek, M.J.; Lin, Z.; Atikian, H.A.; Venkataraman, V.; Huang, I.C.; Stark, P.; Lončar, M. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express 2014, 22, 30924–30933. [Google Scholar] [CrossRef]
- Liang, H.; Lin, Q.; Luo, R.; Jiang, W.C.; Zhang, X.C.; Sun, X. Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators. Opt. Express 2017, 25, 13504–13516. [Google Scholar]
- Wu, R.; Zhang, J.; Yao, N.; Fang, W.; Qiao, L.; Chai, Z.; Lin, J.; Cheng, Y. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett. 2018, 43, 4116–4119. [Google Scholar] [CrossRef]
- Helmy, A.S.; Abolghasem, P.; Stewart Aitchison, J.; Bijlani, B.J.; Han, J.; Holmes, B.M.; Hutchings, D.C.; Younis, U.; Wagner, S.J. Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides. Laser Photonics Rev. 2010, 5, 272–286. [Google Scholar] [CrossRef]
- Kuo, P.S.; Bravo-Abad, J.; Solomon, G.S. Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity. Nat. Commun. 2014, 5, 3109. [Google Scholar] [CrossRef] [Green Version]
- Mariani, S.; Andronico, A.; Lemaître, A.; Favero, I.; Ducci, S.; Leo, G. Second-harmonic generation in AlGaAs microdisks in the telecom range. Opt. Lett. 2014, 39, 3062–3064. [Google Scholar] [CrossRef]
- Parisi, M.; Morais, N.; Ricciardi, I.; Mosca, S.; Hansson, T.; Wabnitz, S.; Leo, G.; De Rosa, M. AlGaAs waveguide microresonators for efficient generation of quadratic frequency combs. J. Opt. Soc. Am. B 2017, 34, 1842–1847. [Google Scholar] [CrossRef]
- Timurdogan, E.; Poulton, C.V.; Byrd, M.J.; Watts, M.R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics 2017, 11, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Herr, T.; Brasch, V.; Jost, J.D.; Wang, C.Y.; Kondratiev, N.M.; Gorodetsky, M.L.; Kippenberg, T.J. Temporal solitons in optical microresonators. Nat. Photonics 2014, 8, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Hansson, T.; Parra-Rivas, P.; Bernard, M.; Leo, F.; Gelens, L.; Wabnitz, S. Quadratic soliton combs in doubly resonant second-harmonic generation. Opt. Lett. 2018, 43, 6033–6036. [Google Scholar] [CrossRef] [Green Version]
- Villois, A.; Skryabin, D.V. Soliton and quasi-soliton frequency combs due to second harmonic generation in microresonators. Opt. Express 2019, 27, 7098–7107. [Google Scholar] [CrossRef] [Green Version]
- Erkintalo, M.; Li, Z.; Parra-Rivas, P.; Leo, F. Dynamics of Kerr-like Optical Frequency Combs Generated via Phase-mismatched Second-harmonic Generation. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 23–27 June 2019. [Google Scholar]
- Lobanov, V.E.; Kondratiev, N.M.; Shitikov, A.E.; Bilenko, I.A. Two-color flat-top solitonic pulses in χ(2) optical microresonators via second-harmonic generation. Phys. Rev. A 2020, 101, 013831. [Google Scholar] [CrossRef] [Green Version]
- Villois, A.; Kondratiev, N.; Breunig, I.; Puzyrev, D.N.; Skryabin, D.V. Frequency combs in a microring optical parametric oscillator. Opt. Lett. 2019, 44, 4443–4446. [Google Scholar] [CrossRef] [Green Version]
- Parra-Rivas, P.; Gelens, L.; Leo, F. Localized structures in dispersive and doubly resonant optical parametric oscillators. Phys. Rev. E 2019, 100, 032219. [Google Scholar] [CrossRef] [Green Version]
- Menicucci, N.C.; Flammia, S.T.; Pfister, O. One-Way Quantum Computing in the Optical Frequency Comb. Phys. Rev. Lett. 2008, 101, 130501. [Google Scholar] [CrossRef] [Green Version]
- Pfister, O. Continuous-variable quantum computing in the quantum optical frequency comb. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 012001. [Google Scholar] [CrossRef]
- Villar, A.S.; Martinelli, M.; Fabre, C.; Nussenzveig, P. Direct production of tripartite pump-signal-idler entanglement in the above-threshold optical parametric oscillator. Phys. Rev. Lett. 2006, 97, 140504. [Google Scholar] [CrossRef] [Green Version]
- Pfister, O.; Feng, S.; Jennings, G.; Pooser, R.C.; Xie, D. Multipartite continuous-variable entanglement from concurrent nonlinearities. Phys. Rev. A 2004, 70, 020302. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Zou, H.; Zhai, Z.; Zhang, J.; Gao, J. Generation of continuous-variable tripartite entanglement using cascaded nonlinearities. Phys. Rev. A 2005, 71, 034305. [Google Scholar] [CrossRef]
- Pennarun, C.; Bradley, A.S.; Olsen, M.K. Tripartite entanglement and threshold properties of coupled intracavity down-conversion and sum-frequency generation. Phys. Rev. A 2007, 76, 063812. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Sun, Y.; Hu, L.; Zhang, R.; Chen, X.; Wang, J. Five-partite entanglement generation between two optical frequency combs in a quasi-periodic χ(2) nonlinear optical crystal. Sci. Rep. 2017, 7, 9054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raussendorf, R.; Browne, D.E.; Briegel, H.J. Measurement-based quantum computation on cluster states. Phys. Rev. A 2003, 68, 022312. [Google Scholar] [CrossRef] [Green Version]
- Chembo, Y.K. Quantum dynamics of Kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light. Phys. Rev. A 2016, 93, 033820. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricciardi, I.; Mosca, S.; Parisi, M.; Leo, F.; Hansson, T.; Erkintalo, M.; Maddaloni, P.; De Natale, P.; Wabnitz, S.; De Rosa, M. Optical Frequency Combs in Quadratically Nonlinear Resonators. Micromachines 2020, 11, 230. https://doi.org/10.3390/mi11020230
Ricciardi I, Mosca S, Parisi M, Leo F, Hansson T, Erkintalo M, Maddaloni P, De Natale P, Wabnitz S, De Rosa M. Optical Frequency Combs in Quadratically Nonlinear Resonators. Micromachines. 2020; 11(2):230. https://doi.org/10.3390/mi11020230
Chicago/Turabian StyleRicciardi, Iolanda, Simona Mosca, Maria Parisi, François Leo, Tobias Hansson, Miro Erkintalo, Pasquale Maddaloni, Paolo De Natale, Stefan Wabnitz, and Maurizio De Rosa. 2020. "Optical Frequency Combs in Quadratically Nonlinear Resonators" Micromachines 11, no. 2: 230. https://doi.org/10.3390/mi11020230
APA StyleRicciardi, I., Mosca, S., Parisi, M., Leo, F., Hansson, T., Erkintalo, M., Maddaloni, P., De Natale, P., Wabnitz, S., & De Rosa, M. (2020). Optical Frequency Combs in Quadratically Nonlinear Resonators. Micromachines, 11(2), 230. https://doi.org/10.3390/mi11020230