Memristive Non-Volatile Memory Based on Graphene Materials
Abstract
:1. Introduction
2. Graphene-Based Materials: Properties and Production
2.1. Properties of Graphene-Based Materials
2.2. Synthesis Technologies of Graphene-Based Materials
3. Memory Devices and Memristors Based on Graphene-Based Materials
3.1. FoM (Figure of Merit) of Memory Devices
3.1.1. Operation Speed
3.1.2. Reliability
3.1.3. Power Consumption
3.1.4. Scalability
3.1.5. Cost
3.2. Memristor
3.2.1. RRAM Device Characteristics
3.2.2. RRAM Based on Graphene and Its Derivatives
4. Switching Mechanism of Graphene-Based Memristor
4.1. Oxygen Ion-Based Switching Mechanism
4.2. Metal Filament-Based Switching Mechanism
5. Application of Graphene-Based Memristors in Flexible Electronics
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bertolazzi, S.; Bondavalli, P.; Roche, S.; San, T.; Choi, S.Y.; Colombo, L.; Bonaccorso, F.; Samori, P. Nonvolatile Memories Based on Graphene and Related 2D Materials. Adv. Mater. 2019, 31, e1806663. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xie, W.; Xu, J.B. Graphene based non-volatile memory devices. Adv. Mater. 2014, 26, 5496–5503. [Google Scholar] [CrossRef]
- Zhang, S.R.; Zhou, L.; Mao, J.Y.; Ren, Y.; Yang, J.Q.; Yang, G.H.; Zhu, X.; Han, S.T.; Roy, V.A.L.; Zhou, Y. Artificial Synapse Emulated by Charge Trapping-Based Resistive Switching Device. Adv. Mater. Technol. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.F.; Su, Y.T.; Chen, M.C.; Chang, T.C.; Tsai, T.M.; Tseng, Y.T.; Yang, C.C.; Zheng, H.X.; Chen, W.C.; Lin, C.C.; et al. The influence of temperature on set voltage for different high resistance state in 1T1R devices. Appl. Phys. Express 2019, 12, 024004. [Google Scholar] [CrossRef]
- Irshad, M.S.; Abbas, A.; Qazi, H.H.; Aziz, M.H.; Shah, M.; Ahmed, A.; Idrees, M. Role of point defects in hybrid phase TiO2 for resistive random-access memory (RRAM). Mater. Res. Express 2019, 6, 076326. [Google Scholar] [CrossRef]
- Lin, C.C.; Chen, P.H.; Chen, M.C.; Chang, T.C.; Lin, C.Y.; Zheng, H.X.; Chen, C.K.; Huang, W.C.; Chen, W.C.; Huang, H.C.; et al. Investigating Material Changes at Different Gadolinium Doping Power Levels in Indium-Tin Oxide Intended for Use as an Insulator in Resistive Switching Memory. IEEE Trans. Electron. Devices 2019, 66, 2595–2599. [Google Scholar] [CrossRef]
- Qiu, J.T.; Samanta, S.; Dutta, M.; Ginnaram, S.; Maikap, S. Controlling Resistive Switching by Using an Optimized MoS2 Interfacial Layer and the Role of Top Electrodes on Ascorbic Acid Sensing in TaOx-Based RRAM. Langmuir 2019, 35, 3897–3906. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Dong, S.; Jin, H.; Huang, S.; Wang, X.; Luo, J. Significant Effects of Electrode Metal Work Function on Resistive Memory Devices with Gelatin Biodielectric Layer. J. Electrochem. Soc. 2018, 165, G90–G95. [Google Scholar] [CrossRef]
- Shen, Z.J.; Zhao, C.; Zhao, C.Z.; Mitrovic, I.Z.; Yang, L.; Xu, W.Y.; Lim, E.G.; Luo, T.; Huang, Y.B. Characteristics of Ni/AlOx/Pt RRAM devices with various dielectric fabrication temperatures. In Proceedings of the 2019 International Conference on IC Design and Technology (ICICDT), Suzhou, China, 17–19 June 2019; pp. 1–4. [Google Scholar]
- Liu, C.Y.; Tsai, Y.Y.; Fang, W.T.; Wang, H.Y. Resistive Switching Characteristics of a SiOx Layer with CF4Plasma Treatment. J. Nanomater. 2014, 2014, 1–5. [Google Scholar]
- Qi, M.; Guo, C.; Zeng, M. Oxygen Vacancy Kinetics Mechanism of the Negative Forming-Free Process and Multilevel Resistance Based on Hafnium Oxide RRAM. J. Nanomater. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.; Dong, Y.; Islam, M.D.Z.; Yu, L.; Liu, F.; Chen, S.; Qi, X.; Zhu, Y.; Fu, Y.; Xu, Z.; et al. Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites. Compos. Sci. Technol. 2019, 169, 209–234. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, J.; Liu, X.; Zhao, X.; Chen, M.; Li, J.; Zhao, H.; Zhu, C.; Su, B. Fabrication of polymer composite films with carbon composite nanofibers doped MWNTs-OH for multilevel memory device application. Compos. B Eng. 2019, 156, 252–270. [Google Scholar] [CrossRef]
- Rowlands, G.E.; Ryan, C.A.; Ye, L.; Rehm, L.; Pinna, D.; Kent, A.D.; Ohki, T.A. A cryogenic spin-torque memory element with precessional magnetization dynamics. Sci. Rep. 2019, 9, 803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kang, W.; Cao, K.; Wu, B.; Zhang, Y.; Zhao, W. Spintronic Processing Unit in Spin Transfer Torque Magnetic Random Access Memory. IEEE Trans. Electron. Devices 2019, 66, 2017–2022. [Google Scholar] [CrossRef]
- Mukherjee, B. Resistive Switching and Nonvolatile Memory in TiO2/CuPc Nanocomposite Devices. J. Electron. Mater. 2019, 48, 2131–2132. [Google Scholar] [CrossRef]
- Yu, J.; Xu, X.; Gong, T.; Luo, Q.; Dong, D.; Yuan, P.; Tai, L.; Yin, J.; Zhu, X.; Wu, X.; et al. Suppression of Filament Overgrowth in Conductive Bridge Random Access Memory by Ta2O5/TaOx Bi-Layer Structure. Nanoscale Res. Lett. 2019, 14, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Yun, H.-W.; Woo, H.K.; Oh, S.J.; Hong, S.-H. Flexible NiO nanocrystal-based resistive memory device fabricated by low-temperature solution-process. Curr. Appl. Phys. 2020, 20, 288–292. [Google Scholar] [CrossRef]
- Qi, Y.F.; Shen, Z.J.; Zhao, C.; Mitrovic, I.Z.; Xu, W.Y.; Lim, E.G.; Yang, L.; He, J.H.; Luo, T.; Huang, Y.B.; et al. Resistive switching behavior of solution-processed AlOx and GO based RRAM at low temperature. Solid State Electron. 2019. [Google Scholar] [CrossRef]
- Kang, K.; Ahn, H.; Song, Y.; Lee, W.; Kim, J.; Kim, Y.; Yoo, D.; Lee, T. High-Performance Solution-Processed Organo-Metal Halide Perovskite Unipolar Resistive Memory Devices in a Cross-Bar Array Structure. Adv. Mater. 2019, 31, 1804841. [Google Scholar] [CrossRef]
- Das, U.; Bhattacharjee, S.; Mahato, B.; Prajapat, M.; Sarkar, P.; Roy, A. Uniform, large-scale growth of WS2 nanodomains via CVD technique for stable non-volatile RRAM application. Mater. Sci. Semicond. Process. 2020, 107, 104837. [Google Scholar] [CrossRef]
- Neumann, C.M.; Okabe, K.L.; Yalon, E.; Grady, R.W.; Wong, H.S.P.; Pop, E. Engineering thermal and electrical interface properties of phase change memory with monolayer MoS2. Appl. Phys. Lett. 2019, 114, 082103. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Fischer, A.; Sawatzki, M.; Doan, D.H.; Liero, M.; Glitzky, A.; Reineke, S.; Mannsfeld, S.C.B. Introducing pinMOS Memory: A Novel, Nonvolatile Organic Memory Device. Adv. Funct. Mater. 2019. [Google Scholar] [CrossRef]
- Casula, G.; Busby, Y.; Franquet, A.; Spampinato, V.; Houssiau, L.; Bonfiglio, A.; Cosseddu, P. A flexible organic memory device with a clearly disclosed resistive switching mechanism. Org. Electron. 2019, 64, 209–215. [Google Scholar] [CrossRef]
- Chiu, U.T.; Lee, B.F.; Hu, S.K.; Yu, T.F.; Lee, W.Y.; Chao, L. Graphene Memory Based on a Tunable Nanometer-Thin Water Layer. J. Phys. Chem. C 2019, 123, 10842–10848. [Google Scholar] [CrossRef]
- Guo, F.; Zheng, X.; Liang, C.; Jiang, Y.; Xu, Z.; Jiao, Z.; Liu, Y.; Wang, H.T.; Sun, H.; Ma, L.; et al. Millisecond Response of Shape Memory Polymer Nanocomposite Aerogel Powered by Stretchable Graphene Framework. ACS Nano 2019, 13, 5549–5558. [Google Scholar] [CrossRef]
- Yan, Y.; Xia, H.; Qiu, Y.; Xu, Z.; Ni, Q.Q. Multi-layer graphene oxide coated shape memory polyurethane for adjustable smart switches. Compos. Sci. Technol. 2019, 172, 108–116. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, Z.; Cao, X.; Lu, G.; Wang, L.H.; Fan, Q.L.; Huang, W.; Zhang, H. Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 2012, 8, 3517–3522. [Google Scholar] [CrossRef]
- Park, J.H.; Shin, M.H.; Yi, J.S. The Characteristics of Transparent Non-Volatile Memory Devices Employing Si-Rich SiOx as a Charge Trapping Layer and Indium-Tin-Zinc-Oxide. Nanomaterials (Basel) 2019, 9, 784. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Liu, Z.J.; Zhang, D.Q.; He, Z.; Tao, Z.C.; Guo, Q.G. Phase change materials coated with modified graphene-oxide as fillers for silicone rubber used in thermal interface applications. New Carbon Mater. 2019, 34, 188–195. [Google Scholar] [CrossRef]
- Seo, S.; Lim, J.; Lee, S.; Alimkhanuly, B.; Kadyrov, A.; Jeon, D.; Lee, S. Graphene-Edge Electrode on a Cu-Based Chalcogenide Selector for 3D Vertical Memristor Cells. ACS Appl. Mater. Interfaces 2019, 11, 43466–43472. [Google Scholar] [CrossRef]
- Hyun, W.J.; Secor, E.B.; Kim, C.H.; Hersam, M.C.; Francis, L.F.; Frisbie, C.D. Scalable, Self-Aligned Printing of Flexible Graphene Micro-Supercapacitors. Adv. Energy Mater. 2017, 7, 8. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselo, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, R.; Eskandariyun, A. Estimating Young’s modulus of graphene/polymer composites using stochastic multi-scale modeling. Compos. B Eng. 2019, 173, 106842. [Google Scholar] [CrossRef]
- Kashani, H.; Ito, Y.; Han, J.; Liu, P.; Chen, M. Extraordinary tensile strength and ductility of scalable nanoporous graphene. Sci. Adv. 2019, 5, eaat6951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leong, W.S.; Wang, H.; Yeo, J.; Martin-Martinez, F.J.; Zubair, A.; Shen, P.C.; Mao, Y.; Palacios, T.; Buehler, M.J.; Hong, J.Y.; et al. Paraffin-enabled graphene transfer. Nat. Commun. 2019, 10, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Qiu, H.; Han, Y.; Gu, H.; Song, P.; Wang, L.; Kong, J.; Cao, D.; Gu, J. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 2019, 7, 2725–2733. [Google Scholar] [CrossRef]
- Wang, E.; Wu, Y.; Islam, M.Z.; Dong, Y.; Zhu, Y.; Liu, F.; Fu, Y.; Xu, Z.; Hu, N. A novel reduced graphene oxide/epoxy sandwich structure composite film with thermo-, electro- and light-responsive shape memory effect. Mater. Lett. 2019, 238, 54–57. [Google Scholar] [CrossRef]
- Strauss, V.; Marsh, K.; Kowal, M.D.; El-Kady, M.; Kaner, R.B. A Simple Route to Porous Graphene from Carbon Nanodots for Supercapacitor Applications. Adv. Mater. 2018, 30, 1704449. [Google Scholar] [CrossRef]
- Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos. B Eng. 2019, 172, 666–670. [Google Scholar] [CrossRef]
- Pang, Y.; Zhang, K.; Yang, Z.; Jiang, S.; Ju, Z.; Li, Y.; Wang, X.; Wang, D.; Jian, M.; Zhang, Y.; et al. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity. ACS Nano 2018, 12, 2346–2354. [Google Scholar] [CrossRef]
- Zhang, Y.; An, Y.; Wu, L.; Chen, H.; Li, Z.; Dou, H.; Murugadoss, V.; Fan, J.; Zhang, X.; Mai, X.; et al. Metal-free energy storage systems: Combining batteries with capacitors based on a methylene blue functionalized graphene cathode. J. Mater. Chem. A 2019, 7, 19668–19675. [Google Scholar] [CrossRef]
- Li, X.; Zhi, L. Graphene hybridization for energy storage applications. Chem. Soc. Rev. 2018, 47, 3189–3216. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Hidalgo, R.; Blanco, C.; Menendez, R.; Verdejo, R.; Lopez-Manchado, M.A. Multifunctional Silicone Rubber Nanocomposites by Controlling the Structure and Morphology of Graphene Material. Polymers (Basel) 2019, 11, 449. [Google Scholar] [CrossRef] [Green Version]
- Hong, A.J.; Song, E.B.; Yu, H.S.; Allen, M.J.; Kim, J.; Fowler, J.D.; Wassei, J.K. GrapheneFlash Memory. ACS Nano 2011, 5, 7812–7817. [Google Scholar] [CrossRef]
- Cunning, B.V.; Wang, B.; Shin, T.J.; Ruoff, R.S. Structure-directing effect of single crystal graphene film on polymer carbonization and graphitization. Mater. Horiz. 2019, 6, 796–801. [Google Scholar] [CrossRef]
- Cheng, Y.; Bi, H.; Che, X.; Li, D.; Ji, W.; Huang, F. Suppression of graphene nucleation by plasma treatment of Cu foil for the rapid growth of large-size single-crystal graphene. Carbon 2019, 147, 51–57. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, Z.; Zhu, W.; Wang, G. Growth of Large-Area High-Quality Graphene on Different Types of Copper Foil Preannealed under Positive Pressure H2 Ambience. ACS Omega 2019, 4, 5165–5171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, B.; Liu, Z.; Peng, H. Toward Mass Production of CVD Graphene Films. Adv. Mater. 2019, 31, e1800996. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Yeo, C.S.; Kim, S.J.; Lee, J.Y.; Kim, Y.; Cho, K.R.; Ju, S.; Hong, B.H.; Park, S.Y. Multifunctional reduced graphene oxide-CVD graphene core-shell fibers. Nanoscale 2019, 11, 12637–12642. [Google Scholar] [CrossRef]
- Kim, K.; Lee, H.B.; Johnson, R.W.; Tanskanen, J.T.; Liu, N.; Kim, M.G.; Pang, C.; Ahn, C.; Bent, S.F.; Bao, Z. Selective metal deposition at graphene line defects by atomic layer deposition. Nat. Commun. 2014, 5, 4781–4789. [Google Scholar] [CrossRef] [Green Version]
- Van Veldhoven, Z.A.; Alexander-Webber, J.A.; Sagade, A.A.; Braeuninger-Weimer, P.; Hofmann, S. Electronic properties of CVD graphene: The role of grain boundaries, atmospheric doping, and encapsulation by ALD. Phys. Status Solidi B 2016, 253, 2321–2325. [Google Scholar] [CrossRef]
- Liang, T.; Habib, M.R.; Kong, Y.; Cai, Y.; Chen, H.; Fujita, D.; Lin, C.-T.; Liu, Y.; Yu, C.; Su, H.; et al. Elucidation of heterogeneous graphene nucleation and growth through Cu surface engineering. Carbon 2019, 147, 120–125. [Google Scholar] [CrossRef]
- Farajian, A.A.; Mortezaee, R.; Osborn, T.H.; Pupysheva, O.V.; Wang, M.; Zhamu, A.; Jang, B.Z. Multiscale molecular thermodynamics of graphene-oxide liquid-phase exfoliation. Phys. Chem. Chem. Phys. 2019, 21, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Ma, G.; He, Y.; Lu, L.; Zhang, J.; Wang, H. Compact pure phase CsPbBr3 perovskite film with significantly improved stability for high-performance memory. Ceram. Int. 2019, 45, 1150–1155. [Google Scholar] [CrossRef]
- Chen, D.; Wang, F.; Li, Y.; Wang, W.W.; Huang, T.X.; Li, J.F.; Novoselov, K.S.; Tian, Z.Q.; Zhan, D. Programmed electrochemical exfoliation of graphite to high quality graphene. Chem. Commun. (Camb.) 2019, 55, 3379–3382. [Google Scholar] [CrossRef] [PubMed]
- Ejigu, A.; Le Fevre, L.W.; Fujisawa, K.; Terrones, M.; Forsyth, A.J.; Dryfe, R.A.W. Electrochemically Exfoliated Graphene Electrode for High-Performance Rechargeable Chloroaluminate and Dual-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 23261–23270. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, T.; Wang, H.; Guo, Z.; Zhang, H. Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale 2019, 11, 12413–12435. [Google Scholar] [CrossRef]
- McLean, B.; Webber, G.B.; Page, A.J. Boron Nitride Nanotube Nucleation via Network Fusion during Catalytic Chemical Vapor Deposition. J. Am. Chem. Soc. 2019, 141, 13385–13393. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Y.; Sendeku, M.G.; Yin, L.; Zhan, X.; Wang, F.; Wang, Z.; He, J. Recent Progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures. Adv. Mater. 2019, 31, e1901694. [Google Scholar] [CrossRef]
- Hong, Y.L.; Seo, T.H.; Jang, H.; Kim, Y.K. The Effect of Oxidative Debris on the Laser Desorption/Ionization Efficiency of Graphene Oxide Derivatives for Mass Spectrometric Analysis of Small Molecules and Synthetic Polymers. Anal. Sci. 2019, 35, 1097–1102. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Tao, J.; Ruzsinszky, A.; Perdew, J.P. van der Waals Correction to the Physisorption of Graphene on Metal Surfaces. J. Phys. Chem. C 2019, 123, 13748–13757. [Google Scholar] [CrossRef]
- Jin, B.; Xiong, D.B.; Tan, Z.; Fan, G.; Guo, Q.; Su, Y.; Li, Z.; Zhang, D. Enhanced corrosion resistance in metal matrix composites assembled from graphene encapsulated copper nanoflakes. Carbon 2019, 142, 482–490. [Google Scholar] [CrossRef]
- Chuang, C.; Mineharu, M.; Matsunaga, M.; Liu, C.W.; Wu, B.Y.; Kim, G.H.; Watanabe, K.; Taniguchi, T.; Liang, C.T.; Aoki, N. Conductance interference effects in an electron-beam-resist-free chemical vapor deposition graphene device sandwiched between two h-BN sheets. Carbon 2019, 154, 238–243. [Google Scholar] [CrossRef]
- Şar, H.; Özden, A.; Demiroğlu, İ.; Sevik, C.; Perkgoz, N.K.; Ay, F. Long-Term Stability Control of CVD-Grown Monolayer MoS2. Phys. Status Solidi RRL Rapid Res. Lett. 2019, 13, 1800687. [Google Scholar] [CrossRef]
- Meng, Q.; Deng, B.; Zhang, H.; Wang, B.; Zhang, W.; Wen, Y.; Ming, H.; Zhu, X.; Guan, Y.; Xiang, Y.; et al. Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene. Energy Storage Mater. 2019, 16, 419–425. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, X.; Hirtz, T.; Deng, G.; Wei, Y.; Li, M.; Ji, S.; Wu, Q.; Jian, J.; Wu, F.; et al. Graphene-based wearable sensors. Nanoscale 2019, 11, 18923–18945. [Google Scholar] [CrossRef]
- Ott, S.; Wolff, N.; Rashvand, F.; Rao, V.J.; Zaumseil, J.; Backes, C. Impact of the MoS2 Starting Material on the Dispersion Quality and Quantity after Liquid Phase Exfoliation. Chem. Mater. 2019, 31, 8424–8431. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, J.; She, X.; Song, Y.; Qian, J.; Wang, Y.; Xu, H.; Li, H.; Yan, Q. Rapid synthesis of ultrathin 2D materials through liquid-nitrogen and microwave treatments. J. Mater. Chem. A 2019, 7, 5209–5213. [Google Scholar] [CrossRef]
- Contreras-Pereda, N.; Hayati, P.; Suarez-Garcia, S.; Esrafili, L.; Retailleau, P.; Benmansour, S.; Novio, F.; Morsali, A.; Ruiz-Molina, D. Delamination of 2D coordination polymers: The role of solvent and ultrasound. Ultrason. Sonochem. 2019, 55, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Li, Y.; Meng, H.; Wu, W. Surface functionalization of bulk MoS2 sheets for efficient liquid phase exfoliation in polar micromolecular solvents. Appl. Surf. Sci. 2019, 486, 362–370. [Google Scholar] [CrossRef]
- Omari, I.; Randhawa, P.; Randhawa, J.; Yu, J.; McIndoe, J.S. Structure, Anion, and Solvent Effects on Cation Response in ESI-MS. J. Am. Soc. Mass Spectrom. 2019, 30, 1750–1757. [Google Scholar] [CrossRef]
- Long, Y.; Wu, L.; Pan, F.; Zhang, Z.; Yang, M.; Tang, A.; Zhang, G.; Liu, L.; Atrens, A. A Graphene Spin Coatings for Cost-Effective Corrosion Protection for the Magnesium Alloy AZ31. J. Nanosci. Nanotechnol. 2019, 19, 105–111. [Google Scholar] [CrossRef]
- Liu, F.; Qiu, X.; Xu, J.; Huang, J.; Chen, D.; Chen, G. High conductivity and transparency of graphene-based conductive ink: Prepared from a multi-component synergistic stabilization method. Prog. Org. Coat. 2019, 133, 125–130. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Kim, H. Electrical Heating Performance of Electro-Conductive Para-aramid Knit Manufactured by Dip-Coating in a Graphene/Waterborne Polyurethane Composite. Sci. Rep. 2019, 9, 1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tas, M.; Altin, Y.; Bedeloglu, A. Graphene and graphene oxide-coated polyamide monofilament yarns for fiber-shaped flexible electrodes. J. Text. Inst. 2018, 110, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Mitoma, N.; Yano, Y.; Ito, H.; Miyauchi, Y.; Itami, K. Graphene Nanoribbon Dielectric Passivation Layers for Graphene Electronics. ACS Appl. Nano Mater. 2019, 2, 4825–4831. [Google Scholar] [CrossRef]
- Puah, P.Y.; Yusoff, U.H.; Lee, P.C.; Moh, P.Y.; How, S.E. Surface characterization, biocompatibility and osteogenic differentiation of drop-casted multilayer graphene oxide film towards human wharton’s jelly derived mesenchymal stem cells. Mater. Technol. 2019. [Google Scholar] [CrossRef]
- Yang, N.; Cheng, S.; Wu, C.; Jia, R.; Liu, C. Dynamic Behaviors Analysis of a Chaotic Circuit Based on a Novel Fractional-Order Generalized Memristor. Complexity 2019, 2019, 1–15. [Google Scholar] [CrossRef]
- Khalil, N.A.; Said, L.A.; Radwan, A.G.; Soliman, A.M. General fractional order mem-elements mutators. Microelectron. J. 2019, 90, 211–221. [Google Scholar] [CrossRef]
- Hamsa, S.; Thangadurai, N.; Ananth, A.G. Low power device design application by magnetic tunnel junctions in Magnetoresistive Random Access Memory (MRAM). SN Appl. Sci. 2019, 1, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.H.R.; Navlakha, N.; Lin, J.T.; Kranti, A. Improving charge retention in capacitorless DRAM through material and device innovation. Jpn. J. Appl. Phys. 2019, 58, Sbbb03. [Google Scholar] [CrossRef]
- Shen, F.; He, Y.; Zhang, J.; Xu, C. Periodic learning-based region selection for energy-efficient MLC STT-RAM cache. J. Supercomput. 2019, 75, 6220–6238. [Google Scholar] [CrossRef]
- Mittal, S. Mitigating Read Disturbance Errors in STT-RAM Caches by Using Data Compression. Nanoelectronics 2019. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.F.; Tang, X.G.; Wang, L.Q.; Tang, H.; Jiang, Y.P.; Liu, Q.X.; Li, W.H.; Tang, Z.H. Resistive Switching Characteristics of HfO2 Thin Films on Mica Substrates Prepared by Sol-Gel Process. Nanomaterials (Basel) 2019, 9, 1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Huang, C.C.; Wang, J.C. Nonlinear resistive switching features of rapid-thermal-annealed aluminum nitride dielectrics with modified charge trapping behaviors. Microelectron. Eng. 2019, 216, 111033. [Google Scholar] [CrossRef]
- Shih, C.F.; Wu, H.T.; Tsai, W.L.; Leu, C.C. Improvement of resistive memory properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/CH3NH3PbI3 based device by potassium iodide additives. J. Alloys Compd. 2019, 783, 478–485. [Google Scholar] [CrossRef]
- Cai, C.; Gao, S.; Zhao, P.; Yu, J.; Zhao, K.; Xu, L.; Li, D.; He, Z.; Yang, G.; Liu, T.; et al. SEE Sensitivity Evaluation for Commercial 16 nm SRAM-FPGA. Electronics 2019, 8, 1531. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.M.; Song, B.; Jung, S.-O. Sensing Margin Enhancement Technique Utilizing Boosted Reference Voltage for Low-Voltage and High-Density DRAM. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2019, 27, 2413–2422. [Google Scholar] [CrossRef]
- Sakthimurugan, K.; Geetha, K. Designing low power magentic flip flop in 45 nm FDSOI technology for large scale cluster based engineering application. Clust. Comput. 2018, 22, 6907–6912. [Google Scholar] [CrossRef]
- Gomez, R.G.; Bano, E.; Clerc, S. Comparative evaluation of Body Biasing and Voltage Scaling for Low-Power Design on 28nm UTBB FD-SOI Technology. In Proceedings of the 2019 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Lausanne, Switzerland, 29–31 July 2019; pp. 1–6. [Google Scholar]
- Chou, C.H.; Bhuyan, L.N.; Wong, D. μDPM: Dynamic Power Management for the Microsecond Era. In Proceedings of the 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), Washington, DC, USA, 16–20 February 2019; pp. 120–132. [Google Scholar]
- Alanis, A.; Valdés, J.H.; María Guadalupe, N.V.; Lopez, R.; Mendoza, R.; Mathew, A.P.; Díaz de León, R.; Valencia, L. Plasma surface-modification of cellulose nanocrystals: A green alternative towards mechanical reinforcement of ABS. RSC Adv. 2019, 9, 17417–17424. [Google Scholar] [CrossRef] [Green Version]
- Gan, L.R.; Wang, Y.R.; Chen, L.; Zhu, H.; Sun, Q.Q. A Floating Gate Memory with U-Shape Recessed Channel for Neuromorphic Computing and MCU Applications. Micromachines (Basel) 2019, 10, 558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooi, P.C.; Mohammad Haniff, M.A.S.; Mohd Razip Wee, M.F.; Goh, B.T.; Dee, C.F.; Mohamed, M.A.; Majlis, B.Y. Electrical transportation mechanisms of molybdenum disulfide flakes-graphene quantum dots heterostructure embedded in polyvinylidene fluoride polymer. Sci. Rep. 2019, 9, 6761. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Lee, D.; Oh, J.; Yu, H. Scalable disk-based topic modeling for memory limited devices. Inf. Sci. 2020, 516, 353–369. [Google Scholar] [CrossRef]
- Qureshi, M.K.; Franceschini, M.; Lastras-Montaño, L.A.; Karidis, J.P. Morphable Memory System A Robust Architecture for Exploiting Multi-Level Phase Change Memories. In Proceedings of the ISCA ’10 37th Annual International Symposium on Computer Architecture, Saint-Malo, France, 19–23 June 2010; pp. 153–162. [Google Scholar]
- Kim, C.; Kim, D.H.; Jeong, W.; Kim, H.J.; Park, I.H.; Park, H.W.; Lee, J.; Park, J.; Ahn, Y.L.; Lee, J.Y.; et al. A 512-Gb 3-b/Cell 64-Stacked WL 3-D-NAND Flash Memory. IEEE J. Solid-State Circuits 2018, 53, 124–133. [Google Scholar] [CrossRef]
- Peng, Y.; Han, G.; Xiao, W.; Wu, J.; Liu, Y.; Zhang, J.; Hao, Y. Nanocrystal-Embedded-Insulator (NEI) Ferroelectric FETs for Negative Capacitance Device and Non-Volatile Memory Applications. Nanoscale Res. Lett. 2019, 14, 115–123. [Google Scholar] [CrossRef]
- Kaczmarek, K.T.; Ledingham, P.M.; Brecht, B.; Thomas, S.E.; Thekkadath, G.S.; Lazo-Arjona, O.; Munns, J.H.D.; Poem, E.; Feizpour, A.; Saunders, D.J.; et al. High-speed noise-free optical quantum memory. Phys. Rev. A 2018, 97, 042316. [Google Scholar] [CrossRef] [Green Version]
- Chua, L. Resistance switching memories are memristors. Appl. Phys. A 2011, 102, 765–783. [Google Scholar] [CrossRef] [Green Version]
- Muthuswamy, B.; Kokate, P. Memristor-Based Chaotic Circuits. IETE Tech. Rev. 2009, 26. [Google Scholar] [CrossRef] [Green Version]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–84. [Google Scholar] [CrossRef]
- Adhikari, S.P.; Sah, M.P.; Kim, H.; Chua, L.O. Three Fingerprints of Memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 3008–3021. [Google Scholar] [CrossRef]
- Escudero, M.; Vourkas, I.; Rubio, A.; Moll, F. Memristive Logic in Crossbar Memory Arrays: Variability-Aware Design for Higher Reliability. IEEE Trans. Nanotechnol. 2019, 18, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Duan, S.K.; Hu, X.; Wang, L.D.; Li, C.D.; Mazumder, P. Memristor-based RRAM with applications. Sci. China Inf. Sci. 2012, 55, 1446–1460. [Google Scholar] [CrossRef]
- Park, W.Y.; Ju, W.; Ko, Y.S.; Kim, S.G.; Ha, T.J.; Lee, J.Y.; Park, Y.T.; Kim, K.W.; Lee, J.C.; Lee, J.H.; et al. Improvement of sensing margin and reset switching fail of RRAM. Solid-State Electron. 2019, 156, 87–91. [Google Scholar] [CrossRef]
- Subhechha, S.; Degraeve, R.; Roussel, P.; Goux, L.; Clima, S.; De Meyer, K.; Van Houdt, J.; Kar, G.S. Regular and Inverted Operating Regimes in TiN/a-Si/TiOx/TiN RRAM Devices. IEEE Electron. Device Lett. 2018, 39, 351–354. [Google Scholar] [CrossRef]
- Lee, C.; Lee, J.; Kim, M.; Woo, J.; Koo, S.M.; Oh, J.M.; Lee, D. Two-Terminal Structured Synaptic Device Using Ionic Electrochemical Reaction Mechanism for Neuromorphic System. IEEE Electron. Device Lett. 2019, 40, 546–549. [Google Scholar] [CrossRef]
- Kang, X.; Guo, J.; Gao, Y.; Ren, S.; Chen, W.; Zhao, X. NiO-based resistive memory devices with highly improved uniformity boosted by ionic liquid pre-treatment. Appl. Surf. Sci. 2019, 480, 57–62. [Google Scholar] [CrossRef]
- Wang, G.; Hu, L.; Xia, Y.; Li, Q.; Xu, Q. Resistive switching in FeNi/Al2O3/NiO/Pt structure with various Al2O3 layer thicknesses. J. Magn. Magn. Mater. 2020, 493, 165728–165734. [Google Scholar] [CrossRef]
- Pal, S.; Bose, S.; Ki, W.-H.; Islam, A. Design of Power- and Variability-Aware Nonvolatile RRAM Cell Using Memristor as a Memory Element. IEEE J. Electron. Devices Soc. 2019, 7, 701–709. [Google Scholar] [CrossRef]
- Su, J.; Liu, K.; Wang, F.; Jin, B.; Guo, Y.; Liu, G.; Li, H.; Zhai, T. Van der Waals 2D Transition Metal Tellurides. Adv. Mater. Interfaces 2019, 6, 1900741. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.; Zhou, Y.; Han, S.-T.; Roy, V.A.L. From biomaterial-based data storage to bio-inspired artificial synapse. Mater. Today 2018, 21, 537–552. [Google Scholar] [CrossRef]
- Zheng, L.; Sun, B.; Chen, Y.; Li, T.; Mao, S.; Zhu, S.; Wang, H.; Zhang, Y.; Lei, M.; Zhao, Y. The redox of hydroxyl-assisted metallic filament induced resistive switching memory based on a biomaterial-constructed sustainable and environment-friendly device. Mater. Today Chem. 2018, 10, 167–174. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, H.; Wang, K.; Wu, R.; Song, L.; Li, T.; Wang, J.; Yu, Z.; Qian, H. Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes. Sci. Rep. 2015, 5, 13785. [Google Scholar] [CrossRef]
- Delgado-Notario, J.A.; Clericò, V.; Diez, E.; Velázquez-Pérez, J.E.; Taniguchi, T.; Watanabe, K.; Otsuji, T.; Meziani, Y.M. Asymmetric Dual Grating Gate Graphene-based THz detectors. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar]
- Kwong Hong Tsang, D.; Lieberthal, T.J.; Watts, C.; Dunlop, I.E.; Ramadan, S.; Del Rio Hernandez, A.E.; Klein, N. Chemically Functionalised Graphene FET Biosensor for the Label-free Sensing of Exosomes. Sci. Rep. 2019, 9, 13946. [Google Scholar] [CrossRef] [Green Version]
- Standley, B.; Bao, W.; Zhang, H.; Bruck, J.; Lau, C.N.; Bockrath, M. Graphene-Based Atomic-Scale Switches. Nano Lett. 2008, 8, 3345–3349. [Google Scholar] [CrossRef]
- Sarkar, K.J.; Pal, B.; Banerji, P. Graphene Oxide as a Dielectric and Charge Trap Element in Pentacene-Based Organic Thin-Film Transistors for Nonvolatile Memory. ACS Omega 2019, 4, 4312–4319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seul Ki, H.; Ji Eun, K.; Sang Ouk, K.; Sung-Yool, C.; Byung Jin, C. Flexible Resistive Switching Memory Device Based on Graphene Oxide. IEEE Electron. Device Lett. 2010, 31, 1005–1007. [Google Scholar] [CrossRef]
- Ray, S.C.; Bhunia, S.K.; Saha, A.; Jana, N.R. Graphene oxide (GO)/reduced-GO and their composite with conducting polymer nanostructure thin films for non-volatile memory device. Microelectron. Eng. 2015, 146, 48–52. [Google Scholar] [CrossRef]
- Yu, Y.; Zeng, F.; Chen, J.; Kang, J.; Yang, F.; Cao, Y.; Xiang, M. Regulating polycrystalline behavior of the β-nucleated isotactic polypropylene/graphene oxide composites by melt memory effect. Polym. Compos. 2019, 40, E440–E448. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Kim, J.Y.; Kim, J.W.; Hwang, J.O.; Kim, J.E.; Lee, J.Y.; Yoon, T.H.; Cho, B.J.; Kim, S.O.; Ruoff, R.S.; et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 2010, 10, 4381–4386. [Google Scholar] [CrossRef]
- Alaabdlqader, H.S.; Sleiman, A.; Sayers, P.; Mabrook, M.F. Graphene oxide-based non-volatile organic field effect memory transistors. IET Circuits Devices Syst. 2015, 9, 67–71. [Google Scholar] [CrossRef]
- Khurana, G.; Misra, P.; Katiyar, R.S. Forming free resistive switching in graphene oxide thin film for thermally stable nonvolatile memory applications. J. Appl. Phys. 2013, 114, 124508. [Google Scholar] [CrossRef]
- Shin, Y.; Taufique, M.F.N.; Devanathan, R.; Cutsforth, E.C.; Lee, J.; Liu, W.; Fifield, L.S.; Gotthold, D.W. Highly Selective Supported Graphene Oxide Membranes for Water-Ethanol Separation. Sci. Rep. 2019, 9, 2251. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Wei, H.; Gao, R.; Yang, Z.; Zhang, J.; Zhong, Z.; Zhang, Y. Exceptional negative thermal expansion and viscoelastic properties of graphene oxide paper. Carbon 2012, 50, 2804–2809. [Google Scholar] [CrossRef]
- Zhuang, X.D.; Chen, Y.; Liu, G.; Li, P.P.; Zhu, C.X.; Kang, E.T.; Noeh, K.G.; Zhang, B.; Zhu, J.H.; Li, Y.X. Conjugated-polymer-functionalized graphene oxide: Synthesis and nonvolatile rewritable memory effect. Adv. Mater. 2010, 22, 1731–1735. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Seo, S.; Lee, J.; Wang, L.; Lee, E.; Min, M.; Lee, H. Nonvolatile Memory Device Using Gold Nanoparticles Covalently Bound to Reduced Graphene Oxide. ACS Nano 2011, 5, 6826–6833. [Google Scholar] [CrossRef]
- Li, D.; Zhang, B.; Zhu, C.; Tian, X.; Zhao, Z.; Chen, Y. In-situ growing D-A polymer from the surface of reduced graphene oxide: Synthesis and nonvolatile ternary memory effect. Carbon 2019, 143, 851–858. [Google Scholar] [CrossRef]
- Zhuge, F.; Hu, B.; He, C.; Zhou, X.; Liu, Z.; Li, R.-W. Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon 2011, 49, 3796–3802. [Google Scholar] [CrossRef]
- Ki Hong, S.; Eun Kim, J.; Kim, S.O.; Jin Cho, B. Analysis on switching mechanism of graphene oxide resistive memory device. J. Appl. Phys. 2011, 110, 044506. [Google Scholar] [CrossRef] [Green Version]
- Romero, F.J.; Toral-Lopez, A.; Ohata, A.; Morales, D.P.; Ruiz, F.G.; Godoy, A.; Rodriguez, N. Laser-Fabricated Reduced Graphene Oxide Memristors. Nanomaterials (Basel) 2019, 9, 897. [Google Scholar] [CrossRef] [Green Version]
- Aziz, T.N.T.A.; Rosli, A.B.; Yusoff, M.M.; Herman, S.H.; Zulkifli, Z. Transparent hybrid ZnO-graphene film for high stability switching behavior of memristor device. Mater. Sci. Semicond. Process. 2019, 89, 68–76. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, X.; Zhang, S.R.; Pan, J.; Huang, P.; Zhang, C.; Ding, G.; Zhou, Y.; Zhou, K.; Roy, V.A.L.; et al. Controlled Nonvolatile Transition in Polyoxometalates-Graphene Oxide Hybrid Memristive Devices. Adv. Mater. Technol. 2019, 4, 1800551. [Google Scholar] [CrossRef]
- Gupta, V.; Kapur, S.; Saurabh, S.; Grover, A. Resistive Random Access Memory: A Review of Device Challenges. IETE Tech. Rev. 2019. [Google Scholar] [CrossRef]
- Russo, P.; Xiao, M.; Zhou, N.Y. Electrochemical Oxidation Induced Multi-Level Memory in Carbon-Based Resistive Switching Devices. Sci. Rep. 2019, 9, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Romero, F.J.; Toral, A.; Medina-Rull, A.; Moraila-Martinez, C.L.; Morales, D.P.; Ohata, A.; Godoy, A.; Ruiz, F.G.; Rodriguez, N. Resistive Switching in Graphene Oxide. Front. Mater. 2020, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Peng, J.; Cheng, Y.; Zhao, Q.; Du, Y.; Dou, S.; Tomsia, A.P.; Wagner, H.D.; Jiang, L.; Cheng, Q. Ultratough nacre-inspired epoxy–graphene composites with shape memory properties. J. Mater. Chem. A 2019, 7, 2787–2794. [Google Scholar] [CrossRef]
- Akinwande, D.; Huyghebaert, C.; Wang, C.H.; Serna, M.I.; Goossens, S.; Li, L.J.; Wong, H.P.; Koppens, F.H.L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. [Google Scholar] [CrossRef]
- Yin, S.; Gluschke, J.G.; Micolich, A.P.; Nathawat, J.; Barut, B.; Dixit, R.; Arabchigavkani, N.; He, K.; Randle, M.; Kwan, C.P.; et al. Nonvolatile Memory Action Due to Hot-Carrier Charge Injection in Graphene-on-Parylene Transistors. ACS Appl. Electron. Mater. 2019, 1, 2260–2267. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, J.Y.; Choi, S.-Y.; Lee, J.Y.; Jeong, H.Y. Direct Observation of Conducting Nanofilaments in Graphene-Oxide-Resistive Switching Memory. Adv. Funct. Mater. 2015, 25, 6710–6715. [Google Scholar] [CrossRef]
- Panin, G.N.; Kapitanova, O.O.; Lee, S.W.; Baranov, A.N.; Kang, T.W. Resistive Switching in Al/Graphene Oxide/Al Structure. Jpn. J. Appl. Phys. 2011, 50, 0701101–0701106. [Google Scholar]
- Wang, L.H.; Yang, W.; Sun, Q.Q.; Zhou, P.; Lu, H.L.; Ding, S.J.; Wei Zhang, D. The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories. Appl. Phys. Lett. 2012, 100, 063509. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Xiao, B.; Mishra, S.; Killam, A.; Pradhan, A.K. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application. Sci. Rep. 2016, 6, 26763. [Google Scholar] [CrossRef] [PubMed]
- Khurana, G.; Kumar, N.; Chhowalla, M.; Scott, J.F.; Katiyar, R.S. Non-Polar and Complementary Resistive Switching Characteristics in Graphene Oxide devices with Gold Nanoparticles: Diverse Approach for Device Fabrication. Sci. Rep. 2019, 9, 15103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wah, L.E. Modeling of Graphene Oxide Memory based on Hybridization State Modulation. Imp. J. Interdiscip. Res. 2017, 3, 152–158. [Google Scholar]
- Porro, S.; Accornero, E.; Pirri, C.F.; Ricciardi, C. Memristive devices based on graphene oxide. Carbon 2015, 85, 383–396. [Google Scholar] [CrossRef]
- Kumar, R.; Jayaramulu, K.; Maji, T.K.; Rao, C.N. Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties. Chem. Commun. (Camb.) 2013, 49, 4947–4949. [Google Scholar] [CrossRef]
- Lim, E.W.; Ahmadi, M.T.; Ismail, R. Modeling and simulation of graphene-oxide-based RRAM. J. Comput. Electron. 2016, 15, 602–610. [Google Scholar] [CrossRef]
- Chen, H.Y.; Tian, H.; Gao, B.; Yu, S.; Liang, J.; Kang, J.; Zhang, Y.; Ren, T.L.; Wong, H.S.P. Electrode oxide interface engineering by inserting single-layer graphene Application for HfOx-based resistive random access memory. IEEE Electron. Device Lett. 2012, 10, 2051–2054. [Google Scholar]
- Sohn, J.; Lee, S.; Jiang, Z.; Chen, H.Y.; Wong, H.S.P. Atomically thin graphene plane electrode for 3D RRAM. IEEE Electron. Device Lett. 2014, 3, 531–534. [Google Scholar]
- Khatami, Y.; Li, H.; Xu, C.; Banerjee, K. Metal-to-Multilayer-Graphene Contact—Part I: Contact Resistance Modeling. IEEE Trans. Electron. Devices 2012, 59, 2444–2452. [Google Scholar] [CrossRef]
- Tian, H.; Chen, H.Y.; Gao, B.; Yu, S.; Liang, J.; Yang, Y.; Xie, D.; Kang, J.; Ren, T.L.; Zhang, Y.; et al. Monitoring oxygen movement by Raman spectroscopy of resistive random access memory with a graphene-inserted electrode. Nano Lett. 2013, 13, 651–657. [Google Scholar] [CrossRef]
- Hui, F.; Grustan-Gutierrez, E.; Long, S.; Liu, Q.; Ott, A.K.; Ferrari, A.C.; Lanza, M. Graphene and Related Materials for Resistive Random Access Memories. Adv. Electron. Mater. 2017, 3, 1600195. [Google Scholar] [CrossRef]
- Seo, J.T.; Zhu, J.; Sangwan, V.K.; Secor, E.B.; Wallace, S.G.; Hersam, M.C. Fully Inkjet-Printed, Mechanically Flexible MoS2 Nanosheet Photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 5675–5681. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, Y.; Kim, S.M.; Song, E.B. Fully-transparent graphene charge-trap memory device with large memory window and long-term retention. Carbon 2018, 127, 70–76. [Google Scholar] [CrossRef]
- Kafy, A.; Sadasivuni, K.K.; Kim, H.C.; Akther, A.; Kim, J. Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys. Chem. Chem. Phys. 2015, 17, 5923–5931. [Google Scholar] [CrossRef]
- Qian, K.; Tay, R.Y.; Lin, M.F.; Chen, J.; Li, H.; Lin, J.; Wang, J.; Cai, G.; Nguyen, V.C.; Teo, E.H.; et al. Direct Observation of Indium Conductive Filaments in Transparent, Flexible, and Transferable Resistive Switching Memory. ACS Nano 2017, 11, 1712–1718. [Google Scholar] [CrossRef]
- Lee, S.Y.; Duong, D.L.; Vu, Q.A.; Jin, Y.; Kim, P.; Lee, Y.H. Chemically Modulated Band Gap in Bilayer Graphene Memory Transistors with High On Off Ratio. ACS Nano 2015, 9, 9034–9042. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, H.; Zeng, Q.; Zhang, Y.; Kang, H.; Duan, H.; Guo, Y.; Liu, H. Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels. J. Mater. Chem. A 2015, 3, 11641–11649. [Google Scholar] [CrossRef]
- Liu, T.; Wu, W.; Liao, K.N.; Sun, Q.; Gong, X.; Roy, V.A.L.; Yu, Z.Z.; Li, R.K.Y. Fabrication of carboxymethyl cellulose and graphene oxide bio-nanocomposites for flexible nonvolatile resistive switching memory devices. Carbohydr. Polym. 2019, 214, 213–220. [Google Scholar] [CrossRef]
- Al-Shawi, A.; Alias, M.; Sayers, P.; Mabrook, M.F. Improved Memory Properties of Graphene Oxide-Based Organic Memory Transistors. Micromachines (Basel) 2019, 10, 643. [Google Scholar] [CrossRef] [Green Version]
- Ban, C.; Wang, X.; Zhou, Z.; Mao, H.; Cheng, S.; Zhang, Z.; Liu, Z.; Li, H.; Liu, J.; Huang, W. A Universal Strategy for Stretchable Polymer Nonvolatile Memory via Tailoring Nanostructured Surfaces. Sci. Rep. 2019, 9, 10337–10343. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Fu, Y.; Li, D.; Zhu, C.; Zhang, B.; Chen, Y. Organophosphorus-based polymer covalently functionalized reduced graphene oxide: In-situ synthesis and nonvolatile memory effect. Carbon 2019, 141, 758–767. [Google Scholar] [CrossRef]
- Church, R.B.; Hu, K.; Magnacca, G.; Cerruti, M. Cations Block Hydrogen-Bonding-Driven Ethanol Permeation through Disordered Drop-Cast Graphene Oxide Membranes. ACS Appl. Nano Mater. 2019, 2, 5389–5398. [Google Scholar] [CrossRef]
- Chu, Z.; Wang, Y.; Jiao, L.; Zhang, X. Laser-scribed reduced graphene oxide as counter electrode for dye-sensitized solar cell. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 914–919. [Google Scholar] [CrossRef]
- Markad, G.B.; Padma, N.; Chadha, R.; Gupta, K.C.; Rajarajan, A.K.; Deb, P.; Kapoor, S. Mutual influence on aggregation and magnetic properties of graphene oxide and copper phthalocyanine through non-covalent, charge transfer interaction. Appl. Surf. Sci. 2019. [Google Scholar] [CrossRef]
- Bae, H.; Kim, D.; Seo, M.; Jin, I.K.; Jeon, S.B.; Lee, H.M.; Jung, S.H.; Jang, B.C.; Son, G.; Yu, K.; et al. Bioinspired Polydopamine-Based Resistive-Switching Memory on Cotton Fabric for Wearable Neuromorphic Device Applications. Adv. Mater. Technol. 2019, 4, 1900151. [Google Scholar] [CrossRef]
- Amri, A.; Hasan, K.; Taha, H.; Rahman, M.M.; Herman, S.; Awaltanova, E.; Kabir, H.; Yin, C.Y.; Ibrahim, K.; Bahri, S.; et al. Surface structural features and optical analysis of nanostructured Cu-oxide thin film coatings coated via the sol-gel dip coating method. Ceram. Int. 2019, 45, 12888–12894. [Google Scholar] [CrossRef]
- Chun, S.; Son, W.; Kim, D.W.; Lee, J.; Min, H.; Jung, H.; Kwon, D.; Kim, A.H.; Kim, Y.J.; Lim, S.K.; et al. Water-Resistant and Skin-Adhesive Wearable Electronics Using Graphene Fabric Sensor with Octopus-Inspired Microsuckers. ACS Appl. Mater. Interfaces 2019, 11, 16951–16957. [Google Scholar] [CrossRef]
- Salaoru, I.; Maswoud, S.; Paul, S. Inkjet Printing of Functional Electronic Memory Cells: A Step Forward to Green Electronics. Micromachines (Basel) 2019, 10, 417. [Google Scholar] [CrossRef] [Green Version]
- Mavuri, A.; Mayes, A.G.; Alexander, M.S. Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size. Materials (Basel) 2019, 12, 2277. [Google Scholar] [CrossRef] [Green Version]
- Lyu, D.; Hu, C.; Jiang, Y.; Bai, N.; Wang, Q.; He, D.; Qi, J.; Li, Y. Resistive switching behavior and mechanism of room-temperature-fabricated flexible Al/TiS2-PVP/ITO/PET memory devices. Curr. Appl. Phys. 2019, 19, 458–463. [Google Scholar] [CrossRef]
- Jaafar, M.M.; Ooi, P.C.; Razip Wee, M.F.M.; Mohammad Haniff, M.A.S.; Mohamed, M.A.; Chang, E.Y.; Yeop Majlis, B.; Dee, C.F. Electrical bistabilities behaviour of all-solution-processed non-volatile memories based on graphene quantum dots embedded in graphene oxide layers. J. Mater. Sci. Mater. Electron. 2019, 30, 16415–16420. [Google Scholar] [CrossRef]
- Gogoi, K.K.; Chowdhury, A. Highly stable write-once-read-many times switching behavior of graphene oxide-polymer nanocomposites. In Proceedings of the International Conference on Advances in Basic Science (ICABS-2019), Bahal, India, 7–9 February 2019; p. 150028. [Google Scholar]
- Hassanpour, A.; Nahar, S.; Tong, X.; Zhang, G.; Gauthier, M.A.; Sun, S. Photocatalytic interlayer spacing adjustment of a graphene oxide/zinc oxide hybrid membrane for efficient water filtration. Desalination 2020, 475, 114174. [Google Scholar] [CrossRef]
- Li, X.; Fang, X.; Zhang, P.; Yan, J.; Chen, Y.; Chen, X. Preparation and properties of reduced graphene oxide/polyimide composite films. High Perform. Polym. 2019. [Google Scholar] [CrossRef]
- Tian, Y.; Song, Y.; Yao, H.; Yu, H.; Tan, H.; Song, N.; Shi, K.; Zhang, B.; Zhu, S.; Guan, S. Improving resistive switching characteristics of polyimide-based volatile memory devices by introducing triphenylamine branched structures. Dyes Pigments 2019, 163, 190–196. [Google Scholar] [CrossRef]
- Du, W.; Jin, Y.; Lai, S.; Shi, L.; Shen, Y.; Yang, H. Multifunctional light-responsive graphene-based polyurethane composites with shape memory, self-healing, and flame retardancy properties. Compos. A Appl. Sci. Manuf. 2020, 128, 105686. [Google Scholar] [CrossRef]
- Li, S.T.; Jin, X.Z.; Shao, Y.W.; Qi, X.D.; Yang, J.H.; Wang, Y. Gold nanoparticle/reduced graphene oxide hybrids for fast light-actuated shape memory polymers with enhanced photothermal conversion and mechanical stiffness. Eur. Polym. J. 2019, 116, 302–310. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, H.; Liu, P.; Zhang, C.; Li, W.; Chen, X.; Ma, F. Electrophoretic deposition of graphene oxide on NiTi alloy for corrosion prevention. Vacuum 2019, 161, 276–282. [Google Scholar] [CrossRef]
- Lin, C.C.; Chen, Y.D.; Lin, N.C. Graphene Oxide Based Device for Flexible RRAM Application. IEEE Electron. Device Lett. 2013, 9, 396–398. [Google Scholar]
- Midya, A.; Gogurla, N.; Ray, S.K. Flexible and transparent resistive switching devices using Au nanoparticles decorated reduced graphene oxide in polyvinyl alcohol matrix. Curr. Appl. Phys. 2015, 15, 706–710. [Google Scholar] [CrossRef]
- Liu, J.; Yin, Z.; Cao, X.; Zhao, F.; Wang, L.; Huang, W.; Zhang, H. Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices. Adv. Mater. 2013, 25, 233–238. [Google Scholar] [CrossRef]
- Yuan, F.; Ye, Y.R.; Wang, J.C.; Zhang, Z.; Pan, L.; Xu, J.; Lai, C.S. Retention behavior of graphene oxide resistive switching memory on flexible substrate. IEEE Electron. Device Lett. 2013, 5, 288–290. [Google Scholar]
- Wu, L.; Guo, J.; Zhong, W.; Zhang, W.; Kang, X.; Chen, W.; Du, Y. Flexible, multilevel, and low-operating-voltage resistive memory based on MoS2–rGO hybrid. Appl. Surf. Sci. 2019, 463, 947–952. [Google Scholar] [CrossRef]
- Wu, X.; Ge, R.; Chen, P.A.; Chou, H.; Zhang, Z.; Zhang, Y.; Banerjee, S.; Chiang, M.H.; Lee, J.C.; Akinwande, D. Thinnest Nonvolatile Memory Based on Monolayer h-BN. Adv. Mater. 2019, 31, e1806790. [Google Scholar] [CrossRef]
- Li, L. Ternary Memristic Effect of Trilayer-Structured Graphene-Based Memory Devices. Nanomaterials (Basel) 2019, 9, 518. [Google Scholar] [CrossRef] [Green Version]
- Lynch, I. Far-reaching effects from carbon nanotubes. Nat. Nanotechnol. 2019, 14, 639–640. [Google Scholar] [CrossRef]
Synthesis Methods | Chemical Vapor Deposition | Atomic Layer Deposition | Nucleation and Growth | Liquid Phase Exfoliation | Electrochemical Exfoliation | Solution Deposition |
---|---|---|---|---|---|---|
Materials | Graphene | Graphene | Graphene | GO | GO | GO |
h-BN | h-BN | TMD | TMD | TMD | h-BN | |
TMD | TMD | |||||
Devices | FeRAM | FeRAM | MRAM | FeRAM | FeRAM | FeRAM |
MRAM | MRAM | PCM | RRAM | RRAM | RRAM | |
TRAM | RRAM | RRAM | Flash | Flash | ||
RRAM | STT-RAM | |||||
STT-RAM |
Item | Spin Coating | Dip Coating | Drop Casting |
---|---|---|---|
Fabrication cost | Low | High | Low |
Fabrication equipment | Spin coater, hot plates | Dip coater, hot plates | Hot plates |
Fabrication time | <1 h | >2 h | <1 h |
Dielectric thickness | Thin and uniform | Thick and uniform | Thick and heterogeneous |
Device performance | Long retention time/endurance cycles | Short retention time/endurance cycles | Short retention time/endurance cycles |
FoM | SRAM | DRAM | Flash NAND | RRAM | FeRAM | PCM | STT-MRAM |
---|---|---|---|---|---|---|---|
Density (bit/chip) | ~10 MB | ~10 GB | ~10 GB | ~1 GB | ~1 MB | ~10 GB | 100 MB |
Technology feature size F (nm) | 16 | 15 | 15 | 16 | 65 | 20 | 22 |
Cell size (F2) | >100 | ~10 | ~5 | ~20 | ~40 | ~20 | ~40 |
Operation speed (write time) | ~10 ns | ~10 ns | ~100 us | ~100 ns | ~100 ns | ||
Program power/bit | ~10 pJ | ~10 pJ | ~10 nJ | ~10 pJ | ~1 pJ | ~1 nJ | ~1 pJ |
Retention time | Volatile | Volatile | >10 years | >10 years | >10 years | >10 years | >10 years |
Endurance cycles | ~1015 | ~1015 | 105 | 109 | 1015 | 108 | 1015 |
Price ($/GB) | <100k | ~10 | ~1 | ~1k | ~100k | ~100 | 10k |
TE | BE | RS Behavior | On/Off Ratio | VForming (V) | VSET (V) | VRESET (V) | Endurance (Cycle) | Retention (s) | Reference |
---|---|---|---|---|---|---|---|---|---|
Au | Pt | Bipolar | ~60 | ~2.8 | ~0.7 | ~-0.6 | >100 | >105 | [132] |
Ag | Pt | Bipolar | ~60 | ~0.5 | ~0.5 | ~-0.3 | >100 | >105 | [132] |
Cu | Pt | Bipolar | ~15 | ~1.8 | ~0.5 | ~-0.6 | >100 | >104 | [132] |
Ti | Pt | Bipolar | ~103 | ~1.2 | ~1.0 | ~-0.8 | >100 | >105 | [132] |
Au | ITO | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | [121,133] |
Al | Al | Bipolar | ~103 | N.A. | ~2.0 | ~-2.5 | >100 | >105 | [124] |
Al | ITO | Bipolar | ~103 | N.A. | ~2.0 | ~-1.5 | >100 | >109 | [133] |
Al | Pt | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | [132] |
Structure | Flexible Substrate | Fabrication Method of RS Layer | On/Off Ratio | Retention Time (s) | Endurance Cycles | Memory Type |
---|---|---|---|---|---|---|
Al/GO/ITO | PET | Spin coating | 103 | 107 | 100 | RRAM |
Al/CMC-GO/Al | PET | Spin coating | 105 | 2000 | N.A. | RRAM |
Al/GO/Al | PES | Coating | 200 | 104 | N.A. | RRAM |
Al/GO/ITO | PET | Spin coating | 280 | 104 | 120 | RRAM |
Al/GO/Al | PES | Spin casting | 103 | 105 | 100 | RRAM |
Al/Au-rGO/ITO | PET | Spin casting | 103 | 105 | N.A. | RRAM |
hrGO/lrGO/hrGO | PET | Spin coating | 103 | 1000 | N.A. | RRAM |
Al/GO/ITO | PET | Drop casting | 30 | 104 | N.A. | RRAM |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Zhao, C.; Qi, Y.; Mitrovic, I.Z.; Yang, L.; Wen, J.; Huang, Y.; Li, P.; Zhao, C. Memristive Non-Volatile Memory Based on Graphene Materials. Micromachines 2020, 11, 341. https://doi.org/10.3390/mi11040341
Shen Z, Zhao C, Qi Y, Mitrovic IZ, Yang L, Wen J, Huang Y, Li P, Zhao C. Memristive Non-Volatile Memory Based on Graphene Materials. Micromachines. 2020; 11(4):341. https://doi.org/10.3390/mi11040341
Chicago/Turabian StyleShen, Zongjie, Chun Zhao, Yanfei Qi, Ivona Z. Mitrovic, Li Yang, Jiacheng Wen, Yanbo Huang, Puzhuo Li, and Cezhou Zhao. 2020. "Memristive Non-Volatile Memory Based on Graphene Materials" Micromachines 11, no. 4: 341. https://doi.org/10.3390/mi11040341
APA StyleShen, Z., Zhao, C., Qi, Y., Mitrovic, I. Z., Yang, L., Wen, J., Huang, Y., Li, P., & Zhao, C. (2020). Memristive Non-Volatile Memory Based on Graphene Materials. Micromachines, 11(4), 341. https://doi.org/10.3390/mi11040341