Step-Wise Deposition Process for Dielectrophoretic Formation of Conductive 50-Micron-Long Carbon Nanotube Bridges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of IDEAs
2.2. Preparation of Carbon Nanotube Suspension
2.3. Preparation of Pyrrole Solution
2.4. Deposition of CNT Bridges, Resistance Measurement, and Heat Treatment
2.5. Polypyrrole (PPy) Deposition
2.6. Finite Element Analysis Multiphysics Simulation
3. Results and Discussion
3.1. Continuous vs. Step-Wise CNT Bridge Formation
3.2. Applied Frequency Influence on the Morphology of CNT Bridges
3.3. Influence of Postdeposition Heat Treatment on Resistance of CNT Bridges
3.4. PPy Deposition over CNT Bridges
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Popov, V.N. Carbon nanotubes: Properties and application. Mater. Sci. Eng. R Rep. 2004, 43, 61–102. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Z.; Yang, Z.; Chen, X.; Xu, D.; Zhang, Y. Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection. Nanotechnology 2009, 20, 345502. [Google Scholar] [CrossRef]
- Xue, W.; Liu, Y.; Cui, T. High-mobility transistors based on nanoassembled carbon nanotube semiconducting layer and SiO2 nanoparticle dielectric layer. Appl. Phys. Lett. 2006, 89, 163512. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, C.; Fasoli, A.; Scardaci, V.; Pisana, S.; Hasan, T.; Robertson, J.; Milne, W.I.; Ferrari, A.C. Hysteresis suppression in self-assembled single-wall nanotube field effect transistors. Phys. E Low-Dimens. Syst. Nanostruct. 2008, 40, 2278–2283. [Google Scholar] [CrossRef]
- Obite, F.; Ijeomah, G.; Bassi, J.S. Carbon nanotube field effect transistors: Toward future nanoscale electronics. Int. J. Comput. Appl. 2019, 41, 149–164. [Google Scholar] [CrossRef]
- Kaempgen, M.; Chan, C.K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872–1876. [Google Scholar] [CrossRef]
- Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M.D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y.; et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602. [Google Scholar] [CrossRef]
- Shulaker, M.M.; Hills, G.; Patil, N.; Wei, H.; Chen, H.-Y.; Wong, H.S.P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Y.; Chen, F.; Qing, Q.; Wu, Z.; Liu, Z. Controllable interconnection of single-walled carbon nanotubes under AC electric field. J. Phys. Chem. B 2005, 109, 11420–11423. [Google Scholar] [CrossRef]
- Robertson, J.; Zhong, G.; Telg, H.; Thomsen, C.; Warner, J.H.; Briggs, G.A.D.; Dettlaff-Weglikowska, U.; Roth, S. Growth and characterization of high-density mats of single-walled carbon nanotubes for interconnects. Appl. Phys. Lett. 2008, 93, 163111. [Google Scholar] [CrossRef]
- An, L.; Friedrich, C.R. Process parameters and their relations for the dielectrophoretic assembly of carbon nanotubes. J. Appl. Phys. 2009, 105, 074314. [Google Scholar] [CrossRef] [Green Version]
- Duchamp, M.; Lee, K.; Dwir, B.; Seo, J.W.; Kapon, E.; Forró, L.; Magrez, A. Controlled positioning of carbon nanotubes by dielectrophoresis: Insights into the solvent and substrate role. ACS Nano 2010, 4, 279–284. [Google Scholar] [CrossRef]
- An, L.; Friedrich, C. Dielectrophoretic assembly of carbon nanotubes and stability analysis. Prog. Nat. Sci. Mater. Int. 2013, 23, 367–373. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Peng, N.; Zhu, Q. Manipulation of carbon nanotubes using AC dielectrophoresis. Appl. Phys. Lett. 2005, 86, 153116. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, S.H.; Kwak, Y.K.; Han, C.S. Nanoscale fabrication of a single multiwalled carbon nanotube attached atomic force microscope tip using an electric field. Rev. Sci. Instrum. 2005, 76, 046108. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.S.; Yun, Y.H.; Rust, M.J.; Do, J.; Shanov, V.; Schulz, M.J.; Ahn, C.H. The precise self-assembly of individual carbon nanotubes using magnetic capturing and fluidic alignment. Nanotechnology 2009, 20, 325607. [Google Scholar] [CrossRef]
- Wu, P.-F.; Lee, G.-B. Assembly of carbon nanotubes between electrodes by utilizing optically induced dielectrophoresis and dielectrophoresis. Adv. Optoelectron. 2011, 2011, 482741. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Sun, Y.; Hess, D.W.; Wong, C.-P. Well-aligned open-ended carbon nanotube architectures: An approach for device assembly. Nano Lett. 2006, 6, 243–247. [Google Scholar] [CrossRef]
- Xiong, X.; Jaberansari, L.; Hahm, M.G.; Busnaina, A.; Jung, Y.J. Building Highly Organized Single-Walled-Carbon-Nanotube Networks Using Template-Guided Fluidic Assembly. Small 2007, 3, 2006–2010. [Google Scholar] [CrossRef]
- Hu, Z.; Hannon, J.B.; Park, H.; Han, S.-J.; Tulevski, G.S.; Afzali, A.; Liehr, M. Photo-Chemically Directed Self-Assembly of Carbon Nanotubes on Surfaces. arXiv 2017, arXiv:1704.01230. [Google Scholar]
- Kendall, K. Electromechanics of particles. Powder Technol. 1996, 89, 177–178. [Google Scholar] [CrossRef]
- Chen, X.Q.; Saito, T.; Yamada, H.; Matsushige, K. Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl. Phys. Lett. 2001, 78, 3714–3716. [Google Scholar] [CrossRef] [Green Version]
- Dimaki, M.; Bøggild, P. Dielectrophoresis of carbon nanotubes using microelectrodes: A numerical study. Nanotechnology 2004, 15, 1095. [Google Scholar] [CrossRef]
- Xiong, X.; Busnaina, A.; Selvarasah, S.; Somu, S.; Wei, M.; Mead, J.; Chen, C.L.; Aceros, J.; Makaram, P.; Dokmeci, M.R. Directed assembly of gold nanoparticle nanowires and networks for nanodevices. Appl. Phys. Lett. 2007, 91, 063101. [Google Scholar] [CrossRef] [Green Version]
- Madou, M.J. Manufacturing Techniques for Microfabrication and Nanotechnology; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Seo, H.-W.; Han, C.-S.; Choi, D.-G.; Kim, K.-S.; Lee, Y.-H. Controlled assembly of single SWNTs bundle using dielectrophoresis. Microelectron. Eng. 2005, 81, 83–89. [Google Scholar] [CrossRef]
- Katz, D.; Lopez, D.; Kornblit, A.; Grebel, H. Carbon nanotubes bridges spanning across metal electrode tips. J. Nanosci. Nanotechnol. 2008, 8, 4382–4386. [Google Scholar]
- Li, J.; Ye, Q.; Cassell, A.; Ng, H.T.; Stevens, R.; Han, J.; Meyyappan, M. Bottom-up approach for carbon nanotube interconnects. Appl. Phys. Lett. 2003, 82, 2491–2493. [Google Scholar] [CrossRef] [Green Version]
- Todri-Sanial, A.; Dijon, J.; Maffucci, A. Carbon Nanotubes for Interconnects; Springer: Berlin, Germany, 2017. [Google Scholar]
- Singh, A.; Jayaram, J.; Madou, M.; Akbar, S. Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 2002, 149, E78–E83. [Google Scholar] [CrossRef] [Green Version]
- Green, N.G.; Ramos, A.; González, A.; Morgan, H.; Castellanos, A. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2000, 4, 4011. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Ramos, A.; Green, N.G.; Castellanos, A.; Morgan, H. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2000, 4, 4019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, A.; Morgan, H.; Green, N.G.; Castellanos, A. Ac electrokinetics: A review of forces in microelectrode structures. J. Phys. D Appl. Phys. 1998, 31, 2338. [Google Scholar] [CrossRef] [Green Version]
- Seiphoori, A.; Ma, X.-G.; Arratia, P.E.; Jerolmack, D.J. Formation of stable aggregates by fluid-assembled solid bridges. Proc. Nat. Acad. Sci. USA 2020, 117, 3375–3381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Gonzalez, V.H.; Ho, V.; Vazquez-Pinon, M.; Martinez-Chapa, S.O.; Kulinsky, L. A novel micro/nano fabrication process based on the combined use of dielectrophoresis, electroosmotic flow, and electrodeposition for surface patterning. J. Micromech. Microeng. 2015, 25, 113007. [Google Scholar] [CrossRef]
CNT (kΩ) | CNT + HT (kΩ) | CNT + HT + PPy (kΩ) | CNT + HT + PPy + HT (kΩ) | |
---|---|---|---|---|
Sample 1 | ||||
10 MHz | 5.86 ± 0.09 | 1.03 ± 0.11 | 2.82 ± 0.02 | 1.98 ± 0.01 |
1 MHz | 12.43 ± 0.1 | 2.04 ± 0.01 | 3.11 ± 0.04 | 2.17 ± 0.10 |
100 kHz | 9.75 ± 0.12 | 1.05 ± 0.01 | 2.88 ± 0.04 | 2.05 ± 0.02 |
10 kHz | 12.83 ± 0.08 | 1.41 ± 0.02 | 7.01 ± 0.21 | 3.31 ± 0.05 |
1 kHz | 31.27 ± 0.15 | 3.34 ± 0.33 | 9.54 ± 0.20 | 6.74 ± 0.25 |
Sample 2 | ||||
10 MHz | 6.26 ± 0.05 | 1.08 ± 0.01 | 2.01 ± 0.17 | 1.31 ± 0.02 |
1 MHz | 12.04 ± 0.08 | 1.76 ± 0.02 | 4.61 ± 0.10 | 4.17 ± 0.03 |
100 kHz | 10.39 ± 0.18 | 1.07 ± 0.01 | 2.83 ± 0.51 | 1.76 ± 0.02 |
10 kHz | 10.31 ± 0.23 | 1.82 ± 0.02 | 6.65 ± 0.40 | 4.04 ± 0.06 |
1 kHz | 13 ± 0.07 | 1.88 ± 0.01 | 2.57 ± 0.19 | 2.13 ± 0.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Kropp, E.; Chen, J.; Kulinsky, L. Step-Wise Deposition Process for Dielectrophoretic Formation of Conductive 50-Micron-Long Carbon Nanotube Bridges. Micromachines 2020, 11, 371. https://doi.org/10.3390/mi11040371
Zhou T, Kropp E, Chen J, Kulinsky L. Step-Wise Deposition Process for Dielectrophoretic Formation of Conductive 50-Micron-Long Carbon Nanotube Bridges. Micromachines. 2020; 11(4):371. https://doi.org/10.3390/mi11040371
Chicago/Turabian StyleZhou, Tuo, Ethan Kropp, Jingyuan Chen, and Lawrence Kulinsky. 2020. "Step-Wise Deposition Process for Dielectrophoretic Formation of Conductive 50-Micron-Long Carbon Nanotube Bridges" Micromachines 11, no. 4: 371. https://doi.org/10.3390/mi11040371
APA StyleZhou, T., Kropp, E., Chen, J., & Kulinsky, L. (2020). Step-Wise Deposition Process for Dielectrophoretic Formation of Conductive 50-Micron-Long Carbon Nanotube Bridges. Micromachines, 11(4), 371. https://doi.org/10.3390/mi11040371